domvpavlino.ru

Что такое композит в физике. Что такое композитный материал. Что такое композиты

Введение

За последние несколько лет огромное внимание уделяется созданию и исследованию так называемых мультиферроиков - материалов, проявляющих одновременно ферроэлектрические и ферромагнитные свойства.

Мультиферроики могут быть реализованы как в монофазный, так и в композитной форме. Большинство из однофазных мультиферроичных материалов обнаруживают магнитоэлектрические свойства в низкотемпературных областях, главным образом, при криогенных температурах.

Альтернативу этим практически неприменимым однофазным мультиферроикам нашли в материалах, так называемых композитах, искусственно созданных материалах комбинацией двух фаз, например, комбинацией пьезоэлектрических и пьезомагнитных фаз или магнитострикционных и пьезоэлектрических фаз. Эти материалы сохраняют равновесные ферроэлектрические структуры при температурах, близких к комнатной. Они имеют большой магнитоэлектрический (МЕ) эффект, магнитострикционные и пьезоэлектрические фазы хорошего качества и относятся к так называемым мультифункциональным материалом. Главным достижением в производстве синтетических композитных мультиферроиков - это достаточно легкое и дешевое их изготовление и возможность контроля за молекулярным соотношением фаз и размером зёрен каждой фазы. Имеется и проблема, связанная с предотвращение возможной химической реакции на границах между ферроэлектрическим и магнитными фазами в течение синтеза, приводящей к потере, например, диэлектрических свойств. Вообще, в композитах размеры зёрен, форма и границы между зёрнами - основные элементы, приводящие при сохранении «родительских» свойств фаз к возникновению новых свойств. Так, известно, что может произойти усиление колоссального магнитного сопротивления (CRM), объясняемое в модели спин-поляризационного туннелирования появление непроводящих слоев-барьеров между зёрнами.

Передо мной тогда были поставлены задачи:

1) ознакомиться с литературой, посвященной композиционным мультиферроикам, представленного образца;

2) изучить свойства и структуру (La 0.5 Eu 0.5) 0.7 Pb 0.3 MnO 3 и PbTiO 3 ;

3) синтезировать в поликристаллическом виде PbTiO 3 и вырастить монокристалл (La 0.5 Eu 0.5) 0.7 Pb 0.3 MnO 3 ;

4) начать исследование магнитных, магнитоэлектрических и других свойств (1-х) (La 0.5 Eu 0.5) 0.7 Pb 0.3 MnO 3 +хPbTiO 3 .

Примеры композитов

Что такое композиты?

Композиционными называют материалы, образованные из двух или более разнородных фаз и обладающие характеристиками, не присущими исходным компонентам. Такое определение хорошо отражает идею композита, но является слишком широким, поскольку охватывает подавляющее большинство материалов и сплавов (например, стали, чугун, бетон и др.). По-видимому, лучшим будет другое определение: композиты - объемное монолитное искусственное сочетание разнообразных по форме и свойствам двух и более материалов (компонентов), с четкой границей раздела, использующее преимущества каждого из компонентов и проявляющее новые свойства, обусловленные граничными процессами.

Обычно композиты представляют собой основу (матрицу) из одного материала, армированную наполнителями из волокон, слоев, диспергированных частиц другого материала. При этом сочетаются прочностные свойства обоих компонентов. Путём подбора состава и свойств наполнителя и матрицы, их соотношение, ориентации наполнителя, можно получить материал с требуемым сочетанием эксплуатационных и технологических характеристик.

Композит отличается от сплава тем, что в готовом композите отдельные компоненты сохраняют присущие им свойства. Компоненты должны взаимодействовать на границе раздела композита, проявляя только положительные новые свойства. Такой результат можно получить лишь в том случае, если в композиционном материале успешно объединены свойства компонентов, т.е. при эксплуатации композита должны проявляться только требуемые свойства компонентов, а их недостатки полностью или частично уничтожаются.

