domvpavlino.ru

Что такое ГМО и почему они вредны? Генетически модифицированые организмы (ГМО)

Тема употребления в пищу генномодифицированных продуктов очень актуальна. Кто-то считает генную инженерию насилием над природой, а кто-то боится за собственное здоровье и проявление побочных эффектов. Пока во всем мире идут споры о пользе и , многие люди покупают и едят их, даже не зная об этом.

Что такое генетически модифицированные продукты?

В современном обществе прослеживается тенденция к правильному питанию, и на стол попадает все самое свежее и натуральное. Люди стараются обходить стороной все, что получено из генетически модифицированных организмов, конституция которых была кардинально изменена при помощи генной инженерии. Сократить их употребление можно, лишь имея представление о том, что такое ГМО в продуктах питания.

Сегодня в супермаркетах продается до 40% продуктов с ГМО: овощи, фрукты, чай и кофе, шоколад, соусы, соки и газированная вода, даже . Достаточно лишь одного ГМ-компонента, чтобы пища получила отметку «ГМО». В списке:

  • трансгенные фрукты, овощи и, возможно, животные, употребляемые в пищу;
  • продукты с ГМ-интгредиентами (например, трансгенная кукуруза);
  • переработанное трансгенное сырье (например, чипсы из трансгенной кукурузы).

Как отличить генномодифицированные продукты?

Генетически измененные продукты получают, когда ген одного организма, выведенный в лаборатории, подсаживают в клетку другого. ГМО дают растению или ряд признаков: устойчивость к вредителям, вирусам, химическим веществам и внешним воздействиям, но если на прилавки регулярно попадают генетически модифицированные продукты, как отличить их от натуральных? Надо смотреть на состав и внешний вид:

  1. Генетически модифицированные продукты (ГМП) долго хранятся и не портятся. Идеально ровные, гладкие, неароматные овощи и фрукты – почти наверняка с ГМО. То же касается хлебобулочных изделий, которые долгое время остаются свежими.
  2. Напичканы трансгенами замороженные полуфабрикаты – пельмени, котлеты, вареники, блины, мороженое.
  3. Продукты из США и Азии, содержащие картофельный крахмал, соевую муку и кукурузу в 90% случаев ГМО. Если на этикетке в составе продукта указан растительный белок – это модифицированная соя.
  4. Дешевые колбасные изделия обычно содержат соевый концентрат, являющийся ГМ-ингредиентом.
  5. На наличие могут указывать пищевые добавки Е 322 (соевый лецитин), Е 101 и Е 102 А (рибофлавин), Е415 (ксантан), Е 150 (карамель) и другие.

Генномодифицированные продукты - «за» и «против»

О такой пище ходит много споров. Люди обеспокоены экологическими рисками их выращивания: генетически мутированные формы могут попасть в дикую природу и привести к глобальным изменениям в экологических системах. Потребителей волнуют пищевые риски: возможные аллергические реакции, отравления, болезни. Возникает вопрос: нужны ли генетически модифицированные продукты на мировом рынке? Отказаться от них полностью пока невозможно. Они не ухудшают вкус пищи, а стоимость трансгенных вариантов гораздо ниже натуральных. Находятся как противники, так и сторонники ГМП.

Вред ГМО

Не существует ни одного стопроцентно подтвержденного исследования, которое указывало бы, что модифицированные продукты вредны для организма. Однако противники ГМО называют множество неопровержимых фактов:

  1. Генная инженерия может иметь опасные и непредсказуемые побочные эффекты.
  2. Вредит окружающей среде из-за большего использования гербицидов.
  3. Могут выйти из-под контроля и распространиться, загрязнив генофонд.
  4. Некоторые исследования заявляют о вреде ГМ-продуктов, как причины развития хронических заболеваний.

Польза ГМО

Генетически модифицированные продукты имеют свои преимущества. Что касается растений, в трансгенных накапливается меньшее количество химикатов, чем в природных аналогах. Сорта с измененной конституцией устойчивы к различным вирусам, болезням и погоде, они значительно быстрее созревают, а хранятся и того больше, самостоятельно борются с вредителями. С помощью трансгеного вмешательства в разы уменьшается время на селекцию. Это несомненные плюсы ГМО, к тому же защитники генной инженерии, утверждают, что употребление в пищу ГМП – это единственная возможность спасти человечество от голода.


Чем опасны генномодифицированные продукты?

Несмотря на все попытки найти пользу от внедрения современной науки, генной инженерии, генетически модифицированные продукты питания чаще всего упоминаются в негативном ключе. Они несут три угрозы:

  1. Окружающей среде (появление устойчивых сорняков, бактерий, сокращение видов или численности растений и животных, химическое загрязнение).
  2. Организму человека (аллергия и другие заболевания, нарушения метаболизма, изменение микрофлоры, мутагенный эффект).
  3. Глобальные риски (экономическая безопасность, активизация вирусов).

НАУЧНАЯ БИБЛИОТЕКА - РЕФЕРАТЫ - Генная модификация

Генная модификация

Генетики и селекционеры обсуждают сложнейшие проблемы селекции растений и животных, применения генетических технологий в медицине, безопасности генетически модифицированных продуктов.

1. Генная инженерия

Генная инженерия - это раздел молекулярной генетики, связанный с целенаправленным созданием новых комбинаций генетического материала. Основа прикладной генной инженерии - теория гена. Созданный генетический материал способен размножаться в клетке-хозяине и синтезировать конечные продукты обмена.

Генная инженерия возникла в 1972 году, в Станфордском университете, в США. Тогда лаборатория П. Берга получила первую рекомбинатную (гибридную) ДНК или (рекДНК). Она соединяла в себе фрагменты ДНК фага лямбда, кишечной палочки и обезьяньего вируса SV40.

Строение рекомбинантной ДНК. Гибридная ДНК имеет вид кольца. Она содержит ген (или гены) и вектор. Вектор - это фрагмент ДНК, обеспечивающий размножение гибридной ДНК и синтез конечных продуктов деятельности генетической системы - белков. Большая часть векторов получена на основе фага лямбда, из плазмид, вирусов SV40, полиомы, дрожжей и др. бактерий.

Синтез белков происходит в клетке-хозяине. Наиболее часто в качестве клетки-хозяина используют кишечную палочку, однако применяют и др. бактерии, дрожжи, животные или растительные клетки. Система вектор-хозяин не может быть произвольной: вектор подгоняется к клетке-хозяину. Выбор вектора зависит от видовой специфичности и целей исследования.

Ключевое значение в конструировании гибридной ДНК несут два фермента. Первый - рестриктаза - рассекает молекулу ДНК на фрагменты по строго определенным местам. И второй - ДНК-лигазы - сшивают фрагменты ДНК в единое целое. Только после выделения таких ферментов создание искусственных генетических структур стало технически выполнимой задачей.

Этапы генного синтеза . Гены, подлежащие клонированию, могут быть получены в составе фрагментов путем механического или рестриктазного дробления тотальной ДНК. Но структурные гены, как правило, приходится либо синтезировать химико-биологическим путем, либо получать в виде ДНК-копии информационных РНК, соответствующих избранному гену. Структурные гены содержат только кодированную запись конечного продукта (белка, РНК), и полностью лишены регуляторных участков. И поэтому эти гены не способны функционировать в клетке-хозяине.

При получении рекДНК образуется чаще всего несколько структур, из которых только одна является нужной. Поэтому обязательный этап составляет селекция и молекулярное клонирование рекДНК, введенной путем трансформации в клетку-хозяина.

Существует 3 пути селекции рекДНК: генетический, иммунохимический и гибризационный с мечеными ДНК и РНК.

В результате интенсивного развития методов генной инженерии получены клоны множества генов: рибосомальной, транспортной и 5S РНК, гистонов, глобина мыши, кролика, человека, коллагена, овальбумина, инсулина человека и др. пептидных гормонов, интерферона человека и прочее. Это позволило создавать штаммы бактерий, производящих многие биологически активные вещества, используемые в медицине, сельском хозяйстве и микробиологической промышленности.

На основе генной инженерии возникла отрасль фармацевтической промышленности, названная "индустрией ДНК". Это одна из современных ветвей биотехнологии .

Нет сомнений, что поиски генетиков сулят человеку избавление от многих недугов . Уже сейчас генная инженерия начинает активно применяться в онкологии, создаются препараты, прицельно направленные против конкретной опухоли. Ученым удалось идентифицировать гены, предрасполагающие к развитию сахарного диабета, - значит, появились новые перспективы в лечении и этого тяжкого недуга. Для лечебного применения допущен инсулин человека (хумулин), полученный посредством рекДНК. Кроме того, на основе многочисленных мутантов по отдельным генам, получаемых при их изучении, созданы высокоэффективные тест-системы для выявления генетической активности факторов среды, в том числе для выявления канцерогенных соединений.

За короткий срок генная инженерия оказала огромное влияние на развитие молекулярно-генетических методов и позволила существенно продвинуться по пути познания строения и функционирования генетического аппарата. Генная инженерия имеет большие перспективы в лечении наследственных болезней, которых на сегодняшний день зарегистрировано около 2000. Генная инженерия призвана помогать исправлять ошибки природы.

С другой стороны, генетические технологии породили совершенно новые проблемы, связанные с возможностью клонирования живых существ, в том числе и человека. Мировое научное сообщество признает, что технически клонирование идентичной человеческой особи становится возможным. Но вопрос о том, нужны ли человечеству подобные попытки, остается открытым. Доказано, что в 99 процентах случаев есть риск врожденных уродств - а значит, такие опыты над человеком недопустимы.

Однако, новые генетические технологии на основе трансгенеза и клонирования играют важнейшую роль в создании высокопродуктивных сортов растений и пород животных. При этом на первый план выходят проблемы, как генетической безопасности, так и морально-правовые .

В России все исследования по клонированию проводятся только на животных. Яростные дискуссии ведутся во всем мире - в том числе и в России - вокруг другого порождения современной науки: генетически модифицированных продуктов .

2. Безопасна ли генная модификация?

Создатели генетически измененных продуктов утверждают, что они совершенно безопасны. Сторонники их широкого использования уверены, что многолетние исследования доказали безвредность такой продукции. Противники убеждены в обратном.

До сих пор не доказано, что эти продукты безопасны для человека. Многие виды генетически модифицированных продуктов запрещаются к использованию на последних стадиях эксперимента как сильные аллергены.

Правы ли скептики, утверждающие, что трансгенные продукты опасны? А может, они станут нашей пищей в 21 веке?

Около 30 лет назад были произведены первые опыты по генетической модификации растений. Например, можно взять один ген от одного животного или растения и вживить его в другое животное или растение. Таким способом, например, можно получить картофель, устойчивый к пестицидам .

Генетически модифицированные продукты не только созданы, но их активно употребляют в пищу.

В традиционной селекции происходит скрещивание внутри одного вида. Даже помидор был улучшен селекцией. Но, при селекции происходит обмен между особями одного вида. А генная инженерия позволяет составить новую ДНК и манипулировать ею. Например, если ген светлячка вставить в ДНК табака, то цветок табака начинает светиться, если нуждается в поливе. Селекционными методами этого не возможно добиться!

Протестующие больше всего обращают внимание на негативные процессы этой методики. Но ведь, никто не спорит с тем, что генетически модифицированные продукты нуждается в тестировании!

Защитники индустрии биотехнологий утверждают, что все процессы, касающиеся генно-модифицированных продуктов, находятся под жестким контролем.

Проводится анализ обыкновенного и трансгенного растения. Ученые должны доказать инспекторам, что пищевые продукты не отличаются по качеству.

Проверка продукта проходит следующие этапы:

1. Сравнение структуры и химического состава обыкновенного и траснсгенного растения.

2. Требуются доказательства того, что употребление нового продукта в пищу не вредит здоровью человека.

Трансгенная соя (обладает устойчивостью к гербицидам) входит в продукты, которые мы употребляем в пищу последние годы.

Токсичен ли новый белок? Несколько лет проводили тестирование белка на токсичность. Кормили мышей дозами в 1000 раз, превышающие дозы, которые потребляет человек. Ученые утверждают, что ничего вредного для организма человека не было выявлено.

Как новые белки перевариваются? Белки, созданные искусственно погружают в раствор, который имеет среду сходную по составу с кишечником. Чем быстрее переваривается продукт, тем лучше.

Эксперименты показали, что новый белок не является аллергеном. Есть и другие способы проверить созданный белок. Если он не проходит проверку, то его уничтожают. Однако, белок трансгенной сои успешно выдержал испытания! Было проведено 1800 анализов, которые показали, что с соевыми бобами все в порядке.

Система тестов работает. Нужно только следовать методике, считают ученые.

Но скептики полагают, что наука знает еще слишком мало, чтобы утверждать, что “все под контролем”. Живые организмы настолько сложны, что предвидеть их поведение практически невозможно.

Однако, традиционные методы селекции не всегда безопасны . Напротив, в генной инженерии точно известны пути внедрения гена. Опять же, скептики уверены, в том, что генная инженерия, использующая новые методы, рискует нанести непоправимый вред природе. Их противники, говорят, что и селекция опасна, т.к. она имеет дело не с одним, а с несколькими генами! А потому результат селекции еще более непредсказуем!

Страшнее всего, то, что лет 30 тому назад экспериментировали с генами, не понимая, что делают!

Сопротивление генно-модифицированной продукции в Европе сильнее, чем где-либо еще в мире. Последнее время внедрение трансгенных продуктов очень затруднено: в Англии таковых продуктов было внедрено около 2000, а теперь осталось меньше 100!

3. Примеры генной модификации

Общественные организации в Европе призывают уничтожать трансгенные растения. Странные растения получают, вживляя в них гены животных. Экологи против этих технологий, общественность высокомерно и презрительно относится к генетически модифицированным продуктам.

3.1 Увеличение початка кукурузы

В Мексике - бедные почвы, а потому очень плохие урожаи кукурузы. Ученым поставлена задача, по увеличению размера початка кукурузы . В результате проведенных исследований, вживили в кукурузу ген, который нейтрализует соли алюминия и растворяет фосфаты, это позволило растению полноценно развиваться на предлагаемых почвах.

Урожай обещал быть в 2 раза больше, но правительство под давлением экологических организаций запретило заниматься этими исследованиями. Экологи игнорируют результаты эксперимента. Противники генной инженерии считают, что такие опыты наносят вред экологии, опасны для здоровья и в конечном итоге приводят к экологической катастрофе. Ведь, никто не даст гарантии, что эти методики не приведут к появлению новых насекомых и сорняков!

3.2 Защита хлопчатника

Университет Аризоны. Ученые работают над увеличением урожайности хлопка. Растение страдает от нашествия розового коробчатого червя. Если популяция вредителя большая, то урожаи хлопка стремительно падают!

Требуется внедрить в хлопчатник такой ген, который будет убивать коробчатого червя. Последние 40 лет для уничтожения насекомых применяли опрыскивание растений химикатами. Страдали и люди, и животные. Попробовали вживить в хлопок ген бактерии. В листьях растения появился белок, который ядовит для червя. Таким образом, необходимость защиты растения химикатами отпадает!

В результате получили сотни гектаров ядовитых растений, которые сами защищаются от вредных насекомых. Опять же, пройдет время, и вредители привыкнут, выработают иммунитет!