Таким образом:

Получаемый композит приобретает новые, лучшие свойства и, следовательно, может выполнять дополнительные функции (многофункциональный материал);

Характеристики композита лучше, чем у его компонентов, взятых по отдельности или вместе без учета граничных процессов;

Действия отдельных компонентов композита всегда проявляются в их совокупности с учетом процессов, происходящих на границе раздела фаз.

Активное применение композитов началось с начала 70-х годов, хотя идея применения двух и более исходных материалов в качестве компонентов, образующих композиционную среду, существует с тех пор, как люди стали иметь дело с материалами.

Цель создания композита - достичь комбинации свойств, не присущих каждому из исходных материалов в отдельности. Таким образом, композит может изготавливаться из материалов, которые сами по себе не удовлетворяют предъявляемым требованиям. Так как эти требования могут относиться к физическим, химическим, технологическим и другим свойствам, то наука о композитах находится на стыке различных областей знания и требует участия исследователей различных специальностей.

Традиционный выбор материала и проектирование компонентов конструкции были отдельными задачами. Когда композиты стали вытеснять металлы и сплавы из таких областей, как самолето-, судо- и автомобилестроение, промышленный дизайн и выбор материала соединились и стали просто различными аспектами одного процесса.

Следует отметить, что наряду с конструкционной анизотропией композита существуют технологическая анизотропия, возникающая при пластической деформации изотропных материалов, и физическая анизотропия, присущая, например, кристаллам и связанная с особенностями строения кристаллической решетки.

По методу получения различают два вида композитов: искусственные и естественные. К искусственным относятся все композиты, полученные в результате искусственного введения армирующей фазы в матрицу, к естественным - сплавы эвтектического и близкого к ним состава. В эвтектических композитах армирующей фазой являются ориентированные волокнистые или пластинчатые кристаллы, образованные естественным путём в процессе направленной кристаллизации.

По мере создания новых композитов «старые» виды классификации расширяются и могут возникать новые.

При изучении литературы, посвященной магнитным и магнитоэлектрическим композитам, я нашла следующие композиты на основе оксидов, которые синтезированы и изучены:

1. «MgFe 2 O 3 -BaTiO 3 » ;

2. «BaTiO 3 - (Ni, Zn) Fe 2 O 4 » ;

3. «La 0.67 Ca 0.33 MnO 3 -CuFe 2 O 4 » ;

4. «(La 0.7 Ca 0.3 MnO 3) 1-x /(MgO) x » ;

5. «La 2/3 Ca 1/3 MnO 3 /SiO 2 » ;

6. «La 0.7 Sr 0.3 MnO 3 /Ta 2 O 5 » .

1. Композиционные или композитные материалы – материалы будущего.

После того как современная физика металлов подробно разъяснила нам причины их пластичности, прочности и ее увеличения, началась интенсивная систематическая разработка новых материалов. Это приведет, вероятно, уже в вообразимом будущем к созданию материалов с прочностью, во много разпревышающей ее значения у обычных сегодня сплавов. При этом большое внимание будет уделяться уже известным механизмам закалки стали и старения алюминиевых сплавов, комбинациям этих известных механизмов с процессами формирования и многочисленными возможностями создания комбинированных материалов. Два перспективных пути открывают комбинированные материалы, усиленные либо волокнами, либо диспергированными твердыми частицами. Упервых в неорганическую металлическую или органическую полимерную матрицу введены тончайшие высокопрочные волокна из стекла, углерода, бора, бериллия, стали или нитевидные монокристаллы. В результате такого комбинирования максимальная прочность сочетается с высоким модулем упругости и небольшой плотностью. Именно такими материалами будущего являются композиционные материалы.

Композиционный материал – конструкционный (металлический или неметаллический) материал, в котором имеются усиливающие его элементы ввиде нитей, волокон или хлопьев более прочного материала. Примеры композиционных материалов: пластик, армированный борными, углеродными, стеклянными волокнами, жгутами или тканями на их основе; алюминий, армированный нитями стали, бериллия. Комбинируя объемное содержание компонентов, можно получать композиционные материалы с требуемымизначениями прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создавать композиции с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами.