Но не только жуки - вредители внушают опасения! Экологи боятся, что появятся особо устойчивые сорняки, и, значит, не будет спасения от сорняков устойчивых к химикатам. Ведь пчелы могут разнести пыльцу на несколько километров, и эти растения заполнят всю округу. Однако, есть данные, что на расстоянии 15 м опыление уже не происходит. Но если даже пыльца модифицированного растения преодолеет расстояние, то она должна скрестится со своим видом. Сверхживучесть сохранить не так просто…

3.3 Рис с витамином “А”

Азия. 100 млн. детей не получают витамин “А”, который необходим для полноценного зрения. Дело в том, что основная пища беднейших слоев населения – рис. Дети слепнут от недостатка витамина “А”!

Благородная задача - вырастить рис сразу с витамином “А” и засеять им поля в отсталых странах. Как это возможно? Нарцисс – ядовитое растение. Из него необходимо взять 2 гена и внедрить в рис, который в таком случае будет содержать витамин “А”!

4. Ужасы генной модификации

Ген человеческой печени добавляют в рис! Ученые начали добавлять человеческие гены в рис в попытке поднять генно-модифицированные продукты на новый уровень.

Исследователи ввели в рис ген, полученный из печени человека, производящий энзим, способствующий распаду вредных химических элементов в организме человека. Они надеются, что энзим – CYP2B6 – сделает то же самое с гербицидами и загрязняющими веществами, будучи смешанным с рисом.

Однако противники генно-модифицированных продуктов говорят, что использование человеческих генов отпугнет потребителей, которым претит идея каннибализма и того, что ученые берут на себя функции бога. Сью Майер из британской организации GeneWatch говорит: "Я не думаю, что кто-то захочет купить этот рис". "Люди уже выразили свое отвращение по поводу использования человеческих генов и беспокойство в связи с ощущением, что индустрия биотехнологий не прислушивается к ним. Это еще больше пошатнет их уверенность".

Обычно при генной модификации зерновых культур используются гены, полученные из бактерий. Они устойчивы только к одному виду гербицидов, что означает, что фермеры могут обрабатывать свои поля как угодно часто для борьбы с вредителями, но только одним видом химикатов. Цель добавления в рис человеческого гена – создать растение, устойчивое к нескольким видам гербицидов.

Исследователи в Национальном институте агробиологических наук в Цукубе в Японии обнаружили, что новый вид риса может быть устойчивым к 14 различным видам гербицидов. Профессор Ричард Мейлан, проводивший подобные исследования в Институте Пердью в Индиане говорит, что такой рис можно выращивать на почве, пропитанной промышленными загрязнениями. Он применял в своих исследованиях гены кроликов, но говорит, что не видит причин, по которым нельзя использовать человеческие гены. Он говорит, что разговоры о "пище Франкенштейна" – это чепуха, и добавляет: "Я не думаю, что этические соображения имеют какое-то отношение к использованию человеческих генов в генной инженерии при выращивании продуктов".

Производство риса во всем мире падает, и идет гонка в поисках путей повышения сборов риса, а также новых разновидностей риса, устойчивых к вирусам, с низким содержанием аллергенов и белка.

Однако в Институте Науки в обществе противников генной модификации говорят, что энзим CYP2B6 может ударить по человеку, приведя к созданию новых вирусов или разновидностей рака.

Они добавляют: "Сторонники генной модификации и страны, являющиеся основными производителями риса, исследуют и продвигают генно-модифицированный рис, совершенно не задумываясь о безопасности и долговременной перспективе" .

Заключение

Скептики не уверены, что генные технологии решат социальные проблемы. Мечты о равном распределении продуктов питания по всему миру – утопия.

Сопротивление генно-модифицированной продукции в Европе сильнее, чем где-либо еще в мире. Создатели генетически измененных продуктов утверждают, что они совершенно безопасны. В свою очередь, противники генной модификации считают ее "ящиком Пандоры" с непредсказуемыми последствиями.

Очевидно, что в ближайшие десятилетия генетика еще преподнесет человечеству немало сюрпризов, породит множество сенсаций - мнимых и реальных, вокруг нее будут бушевать споры и даже скандалы. Общество легко слышит тех людей, которые боятся всего нового, но опасность от мобильных телефонов не меньше!

Главное, чтобы вся эта суета не слишком мешала серьезной работе ученых на одном из самых интересных и перспективных научных направлений.

Терминологический словарь

Генная инженерия - практика целенаправленного изменения генетических программ половых клеток с целью придания исходным формам организмов новых свойств или создания принципиально новых форм организмов. Основной метод генной инженерии состоит в извлечении из клеток организма гена или группы генов, соединение их с определенными молекулами нуклеиновых кислот и внедрение полученных гибридных молекул в клетки другого организма.

Биологическая защита - в генной инженерии - создание и использование безопасной для человека и объектов окружающей среды комбинации биологического материала, свойства которого исключают нежелательное выживание генно-инженерно-модифицированных организмов в окружающей среде и/или передачу им генетической информации

Биотехнология Biotechnology - в широком смысле - пограничная между биологией и техникой научная дисциплина и сфера практики, изучающая пути и методы изменения окружающей человека природной среды в соответствии с его потребностями.

Биотехнология - в узком смысле - совокупность методов и приемов получения полезных для человека продуктов и явлений с помощью биологических агентов. В состав биотехнологии входят генная, клеточная и экологическая инженерии

Выпуск генно-инженерно-модифицированных организмов в окружающую среду - действие или бездействие, в результате которых произошло внесение генно-инженерно-модифицированных организмов в окружающую среду.

Генно-инженерная деятельность - деятельность, осуществляемая с использованием методов генной инженерии и генно-инженерно-модифицированных организмов.

Генно-инженерно-модифицированный организм - организм или несколько организмов, любое неклеточное, одноклеточное или многоклеточное образование: - способное к воспроизводству или передаче наследственного генетического материала; - отличное от природных организмов; - полученное с применением методов генной инженерии; и - содержащее генноинженерный материал.

Генодиагностика - в генной инженерии - совокупность методов по выявлению изменений в структуре генома.

Замкнутая система - в генной инженерии - система осуществления генно-инженерной деятельности, при которой генетические модификации вносятся в организм или генно-инженерно-модифицированные организмы, обрабатываются, культивируются, хранятся, используются, подвергаются транспортировке, уничтожению или захоронению в условиях существования физических, химических и биологических барьеров или их комбинаций, предотвращающих контакт генно-инженерно-модифицированных организмов с населением и окружающей средой.

Открытая система - в генной инженерии - система осуществления генно-инженерной деятельности, предполагающая контакт генно-инженерно-модифицированных организмов с населением и окружающей средой при их намеренном выпуске в окружающую среду, применении в медицинских целях, при экспорте и импорте, при передаче технологий.

Трансгенные организмы - животные, растения, микроорганизмы, вирусы, генетическая программа которых изменена с использованием методов генной инженерии.

Физическая защита - в генной инженерии - создание и использование специальных технических средств и приемов, предотвращающих выпуск генно-инженерно-модифицированных организмов в окружающую среду и/или передачу им генетической информации.

Литература

1.Маниатис Т., Методы генетической инженерии, М., 1984;

2.Генная инженерия Источник #"#">#"#">Рубрикон


Генно-инженерно-модифицированный организм - организм или несколько организмов, любое неклеточное, одноклеточное или многоклеточное образование: - способное к воспроизводству или передаче наследственного генетического материала; - отличное от природных организмов; - полученное с применением методов генной инженерии; и - содержащее генно-инженерный материал.

Фаги, то же, что бактериофаги. …фаг (от греч. Phagos –пожиратель) часть сложных слов, соответствующая по значению словам ”поедающий’, ‘поглощающий” (например, бактериофаг).

Биотехнология- совокупность методов и приемов получения полезных для человека продуктов и явлений с помощью биологических агентов. В состав биотехнологии входят генная, клеточная и экологическая инженерии.