2. Типы композиционных материалов.

2.1. Композиционные материалы с металлической матрицей.

Композитные материалы или композиционные материалы состоят из металлической матрицы (чаще Al, Mg, Ni и их сплавы), упрочненной высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие ту или иную композицию, получили название композиционные материалы.

2.2. Композиционные материалы с неметаллической матрицей.

Композиционные материалы с неметаллической матрицей нашли широкое применение. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная и полиамидная.
Угольные матрицы коксованные или пироуглеродные получают из синтетических полимеров, подвергнутых пиролизу. Матрица связывает композицию, придавая ейформу. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов,нитридов и других), а также металлические (проволоки), обладающие высокой прочностью и жесткостью.

Свойства композиционных материалов зависят от состава компонентов,их сочетания, количественного соотношения и прочности связи между ними.
Армирующие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей.

Содержание упрочнителя в ориентированных материалах составляет 60-80 об. %, в неориентированных (с дискретными волокнами и нитевидными кристаллами) – 20-30 об. %. Чем выше прочность и модуль упругости волокон,тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвиги и сжатии и сопротивление усталостному разрушению.

По виду упрочнителя композитные материалы классифицируют настекловолокниты, карбоволокниты с углеродными волокнами, бороволокниты иоргановолокниты.

В слоистых материалах волокна, нити, ленты, пропитанные связующим, укладываются параллельно друг другу в плоскости укладки. Плоские слоисобираются в пластины. Свойства получаются анизотропными. Для работыматериала в изделии важно учитывать направление действующих нагрузок. Можносоздать материалы как с изотропными, так и с анизотропными свойствами.
Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала.

Применяется укладка упрочнителей из трех, четырех и более нитей.
Наибольшее применение имеет структура из трех взаимно перпендикулярных нитей. Упрочнители могут располагаться в осевом, радиальном и окружном направлениях.

Трехмерные материалы могут быть любой толщины в виде блоков, цилиндров. Объемные ткани увеличивают прочность на отрыв и сопротивлениесдвигу по сравнению со слоистыми. Система из четырех нитей строится путем разложения упрочнителя по диагоналям куба. Структура из четырех нитей равновесна, имеет повышенную жесткость при сдвиге в главных плоскостях.
Однако создание четырехнаправленных материалов сложнее, чем трех направленных.

3. Классификация композиционных материалов.

3.1. Волокнистые композиционные материалы.

Часто композиционный материал представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Каждый слой можно армировать также непрерывными волокнами, сотканными в ткань, которая представляет собой исходную форму,по ширине и длине соответствующую конечному материалу. Нередко волокна сплетают в трехмерные структуры.

Композитые материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50 – 10 %), модуля упругости, коэффициента жесткости и пониженной склонностью к трещинообразованию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении ее металлоемкости.

Прочность композиционных (волокнистых) материалов определяется свойствами волокон; матрица в основном должна перераспределять напряжения между армирующими элементами. Поэтому прочность и модуль упругости волокондолжны быть значительно больше, чем прочность и модуль упругости матрицы.
Жесткие армирующие волокна воспринимают напряжения, возникающие в композиции при нагружении, придают ей прочность и жесткость в направлении ориентации волокон.

Для упрочнения алюминия, магния и их сплавов применяют борные, а также волокна из тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модульупругости. Нередко используют в качестве волокон проволоку из высокопрочных сталей.

Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана.

Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводимость. Перспективными упрочнителями для высокопрочных ивысокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбидабора и др.

Композиционные материалы на металлической основе обладают высокойпрочностью и жаропрочностью, в то же время они малопластичны. Однако волокна в композиционных материалах уменьшают скорость распространения трещин, зарождающихся в матрице, и практически полностью исчезает внезапное хрупкое разрушение. Отличительной особенностью волокнистых одноосных композиционных материалов являются анизотропия механических свойств вдоль и поперек волокон и малая чувствительность кконцентраторам напряжения.

Анизотропия свойств волокнистых композиционных материалов учитывается при конструировании деталей для оптимизации свойств путем согласования поля сопротивления с полями напряжения.

Армирование алюминиевых, магниевых и титановых сплавов непрерывными тугоплавкими волокнами бора, карбида кремния, доборида титана и оксида алюминия значительно повышает жаропрочность. Особенностью композиционных материалов является малая скорость разупрочнения во времени с повышением температуры.

Основным недостатком композиционных материалов с одно и двумерным армированием является низкое сопротивление межслойному сдвигу и поперечному обрыву. Этого лишены материалы с объемным армированием.

3.2. Дисперсно-упрочненные композиционные материалы.

В отличие от волокнистых композиционных материалов в дисперсно-упрочненных композиционных материалах матрица является основным элементом,несущим нагрузку, а дисперсные частицы тормозят движение в ней дислокаций.
Высокая прочность достигается при размере частиц 10-500 нм при среднем расстоянии между ними 100-500нм и равномерном распределении их в матрице.
Прочность и жаропрочность в зависимости от объемного содержания упрочняющих фаз не подчиняются закону аддитивности. Оптимальное содержание второй фазы для различных металлов неодинаково, но обычно не превышает 5-10 об. %.

Использование в качестве упрочняющих фаз стабильных тугоплавких соединений (оксиды тория, гафния, иттрия, сложные соединения оксидов иредкоземельных металлов), нерастворяющихся в матричном металле, позволяетсохранить высокую прочность материала до 0,9-0,95 Т . В связи с этимтакие материалы чаще применяют как жаропрочные. Дисперсно-упрочненныекомпозиционные материалы могут быть получены на основе большинства применяемых в технике металлов и сплавов.

Наиболее широко используют сплавы на основе алюминия – САП(спеченный алюминиевый порошок).

Плотность этих материалов равна плотности алюминия, они не уступают ему покоррозионной стойкости и даже могут заменять титан и коррозионно-стойкиестали при работе в интервале температур 250-500 °С. По длительной прочности они превосходят деформируемые алюминиевые сплавы. Длительная прочность для сплавов САП-1 и САП-2 при 500 °С составляет 45-55 МПа.

Большие перспективы у никелевых дисперсно-упрочненных материалов.
Наиболее высокую жаропрочность имеют сплавы на основе никеля с 2-3 об. % двуоксида тория или двуоксида гафния. Матрица этих сплавов обычно твердыйраствор Ni + 20 % Cr, Ni + 15 % Mo, Ni + 20 % Cr и Mo. Широкое применениеполучили сплавы ВДУ-1 (никель, упрочненный двуокисью тория), ВДУ-2 (никель,упрочненный двуокисью гафния) и ВД-3 (матрица Ni +20 % Cr, упрочненная окисью тория). Эти сплавы обладают высокой жаропрочностью. Дисперсно-упрочненные композиционные материалы, так же как волокнистые, стойки к разупрочнению с повышением температуры и длительностивыдержки при данной температуре.

3.3. Стекловолокниты.

Стекловолокниты – это композиция, состоящая из синтетической смолы, являющейся связующим, и стекловолокнистого наполнителя. В качественаполнителя применяют непрерывное или короткое стекловолокно. Прочность стекловолокна резко возрастает с уменьшением его диаметра (вследствиевлияния неоднородностей и трещин, возникающих в толстых сечениях). Свойства стекловолокна зависят также от содержания в его составе щелочи; лучшие показатели у бесщелочных стекол алюмоборосиликатногосостава.