Генетики вывели соевые бобы, предотвращающие потерю волос. В Японии выведен генетически измененный сорт соевых бобов, которые стимулируют рост волос и предотвращают их потерю от химиотерапии. Если подтвердится безопасность нового продукта, то, чтобы спастись от облысения, нужно будет просто периодически есть эти бобы, сообщил в среду глава исследовательской группы Университета Киото профессор Массаки Иосикава. Чудодейственное свойство зерновой культуре придал генетически внедренный компонент (новокинин), обладающий противогипертоническим эффектом. Он был получен из аминокислотного состава яичного белка. По словам ученых, этот компонент способствует росту волос тем, что расширяет сосуды и нормализует циркуляцию крови. Эффективность бобов подтверждена в ходе экспериментов над мышами, которых побрили, а затем кормили модифицированными бобами из расчета одна тысячная миллиграмма противогипертонического вещества на грамм массы тела. Как сообщается, восстановление шерстяного покрова шло ускоренными темпами, а после увеличения дозы мыши переставали терять шерсть даже в результате химиотерапии. Специалисты говорят, что их бобы также можно использовать в качестве обычного лекарства от высокого давления. 13 Апреля 2005

Генети́чески модифици́рованный органи́зм (ГМО ) - организм , генотип которого был искусственно изменён при помощи методов генной инженерии . Это определение может применяться для растений, животных и микроорганизмов. Всемирная организация здравоохранения даёт более узкое определение, согласно которому генетически модифицированные организмы - это организмы, чей генетический материал (ДНК) был изменен, причём такие изменения были бы невозможны в природе в результате размножения или естественной рекомбинации .

Генетические изменения, как правило, производятся в научных или хозяйственных целях. Генетическая модификация отличается целенаправленным изменением генотипа организма в отличие от случайного, характерного для естественного и искусственного мутационного процесса.

Основным видом генетической модификации в настоящее время является использование трансгенов для создания трансгенных организмов .

В сельском хозяйстве и пищевой промышленности под ГМО подразумеваются только организмы, модифицированные внесением в их геном одного или нескольких трансгенов .

Специалистами получены научные данные об отсутствии повышенной опасности продуктов из генетически модифицированных организмов как таковых по сравнению с традиционными продуктами .

Цели создания ГМО [ | ]

Использование как отдельных генов различных видов, так и их комбинаций в создании новых трансгенных сортов и линий является частью стратегии FAO по характеризации, сохранению и использованию генетических ресурсов в сельском хозяйстве и пищевой промышленности .

Исследование 2012 года (основанное в том числе на отчётах компаний-производителей семян) использования трансгенных сои, кукурузы, хлопка и канолы в 1996-2011 годах показало, что устойчивые к гербицидам культуры оказываются более дешёвыми в выращивании и в ряде случаев более урожайными. Культуры содержащие инсектицид давали больший урожай, особенно в развивающихся странах, где использовавшиеся до этого пестициды были малоэффективными. Также устойчивые к насекомым культуры оказывались более дешёвыми в выращивании в развитых странах . По данным метаанализа , проведённого в 2014 году, урожайность ГМО-сельхозкультур за счёт снижения потерь от вредителей на 21,6 % выше, чем у немодифицированных, при этом расход пестицидов ниже на 36,9 %, затраты на пестициды снижаются на 39,2 %, а доходы сельхозпроизводителей повышаются на 68,2 % .

Методы создания ГМО [ | ]

Основные этапы создания ГМО:

Методы осуществления каждого из этих этапов составляют в совокупности .

Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100-120 азотистых оснований (олигонуклеотиды).

Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование , то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детёныши с изменённым или неизменным генотипом , среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

Применение [ | ]

В исследованиях [ | ]

В настоящее время генетически модифицированные организмы широко используются в фундаментальных и прикладных научных исследованиях. С помощью генно-модифицированных организмов исследуются закономерности развития некоторых заболеваний (болезнь Альцгеймера , рак) , процессы старения и регенерации , изучается функционирование нервной системы , решается ряд других актуальных проблем биологии и современной медицины .

В медицине и фармацевтической промышленности [ | ]

Генетически модифицированные организмы используются в прикладной медицине с 1982 года . В этом году зарегистрирован в качестве лекарства генно-инженерный человеческий инсулин , получаемый с помощью генетически модифицированных бактерий . В настоящее время фармацевтическая промышленность выпускает большое количество лекарственных средств на основе рекомбинантных белков человека: такие белки производят генетически модифицированные микроорганизмы, либо генетически модифицированные клеточные линии животных. Генетическая модификация в данном случае заключается в том, что в клетку интродуцируется ген белка человека (например, ген инсулина, ген интерферона, ген бета-фоллитропина). Эта технология позволяет выделять белки не из донорской крови, а из ГМ-организмов, что снижает риск инфицирования препаратов и повышает чистоту выделенных белков. Ведутся работы по созданию генетически модифицированных растений, продуцирующих компоненты вакцин и лекарств против опасных инфекций (чумы , ВИЧ ). На стадии клинических испытаний находится проинсулин, полученный из генетически модифицированного сафлора . Успешно прошло испытания и одобрено к использованию лекарство против тромбозов на основе белка из молока трансгенных коз .

В сельском хозяйстве [ | ]

Генная инженерия используется для создания новых сортов растений, устойчивых к неблагоприятным условиям среды и вредителям , обладающих лучшими ростовыми и вкусовыми качествами.

Проходят испытания генетически модифицированные сорта лесных пород со значительным содержанием целлюлозы в древесине и быстрым ростом .

Однако, некоторые компании устанавливают ограничения на использование продаваемых ими генетически модифицированных семян, запрещая высеивание самостоятельно полученных семян. Для этого используются юридические ограничения типа контрактов, патентов или лицензирования семян . Также для подобных ограничений одно время прорабатывались технологии (GURT), которые так и не использовались в коммерчески доступных ГМ-линиях . Технологии GURT либо делают стерильным выращенные семена (V-GURT), либо требуют особых химических веществ для проявления внесённого с помощью модификации свойства (T-GURT). При этом стоит отметить, что в сельском хозяйстве широко применяются гибриды F1 , которые, как и ГМО-сорта, требуют ежегодной закупки семенного материала. Некоторые продукты содержат ген, приводящий к стерильности пыльцы, например, ген барназы , полученный из бактерии Bacillus amyloliquefaciens .

С 1996 года, когда началось выращивание ГМ-растений, площади, занятые ГМ-культурами, выросли до 175 млн гектаров в 2013 году (более 11 % от всех мировых посевных площадей). Такие растения выращиваются в 27 странах, особенно широко - в США, Бразилии, Аргентине, Канаде, Индии, Китае , при этом, начиная с 2012 года, производство ГМ-сортов развивающимися странами превысило производство в промышленно развитых государствах . Из 18 миллионов фермерских хозяйств, выращивающих ГМ-культуры, более 90 % приходится на малые хозяйства в развивающихся странах .

На 2013 год, в 36 странах, регулирующих использование ГМ-культур, было выдано 2833 разрешения на использование таких культур, из них 1321 - для употребления в пищу, и 918 - на корм скоту. Всего на рынок допущено 27 ГМ-культур (336 сортов), основными культурами являются: соя, кукуруза, хлопок, канола , картофель . Из применяемых ГМ-культур подавляющее большинство площадей занимают культуры, устойчивые к гербицидам, насекомым-вредителям или культуры с комбинацией этих свойств .

В животноводстве [ | ]

Методом генного редактирования удалось создать свиней, которые потенциально устойчивы к африканской свиной чуме . Изменение пяти «букв» в коде ДНК гена RELA у выращиваемых на фермах животных, позволило получить вариант гена, который, предположительно защищает их диких сородичей: бородавочников и кустарниковых свиней от этого заболевания .