Неориентированные стекловолокниты содержат в качестве наполнителя короткое волокно. Это позволяет прессовать детали сложной формы, сметаллической арматурой. Материал получается с изотопными прочностными характеристиками, намного более высокими, чем у пресс-порошков и дажеволокнитов. Представителями такого материала являются стекловолокниты АГ-4В, а также ДСВ (дозирующиеся стекловолокниты), которые применяют дляизготовления силовых электротехнических деталей, деталей машиностроения (золотники, уплотнения насосов и т. д.). При использовании в качествесвязующего непредельных полиэфиров получают премиксы ПСК (пастообразные) и препреги АП и ППМ (на основе стеклянного мата). Препреги можно применять для крупногабаритных изделий простых форм (кузова автомашин, лодки, корпусаприборов и т. п.).

Ориентированные стекловолокниты имеют наполнитель в виде длинных волокон, располагающихся ориентированно отдельными прядями и тщательносклеивающихся связующим. Это обеспечивает более высокую прочность стеклопластика.

Стекловолокниты могут работать при температурах от –60 до 200 °С, атакже в тропических условиях, выдерживать большие инерционные перегрузки.
При старении в течение двух лет коэффициент старения К = 0,5-0,7.
Ионизирующие излучения мало влияют на их механические и электрические свойства. Из них изготовляют детали высокой прочности, с арматурой и резьбой.

3.4. Карбоволокниты.

Карбоволокниты (углепласты) представляют собой композиции,состоящие из полимерного связующего (матрицы) и упрочнителей в видеуглеродных волокон (карбоволокон).

Высокая энергия связи С-С углеродных волокон позволяет им сохранить прочность при очень высоких температурах (в нейтральной и восстановительнойсредах до 2200 °С), а также при низких температурах. От окисления поверхности волокна предохраняют защитными покрытиями (пиролитическими). В отличие от стеклянных волокон карбоволокна плохо смачиваются связующим
(низкая поверхностная энергия), поэтому их подвергают травлению. При этом увеличивается степень активирования углеродных волокон по содержаниюкарбоксильной группы на их поверхности. Межслойная прочность при сдвиге углепластиков увеличивается в 1,6-2,5 раза. Применяется вискеризациянитевидных кристаллов TiO, AlN и SiN, что дает увеличениемежслойной жесткости в 2 раза и прочности в 2,8 раза. Применяются пространственно армированные структуры.

Связующими служат синтетические полимеры (полимерные карбоволокниты); синтетические полимеры, подвергнутые пиролизу (коксованные карбоволокниты); пиролитический углерод (пироуглеродные карбоволокниты).

Эпоксифенольные карбоволокниты КМУ-1л, упрочненные углероднойлентой, и КМУ-1у на жгуте, висскеризованном нитевидными кристаллами, могут длительно работать при температуре до 200 °С.

Карбоволокниты КМУ-3 и КМУ-2л получают наэпоксианилиноформальдегидном связующем, их можно эксплуатировать притемпературе до 100 °С, они наиболее технологичны. Карбоволокниты КМУ-2 и
КМУ-2л на основе полиимидного связующего можно применять при температуре до
300 °С.

Карбоволокниты отличаются высоким статистическим и динамическимсопротивлением усталости, сохраняют это свойство при нормальной и оченьнизкой температуре (высокая теплопроводность волокна предотвращаетсаморазогрев материала за счет внутреннего трения). Они водо- и химическистойкие. После воздействия на воздухе рентгеновского излучения и Епочти не изменяются.

Теплопроводность углепластиков в 1,5-2 раза выше, чемтеплопроводность стеклопластиков. Они имеют следующие электрическиесвойства: = 0,0024-0,0034 Ом·см (вдоль волокон); ? = 10 и tg =0,001 (при частоте тока 10 Гц).

Карбостекловолокниты содержат наряду с угольными стеклянныеволокна, что удешевляет материал.

3.5. Карбоволокниты с углеродной матриццей.