Другие направления [ | ]

Разрабатываются генетически модифицированные бактерии, способные производить экологически чистое топливо .

В 2003 году на рынке появилась GloFish - первый генетически модифицированный организм, созданный с эстетическими целями, и первое домашнее животное такого рода. Благодаря генной инженерии популярная аквариумная рыбка Данио рерио получила несколько ярких флуоресцентных цветов.

В 2009 году выходит в продажу ГМ-сорт розы «Applause» с цветами "синего цвета" (на самом деле они сиреневые) .

Безопасность [ | ]

Появившаяся в начале 1970-х годов технология (en:Recombinant DNA) открыла возможность получения организмов, содержащих инородные гены (генетически модифицированных организмов). Это вызвало обеспокоенность общественности и положило начало дискуссии о безопасности подобных манипуляций .

Первым документом, которым регулировалась деятельность по производству и обращению с гмо-материалами на территории Евросоюза стала Директива 90/219/ЕЕС «Об ограниченном использовании генетически изменённых микроорганизмов» .

На вопрос о безопасности продуктов из генетически модифицированных организмов Всемирная организация здравоохранения отвечает о невозможности общих утверждений об опасности или безопасности таких продуктов, но о необходимости отдельной оценки в каждом случае, так как разные генетически модифицированные организмы содержат разные гены. Также ВОЗ считает, что доступные на международном рынке гм-продукты проходят проверки безопасности и употреблялись в пищу популяциями целых стран без отмеченных эффектов, и соответственно вряд ли могут представлять опасность для здоровья .

В настоящее время специалистами получены научные данные об отсутствии повышенной опасности продуктов из генетически модифицированных организмов в сравнении с продуктами, полученными из организмов, выведенных традиционными методами . Как отмечается в докладе 2010 года Генерального Директората Европейской комиссии по науке и информации :

Главный вывод, вытекающий из усилий более чем 130 научно-исследовательских проектов, охватывающих 25 лет исследований и проведённых с участием более чем 500 независимых исследовательских групп, состоит в том, что биотехнологии и, в частности, ГМО как таковые не более опасны, чем, например, традиционные технологии селекции растений

В 2012 году в журнале Nature была опубликована статья о долгосрочном использовании ГМ-культур, производящих инсектицидные белки, и не требующих дополнительной обработки инсектицидами. Это естественным образом увеличивало популяцию хищных насекомых, и значительно сокращало число вредных насекомых .

Обзор 1783 публикаций на тему ГМО с выводом: никаких особенных рисков они не несут .

Регулирование [ | ]

В некоторых странах создание, производство, применение продукции с использованием ГМО подлежит государственному регулированию. В том числе и в России, где исследовано и одобрено к применению несколько видов трансгенных продуктов.

До 2014 года в России ГМО можно было выращивать только на опытных участках, был разрешён ввоз некоторых сортов (не семян) кукурузы, картофеля, сои, риса и сахарной свёклы (всего 22 линии растений). С 1 июля 2014 г. должно было вступить в силу Постановление Правительства Российской Федерации от 23 сентября 2013 г. № 839 «О государственной регистрации генно-инженерно-модифицированных организмов, предназначенных для выпуска в окружающую среду, а также продукции, полученной с применением таких организмов или содержащей такие организмы» . 16 июня 2014 года Правительством РФ принято постановление № 548 о переносе срока вступления в силу постановления № 839 на 3 года, то есть на 1 июля 2017 года .

В феврале 2015 года в Госдуму внесен законопроект о запрете на выращивание ГМО в России , который был принят в первом чтении в апреле 2015 . Запрет не касается использования генномодифицированных организмов (ГМО) для проведения экспертиз и научно-исследовательских работ. Согласно законопроекту, правительство сможет запрещать ввоз в Россию генно-модифицированных организмов и продукции по результатам мониторинга их воздействия на человека и окружающую среду . Импортёры генно-модифицированных организмов и продукции будут обязаны пройти регистрационные процедуры. За использование ГМО с нарушением разрешённого вида и условий использования предусматривается административная ответственность: штраф на должностных лиц предлагается установить в размере от 10 тысяч до 50 тысяч рублей; на юридических лиц - от 100 до 500 тысяч рублей.

Список ГМО, одобренных в России для использования , в том числе в качестве пищи населением :

Общественное мнение [ | ]

Как показывают опросы общественного мнения, общество в целом не слишком осведомлено об основах биотехнологии. Большинство верит утверждениям типа: Обычные томаты не содержат генов, в отличие от трансгенных томатов .

По мнению молекулярного биолога Энн Гловер , противники ГМО страдают «формой умственного помешательства». Выражения А. Гловер привели к её отставке с поста главного научного консультанта Европейской Комиссии .

В 2016 году более 120 нобелевских лауреатов (большинство из которых медики, биологи и химики) подписали письмо с призывом к Greenpeace , Организации Объединённых Наций и правительствам всего мира прекратить борьбу с генетически модифицированными организмами .

ГМО и религия [ | ]

В соответствии с заключением иудаистского Ортодоксального Союза, генетические модификации не влияют на кошерность продукта .

См. также [ | ]

Примечания [ | ]

  1. ВОЗ | Часто задаваемые вопросы по генетически модифицированным продуктам питания (неопр.) . www.who.int. Проверено 24 марта 2017.
  2. genetically modified organism // Glossary of biotechnology for food and agriculture: a revised and augmented edition of the glossary of biotechnology and genetic engineering. Rome, 2001, FAO, ISSN 1020-0541
  3. European Commission Directorate-General for Research and Innovation; Directorate E - Biotechnologies, Agriculture, Food; Unit E2 - Biotechnologies (2010) p.16
  4. What is agricultural biotechnology? // The state of food and agriculture 2003-2004: The state of food and agriculture 2003-2004. Agricultural Biotechnology. FAO Agriculture Series № 35. (2004)
  5. Лещинская И. Б. Генетическая инженерия (рус.) (1996). Проверено 4 сентября 2009. Архивировано 21 января 2012 года.
  6. Brookes G, Barfoot P. The global income and production effects of genetically modified (GM) crops 1996-2011.GM Crops Food. 2012 Oct-Dec;3(4):265-72.
  7. Klümper, Wilhelm; Qaim, Matin (2014). “A Meta-Analysis of the Impacts of Genetically Modified Crops” . PLoS ONE . 9 (11): –111629. DOI :10.1371/journal.pone.0111629 . Проверено 2015-12-24 .
  8. Trait Introduction Method: Agrobacterium tumefaciens-mediated plant transformation
  9. Microparticle bombardment of plant cells or tissue
  10. Safety of Genetically Engineered Foods: Approaches to Assessing Unintended Health Effects (2004)
  11. Jeffrey Green,Thomas Ried. Genetically Engineered Mice for Cancer Research: Design, Analysis, Pathways, Validation and Pre-clinical Testing. Springer, 2011
  12. Patrick R. Hof,Charles V. Mobbs. Handbook of the neuroscience of aging. p537-542
  13. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice//Genes & Dev. 2009. 23: 1183-1194
  14. Инсулин растворимый [человеческий генно-инженерный] (Insulin soluble ): инструкция, применение и формула
  15. История развития биотехнологии (рус.) (недоступная ссылка) . Проверено 4 сентября 2009. Архивировано 12 июля 2007 года.
  16. Zenaida Gonzalez Kotala. UCF professor develops vaccine to protect against black plague bioterror attack (англ.) (30 July 2008). Проверено 3 октября 2009. Архивировано 21 января 2012 года.
  17. Получение препарата против ВИЧ из растений (рус.) (1 апреля 2009, 12:35). Проверено 4 сентября 2009. Архивировано 21 января 2012 года.
  18. Инсулин из растений проходит испытания на людях (рус.) (недоступная ссылка - история ) . Membrana (12 января 2009). Проверено 4 сентября 2009.
  19. Ирина Власова. Американским пациентам сделают козу (рус.) (недоступная ссылка) (11 февраля 2009, 16:22). Проверено 4 сентября 2009. Архивировано 6 апреля 2009 года.
  20. Matt Ridley. Genome: The Autobiography of a Species In 23 Chapters.HarperCollins, 2000, 352 pages
  21. The Mission Impossible of Genetic Redesign For Longevity
  22. Элементы - новости науки: Трансгенный хлопок помог китайским крестьянам победить опасного вредителя
  23. И поросла Россия трансгенными берёзками… | Наука и техника | Наука и технологии России Архивная копия от 19 февраля 2009 на Wayback Machine
  24. Monsanto Seed Saving and Legal Activities
  25. Caleb Garling (San Francisco Chronicle), Monsanto seed suit and software patents // SFGate, February 23, 2013: «company’s genetically modified and pesticide-resistant seeds, which are patent-protected. .. Monsanto uses a similar strategy with its seeds. Farmers license their use; technically, they don’t buy them.»
  26. Are GM plants fertile, or do farmers have to buy new seeds every year? // EuropaBio: "All GM plants commercialized are as fertile as their conventional counterparts."
  27. GM Events with Male sterility
  28. Gene: barnase
  29. ISAAA Brief 46-2013: Executive Summary. Global Status of Commercialized Biotech/GM Crops: 2013 Архивная копия от 22 февраля 2014 на Wayback Machine // ISAAA
  30. Общая площадь посевов генно-модифицированных культур в 1,5 раза превышает территорию США // ИноСМИ, по материалам «Mother Jones», США, 26/02/2013
  31. , slide 4-5
  32. Pigs" genetic code altered in bid to tackle deadly virus
  33. Simon G. Lillico, Chris Proudfoot, Tim J. King, Wenfang Tan, Lei Zhang, Rachel Mardjuki, David E. Paschon, Edward J. Rebar, Fyodor D. Urnov, Alan J. Mileham, David G. McLaren, C. Bruce A. Whitelaw.(2016). Mammalian interspecies substitution of immune modulatory alleles by genome editing. Scientific Reports,; 6: 21645 DOI :10.1038/srep21645
  34. Super-biofuel cooked up by bacterial brewers - tech - 08 December 2008 - New Scientist
  35. MEMBRANA | Мировые новости | В Японии стартуют продажи настоящих синих роз
  36. Б. Глик, Дж. Пастернак. Молекулярная биотехнология = Molecular Biotechnology. - М. : Мир, 2002. - С. 517. - 589 с. - ISBN 5-03-003328-9 .
  37. Berg P et. al. Science, 185, 1974 , 303 .
  38. Breg et al., Science, 188, 1975 , 991-994 .

Определение ГМО

Цели создания ГМО

Методы создания ГМО

Применение ГМО

ГМО - аргументы за и против

Плюсы генномодифицированных организмов

Опасность генетически модифицированных организмов

Лабораторные исследования ГМО

Последствия употребления ГМ продуктов для здоровья человека

Исследования безопасности ГМО

Как регулируется производство и продажа ГМО в мире?

Список международных производителей, замеченных в использовании ГМО

Генетически модифицированные пищевые добавки и ароматизаторы

Заключение

Список использованной литературы


Определение ГМО

Генетически модифицированные организмы – это организмы, в которых генетический материал (ДНК) изменен невозможным в природе способом. ГМО могут содержать фрагменты ДНК из любых других живых организмов.

Цель получения генетически измененных организмов – улучшение полезных характеристик исходного организма-донора (устойчивость к вредителям, морозостойкость, урожайность, калорийность и другие) для снижения себестоимости продуктов. В результате сейчас существует картофель, который содержит гены земляной бактерии, убивающей колорадского жука, стойкая к засухам пшеница, в которую вживили ген скорпиона, помидоры с генами морской камбалы, соя и клубника с генами бактерий.

Трансгенными (генномодифицированными) могут называться те виды растений , в которых успешно функционирует ген (или гены) пересаженные из других видов растений или животных. Делается это для того, чтобы растение реципиент получило новые удобные для человека свойства, повышенную устойчивость к вирусам, к гербицидам, к вредителям и болезням растений. Пищевые продукты, полученные из таких генноизмененных культур, могут иметь улучшенные вкусовые качества, лучше выглядеть и дольше храниться.

Также часто такие растения дают более богатый и стабильный урожай, чем их природные аналоги.

Генетически измененный продукт - это когда выделенный в лаборатории ген одного организма пересаживается в клетку другого. Вот примеры из американской практики: чтобы помидоры и клубника были морозоустойчивее, им "вживляют" гены северных рыб; чтобы кукурузу не пожирали вредители, ей могут "привить" очень активный ген, полученный из яда змеи.

Кстати, не надо путать термины "модифицированный" и «генномодифицированный ». Например, модифицированный крахмал, входящий в состав большинства йогуртов, кетчупов и майонезов, к продуктам с ГМО отношения не имеет. Модифицированные крахмалы - это крахмалы, которые человек усовершенствовал для своих нужд. Это может быть сделано либо физическим (воздействие температуры, давления, влажности, радиации), либо химическим способом. Во втором случае используются химреагенты, которые разрешены Минздравом РФ как пищевые добавки.

Цели создания ГМО

Разработка ГМО некоторыми учеными рассматриваются, как естественное развитие работ по селекции животных и растений. Другие же, напротив, считают генную инженерию полным отходом от классической селекции, так как ГМО это не продукт искусственного отбора, то есть постепенного выведения нового сорта (породы) организмов путем естественного размножения, а фактически искусственно синтезированный в лаборатории новый вид.

Во многих случаях использование трансгенных растений сильно повышает урожайность. Есть мнение, что при нынешнем размере населения планеты только ГМО могут избавить мир от угрозы голода, так как при помощи генной модификации можно увеличивать урожайность и качество пищи.

Противники этого мнения считают, что при современном уровне агротехники и механизации сельскохозяйственного производства уже существующие сейчас, полученные классическим путем, сорта растений и породы животных способны сполна обеспечить население планеты высококачественным продовольствием (проблема же возможного мирового голода вызвана исключительно социально-политическими причинами, а потому и решена может быть не генетиками, а политическими элитами государств.

Виды ГМО

Истоки генной инженерии растений лежат в открытии 1977 года, позволившем использовать почвенный микроорганизм Agrobacterium tumefaciens в качестве орудия введения потенциально полезных чужих генов в другие растения.

Первые полевые испытания генетически модифицированных сельскохозяйственных растений, в результате которых был выведен помидор, устойчивый к вирусным заболеваниям, были проведены в 1987 году.

В 1992 году в Китае начали выращивать табак, который «не боялся» вредных насекомых. В 1993 году генетически измененные продукты были допущены на прилавки магазинов мира. Но начало массовому производству модифицированных продуктов положили в 1994 году, когда в США появились помидоры, которые не портились при перевозке.

На сегодняшний день продукты с ГМО занимают более 80 млн. га сельхозугодий и выращиваются более чем в 20 странах мира.

ГМО объединяют три группы организмов:

oгенетически модифицированные микроорганизмы (ГММ);

oгенетически модифицированные животные (ГМЖ);

oгенетически модифицированные растения (ГМР) – наиболее распространенная группа.

На сегодня в мире существует несколько десятков линий ГМ-культур: сои, картофеля, кукурузы, сахарной свеклы, риса, томатов, рапса, пшеницы, дыни, цикория, папайи, кабачков, хлопка, льна и люцерны. Массово выращиваются ГМ-соя, которая в США уже вытеснила обычную сою, кукуруза, рапс и хлопок. Посевы трансгенных растений постоянно увеличиваются. В 1996 году в мире под посевами трансгенных сортов растений было занято 1,7 млн. га, в 2002 году этот показатель достиг 52,6 млн. га (из которых 35,7 млн. га – в США), в 2005 г ГМО-посевов было уже 91,2 млн. га, в 2006 году – 102 млн. га.