Коксованные материалы получают из обычных полимерныхкарбоволокнитов, подвергнутых пиролизу в инертной или восстановительнойатмосфере. При температуре 800-1500 °С образуются карбонизированные, при 2500-3000 °С графитированные карбоволокниты. Для получения пироуглеродныхматериалов упрочнитель выкладывается по форме изделия и помещается в печь,в которую пропускается газообразный углеводород (метан). При определенномрежиме (температуре 1100 °С и остаточном давлении 2660 Па) метанразлагается и образующийся пиролитический углерод осаждается на волокнахупрочнителя, связывая их.

Образующийся при пиролизе связующего кокс имеет высокую прочностьсцепления с углеродным волокном. В связи с этим композиционный материалобладает высокими механическими и абляционными свойствами, стойкостью ктермическому удару.

Карбоволокнит с углеродной матрицей типа КУП-ВМ по значениямпрочности и ударной вязкости в 5-10 раз превосходит специальные графиты;при нагреве в инертной атмосфере и вакууме он сохраняет прочность до 2200
°С, на воздухе окисляется при 450 °С и требует защитного покрытия.
Коэффициент трения одного карбоволокнита с углеродной матрицей по другомувысок (0,35-0,45), а износ мал (0,7-1 мкм на тормажение).

3.6. Бороволокниты.

Бороволокниты представляют собой композиции из полимерногосвязующего и упрочнителя – борных волокон.

Бороволокниты отличаются высокой прочностью при сжатии, сдвиге исрезе, низкой ползучестью, высокими твердостью и модулем упругости,теплопроводностью и электропроводимостью. Ячеистая микроструктура борныхволокон обеспечивает высокую прочность при сдвиге на границе раздела сматрицей.

Помимо непрерывного борного волокна применяют комплексныеборостеклониты, в которых несколько параллельных борных волокон оплетаютсястеклонитью, предающей формоустойчивость. Применение боростеклонитейоблегчает технологический процесс изготовления материала.

В качестве матриц для получения боровлокнитов используютмодифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и
КМБ-1к предназначены для длительной работы при температуре 200 °С; КМБ-3 и КМБ-3к не требуют высокого давления при переработке и могут работать притемпературе не свыше 100 °С; КМБ-2к работоспособен при 300 °С.

Бороволокниты обладают высокими сопротивлениями усталости, онистойки к воздействию радиации, воды, органических растворителей и горючесмазочных материалов.

3.7. Органоволокниты.

Органоволокниты представляют собой композиционные материалы,состоящие из полимерного связующего и упрочнителей (наполнителей) в видесинтетических волокон. Такие материалы обладают малой массой, сравнительновысокими удельной прочностью и жесткостью, стабильны при действиизнакопеременных нагрузок и резкой смене температуры. Для синтетическихволокон потери прочности при текстильной переработке небольшие; онималочувствительны к повреждениям.

К органоволокнитах значения модуля упругости и температурныхкоэффициентов линейного расширения упрочнителя и связующего близки.
Происходит диффузия компонентов связующего в волокно и химическоевзаимодействие между ними. Структура материала бездефектна. Пористось непревышает 1-3 % (в других материалах 10-20 %). Отсюда стабильностьмеханических свойств органоволокнитов при резком перепаде температур,действии ударных и циклических нагрузок. Ударная вязкость высокая (400-700кДж/мІ). Недостатком этих материалов является сравнительно низкая прочностьпри сжатии и высокая ползучесть (особенно для эластичных волокон).

Органоволокниты устойчивы в агрессивных средах и во влажномтропическом климате; диэлектрические свойства высокие, а теплопроводностьнизкая. Большинство органоволокнитов может длительно работать притемпературе 100-150 °С, а на основе полиимидного связующего иполиоксадиазольных волокон – при температуре 200-300 °С.

В комбинированных материалах наряду с синтетическими волокнамиприменяют минеральные (стеклянные, карбоволокна и бороволокна). Такиематериалы обладают большей прочностью и жесткостью.

4. Экономическая эффективность применения композиционных материалов.