В 2006 году ГМ-культуры выращивали в 22 странах мира, среди которых Аргентина, Австралия, Канада, Китай, Германия, Колумбия, Индия, Индонезия, Мексика, Южная Африка, Испания, США. Основные мировые производители продукции, содержащую ГМО – США (68%), Аргентина (11,8%), Канада (6%), Китай (3%). Более 30% всей выращиваемой в мире сои, более 16% хлопка, 11% канолы (масличное растение) и 7% кукурузы произведены с использованием достижений генной инженерии.

На территории РФ нет ни одного гектара, который был бы засеян трансгенами.

Методы создания ГМО

Основные этапы создания ГМО:

1. Получение изолированного гена.

2. Введение гена в вектор для переноса в организм.

3. Перенос вектора с геном в модифицируемый организм.

4. Преобразование клеток организма.

5. Отбор генетически модифицированных организмов и устранение тех, которые не были успешно модифицированы.

Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100-120 азотистых оснований (олигонуклеотиды).

Чтобы встроить ген в вектор, используют ферменты - рестриктазы и лигазы. С помощью рестриктаз ген и вектор можно разрезать на кусочки. С помощью лигаз такие кусочки можно «склеивать», соединять в иной комбинации, конструируя новый ген или заключая его в вектор.

Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации. В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК, плазмидами. Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки. Для введения готового гена в наследственный аппарат клеток растений и животных используется процесс трансфекации.

Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование, то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детеныши с изменённым или неизменным генотипом, среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

Применение ГМО

Использование ГМО в научных целях.

В настоящее время генетически модифицированные организмы широко используются в фундаментальных и прикладных научных исследованиях. С помощью ГМО исследуются закономерности развития некоторых заболеваний (болезнь Альцгеймера, рак), процессы старения и регенерации, изучается функционирование нервной системы, решается ряд других актуальных проблем биологии и медицины.

Использование ГМО в медицинских целях.

Генетически модифицированные организмы используются в прикладной медицине с 1982 года. В этом году зарегистрирован в качестве лекарства человеческий инсулин, получаемый с помощью генетически модифицированных бактерий.

Ведутся работы по созданию генетически модифицированных растений, продуцирующих компоненты вакцин и лекарств против опасных инфекций (чумы, ВИЧ). На стадии клинических испытаний находится проинсулин, полученный из генетически модифированного сафлора. Успешно прошло испытания и одобрено к использованию лекарство против тромбозов на основе белка из молока трансгенных коз.

Бурно развивается новая отрасль медицины - генотерапия. В её основе лежат принципы создания ГМО, но в качестве объекта модификации выступает геном соматических клеток человека. В настоящее время генотерапия - один из главных методов лечения некоторых заболеваний. Так, уже в 1999 году каждый четвёртый ребенок, страдающий SCID (severe combined immune deficiency), лечился с помощью генной терапии. Генотерапию, кроме использования в лечении, предлагают также использовать для замедления процессов старения.

Если переместить современного человека лет на двести-триста назад, наверняка бы он погиб голодной смертью. Современные технологии облегчили быт занятых людей. Сейчас мы уже практически не готовим полноценную пищу. Еда быстрого приготовления, полуфабрикаты и готовые блюда с доставкой на дом - вот все, что нужно для уставшего человека в конце рабочего дня. Для многих людей процесс приготовления пищи стал невозможным из-за напряженной жизни, которой живет большая часть крупных городов.

Для многих жителей мегаполиса горячий домашний ужин - это воспоминания из детства. Не стоит забывать, что все эти привычные для горожан продукты из пакетика, купленного в супермаркете, просто напичканы различными химическими добавками: улучшителями вкуса, ароматизаторами, красителями, консервантами, огромным количеством соли и ГМО. Расшифровка этих букв известна если не каждому, то очень многим. Большинство людей на планете слышали о таких продуктах, но не каждый осведомлен о последствиях их потребления.

Для чего нужны ГМО?

Термин ГМО, расшифровка которого звучит как "генетически модифицированный организм", был введен учеными в двадцатом столетии. Что это значит?

Генетика - это наука, занимающаяся изучением свойств генов и манипуляций с ними, которые помогут человечеству в будущем. Создание подобных организмов было продиктовано естественной необходимостью разработать пищу для населения Земли, численность которого растет ежегодно. За две сотни лет количество людей, живущих на нашей планете, выросло на пять миллиардов, и этот процесс не закончился. Научный мир обеспокоен таким ростом человеческой популяции, поэтому создает продукты генетической инженерии, которые смогли бы обеспечить стабильный для жителей планеты.

Растения меняются

Вид растений сильно изменился в течение последних столетий. Многие виды исчезли, а те, что остались, преобразились до неузнаваемости. К примеру, морковь в своем первоначальном виде была непривычного для нас фиолетового цвета и едва ли понравилась бы нам на вкус.

Она применялась в качестве лекарственного растения. Но стараниями селекционеров мы едим морковь в том виде, в котором привыкли сейчас, и даже мысли не допускаем, что все когда-то было иначе. Мы взращиваем и культивируем те виды растений, которые нам удобно применять в пищу. Таким образом, многие виды остаются без внимания и просто исчезают с лица Земли.

Селекция и генная инженерия уже довольно давно вошли в нашу обыденную жизнь и перестали быть чем-то сверхъестественным. Мы и наши дети ежедневно употребляем продукты высоких технологий, даже не замечая этого и не задумываясь, к чему это может привести наше человечество впоследствии.

Первая ступень

Селекция представляет собой процесс биологического скрещивания схожих организмов с целью получения нового вида с лучшими адаптационными характеристиками. Этот процесс начался еще в древние времена. Таким образом были одомашнены животные и стали культурными дикорастущие виды растений.

Посредством селекции производят скрещивание различных видов растений, а также животных, и получают в итоге организм, обладающий требуемыми свойствами. Например, морозоустойчивую пшеницу или клубнику крупных размеров. Ученые даже пытались скрещивать льва и тигра, собаку и кошку, и эти эксперименты имели определенный успех.

Открытие ГМО

Дальнейшей ступенью прогресса выступило развитие генетической инженерии. Ученые-генетики произвели настоящий фурор своим смелым заявлением: «Мы можем создавать организмы с такими свойствами, которые требуются человечеству, без особого труда». Было введено понятие о ГМО. Расшифровка аббревиатуры - генетически модифицированный организм. Это раскрыло колоссальные возможности для большой группы людей. Представьте сами: миллионы фермеров страдают от неурожая, плохого роста и развития скота. Некоторые овощные и фруктовые культуры трудно поддаются хранению и транспортировке на дальние расстояния. В холодных регионах просто невозможно выращивание многих теплолюбивых растений. Эти и многие другие трудности решаемы с помощью генной инженерии.

Создание первых подобных продуктов и введение термина ГМО, расшифровка которого нам понятна, окрылило ученых-исследователей, политиков, коммерсантов и простых обывателей. Ученые радовались новой возможности великих открытий, политики восхищались перспективами механизмов власти, коммерсанты принялись подсчитывать будущую прибыль, а простые обыватели удивились высоте технического прогресса.

Что дают возможности генной инженерии?

Способность расшифровать и дефрагментировать геном любого организма дала возможность ученым-генетикам вычленять участок ДНК одного организма, отвечающий за определенное свойство, и вставлять его в ДНК другого.

Итак, донорская ДНК наделила реципиентный организм своим особенным свойством. Таким способом появился картофель с генами скорпиона и колорадского жука, устойчивый к насекомым-вредителям. Примером также могут послужить помидоры и клубника с внедренным геном камбалы, устойчивые к морозу. Генетические манипуляции активно проводятся с животными. Примеры - выведение коров, состоящих только из мышечной ткани, и куриц с непропорционально большими ногами. Все эти организмы способны уберечь фермеров от капризов природы и вредителей полей, дав им стабильную прибыль. Генетические эксперименты позволили появиться идеально красивым и ровным фруктам и овощам, которые длительно хранятся без потери внешнего вида и прекрасно транспортируются на далекие расстояния. Для коммерсантов это настоящий клондайк.

Фермеры, рапс и политика

Политики видят в термине ГМО (расшифровка аббревиатуры звучит как "генетически модифицированный организм") свою привлекательную грань. Все началось с того, что был получен трансгенный рапс, который приобрел устойчивость к сорнякам и вредителям. Новая культура росла на счастье владельцев хозяйств, давала прекрасный урожай, и семена его разлетались по всей окрестности. Радость американских фермеров сменилась глубокой озабоченностью, когда этот рапс стал заполонять все близлежащие поля и вытеснять остальные культуры. Это оказалось настоящей проблемой для растениеводов и вызвало интерес политических деятелей. Можно с помощью спор определенного растения заполонить поля недружественной страны и ослабить таким образом ее экономику. А затем хорошей ценовой политикой заинтересовать в покупке ГМО собственного производства.

Для чего разработали ГМО?

Изначально ГМО были созданы для удовлетворения потребности в пище голодающих в странах Южной Африки. Жители региона никогда не слышали о ГМО. Расшифровка (что это такое) и особенности подобных продуктов были им неведомы. Идея казалась гениальной и очень гуманной. Но почему же тогда правительство Африки в скором времени запретило ввоз ГМО на территорию страны? Население и правительство голодающего региона отдали предпочтение местной, пусть и скудной, но знакомой и безопасной еде. Над этим фактом задумалось все прогрессивное человечество. Действительно ли генетически смоделированные продукты настолько вредны для человечества?

Экспериментальные исследования

Сомнения ученых по поводу безопасности ГМО обусловили ряд исследований. Был проведен эксперимент, в котором участвовали самцы и беременные самки крысы. Подопытных животных разделили на две группы.

Одной группе, названной контрольной, была предложена привычная еда. Другую группу крыс вскармливали соей, являющейся ГМО. В результате в помете крыс последней группы был выявлен большой процент мертворожденных детенышей. Около 35% выжившего потомства были меньше размером, они имели низкую массу тела в сравнении с детенышами из контрольной группы. Ученые также обнаружили патологические изменения в системе кровоснабжения яичек и разрушение клеток печени у самцов.

У самок, самцов и детенышей крыс, получавших трансгенную сою в качестве пищи, был отмечен повышенный уровень тревожности и агрессии. Дальше исследователи пытались получить второе поколение от выведенного первого. В контрольной группе это удалось без труда. Во второй же этого сделать не удалось. Таким образом, можно сделать выводы, что ГМО пагубно влияет на организм, угнетая репродуктивную функцию и вызывая мутации у потомства. Вот такая неблагоприятная у ГМО расшифровка. Соя стала синонимом летального исхода.

Сам по себе модифицированный ген не способен внедриться в ДНК человека, но попадая в пищеварительный тракт, он воспринимается как чужеродный, вызывая аллергические реакции. Кстати, в США, где закон относительно лоялен к ГМО, на долю аллергиков приходится около 70% населения. А в Венгрии, где применение ГМО запрещено законом, аллергией страдают лишь 8% граждан.

Государство против ГМО

Эти шокирующие факты приняты во внимание всем прогрессивным человечеством. Люди, беспокоящиеся о своем здоровье, избегают употребления ГМО. Меры введены и на государственном уровне. В Японии допустимый предел содержания трансгенного вещества в продукте - 5%, в США - 10%, в странах Европы и России - 0,9%. Активисты «Гринпис» активно борются за то, чтобы в составе детского питания не допускалось присутствие ГМО. Существует положение, что продукт, содержащий трансгенное вещество, должен маркироваться соответствующим образом. Но далеко не каждый производитель готов честно заявить о присутствии подобного вещества в своей продукции. Для коммерсанта это верный способ потерять большую часть покупателей. Поэтому нужно внимательно читать состав.

ГМО. Расшифровка на продуктах питания. Общие сведения

Выше была представлена термина ГМО расшифровка. Продукты генетической инженерии отмечены определенными буквенными и цифровыми символами. Часто мы видим наличие в составе продукта веществ с индексом Е. Это своеобразная ГМО расшифровка (в чем есть небезопасный компонент, перечислим ниже).

Вот список этих добавок:

Е101 и Е101 А (В2, рибофлавин);

Е153 (карбонат);

С Е301 по Е304;

С Е306 по Е309;

С Е325 по Е327;

С Е460 по Е469;

Е470 и Е570;

Эфиры жирных кислот (Е471, Е472a&b, Е473, Е475, Е476, Е479b);

Е481 (стеароил-2-лактилат натрия);

С Е620 по Е633 (глютаминовая кислота и глютаматы);

С Е626 по Е629 (гуаниловая кислота и гуанилаты);

С Е630 по Е633 (инозиновая кислота и инозинаты);

Е951 (аспартам);

Е953 (изомальтит);

Е965 (малтинол);

Е957 (тауматин).

Этот список - ГМО-расшифровка, откуда берут информацию о безопасности того или иного продукта. Вы самостоятельно можете изучить состав на этикетке и оценить, есть ли в продукте трансгенный организм.

Какие производители применяют ГМО?

Составлен список компаний и их продуктов, которые содержат трансгенные вещества. В перечень регулярно попадают все новые позиции, из него выбывают прежние (в связи с прекращением использования ГМО). Вот перечень торговых марок постоянных членов этого списка:

ТМ Mars, выпускающая шоколадные батончики Mars, Snickers и др.

ТМ Nestle, производящая шоколад, детское питание.

ТМ Heinz, изготовители соусов и кетчупов.

ТМ Coca-Cola и Pepsi с их суперпопулярной продукцией.

Сеть пунктов быстрого питания Mc"Donalds.

ТМ Danone, производящая молочную продукцию.

ТМ Kellogs и сухие завтраки, которые мы привыкли давать детям.

ТМ Cadbury, выпускающая шоколад и какао.

ТМ Ferrero, производящая продукты Rafaello, Kinder, TicTac.

ТМ Similac, специализирующаяся на выпуске детского питания.

Детское питание HIPP и Unilever.

Печенье Parmalat.

Супы Campbell.

Соусы Hellmans и Knorr.

ТМ Kraft, производящая детское питание, чипсы и шоколад.

Чай Lipton.

Рис Uncle Benz.

Как обезопасить себя и свою семью?

Теперь вы знаете производителей, которые используют трансгенные продукты. У вас есть ГМО-расшифровка, что означает гарантию безопасности всей семьи. Эта информация особенно важна для будущих мам и младенцев.

ГМО расшифровка у воспитателей не должна вызывать недоумения и удивления. Следует четко отслеживать то, что дети едят в детских садах, и понимать ответственность за здоровье подрастающего поколения. По проблеме «ГМО: расшифровка, школа и питание учеников» вносятся коррективы на государственном уровне. Недопустимо давать детям трансгенные продукты. Ученые твердят о том, что такая еда вызывает у малышей стойкие аллергические реакции, экзему, высыпания, неврологические расстройства, синдром хронической усталости, головные боли, синдром раздраженного кишечника и нарушение пищеварения.

Понимать ответственность за употребление ГМО (расшифровка термина вам уже известна) должен каждый человек на планете. Особенно чутко нужно отнестись к детям, которые не способны еще оценить всей серьезности проблемы. За них должны нести ответственность родитель и работники дошкольных учреждений, школ.

Загрузка...