Области применения композиционных материалов не ограничены. Ониприменяются в авиации для высоконагруженных деталей самолетов (обшивки,лонжеронов, нервюр, панелей и т. д.) и двигателей (лопаток компрессора итурбины и т. д.), в космической технике для узлов силовых конструкцийаппаратов, подвергающихся нагреву, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов,бамперов и т. д., в горной промышленности (буровой инструмент, деталикомбайнов и т. д.), в гражданском строительстве (пролеты мостов, элементысборных конструкций высотных сооружений и т. д.) и в других областяхнародного хозяйства.

Применение композиционных материалов обеспечивает новыйкачественный скачек в увеличении мощности двигателей, энергетических итранспортных установок, уменьшении массы машин и приборов.

Технология получения полуфабрикатов и изделий из композиционныхматериалов достаточно хорошо отработана.

Композитные материалы с неметаллической матрицей, а именнополимерные карбоволокниты используют в судо- и автомобилестроении (кузовагоночных машин, шасси, гребные винты); из них изготовляют подшипники,панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульныекарбоволокниты применяют для изготовления деталей авиационной техники,аппаратуры для химической промышленности, в рентгеновском оборудовании идругом.

Карбоволокниты с углеродной матрицей заменяют различные типыграфитов. Они применяются для тепловой защиты, дисков авиационных тормозов,химически стойкой аппаратуры.

Изделия из бороволокнитов применяют в авиационной и космическойтехнике (профили, панели, роторы и лопатки компрессоров, лопасти винтов итрансмиссионные валы вертолетов и т. д.).

Органоволокниты применяют в качестве изоляционного иконструкционного материала в электрорадиопромышленности, авиационнойтехнике, автостроении; из них изготовляют трубы, емкости для реактивов,покрытия корпусов судов и другое.


Объявления о покупке и продаже оборудования можно посмотреть на

Обсудить достоинства марок полимеров и их свойства можно на

Зарегистрировать свою компанию в Каталоге предприятий

Композиционный материал

Композицио́нный материа́л (компози́т, КМ ) - искусственно созданный неоднородный сплошной материал, состоящий из двух или более компонентов с четкой границей раздела между ними. В большинстве композитов (за исключением слоистых) компоненты можно разделить на матрицу и включенные в нее армирующие элементы. В композитах конструкционного назначения армирующие элементы обычно обеспечивают необходимые механические характеристики материала (прочность, жесткость и т.д.), а матрица (или связующее) обеспечивает совместную работу армирующих элементов и защиту их от механических повреждений и агрессивной химической среды.

Механическое поведение композиции определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними. Эффективность и работоспособность материала зависят от правильного выбора исходных ком­понентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик.

В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композиции, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композициях, в отличие от однородных металлов , повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

Для создания композиции используются самые разные армирующие наполнители и матрицы. Это - гетинакс и текстолит (слоистые пластики из бумаги или ткани, склеенной термореактивным клеем), стекло- и графитопласт (ткань или намотанное волокно из стекла или графита, пропитанные эпоксидными клеями), фанера … Есть материалы, в которых тонкое волокно из высокопрочных сплавов залито алюминиевой массой. Булат - один из древнейших композиционных материалов. В нем тончайшие слои (иногда нити) высокоуглеродистой стали «склеены» мягким низкоуглеродным железом.

В последнее время материаловеды экспериментируют с целью создать более удобные в производстве, а значит - и более дешёвые материалы. Исследуются саморастущие кристаллические структуры, склеенные в единую массу полимерным клеем (цементы с добавками водорастворимых клеев), композиции из термопласта с короткими армирующими волоконцами и пр.

Классификация композитов

Композиты обычно классифицируются по виду армирующего наполнителя:

  • волокнистые (армирующий компонент - волокнистые структуры);
  • слоистые;
  • наполненные пластики (армирующий компонент - частицы)
    • насыпные (гомогенные),
    • скелетные (начальные структуры, наполненные связующим).

Преимущества композиционных материалов

Главное преимущество КМ в том, что материал и конструкция создается одновременно. Исключением являются препреги , которые являются полуфабрикатом для изготовления конструкций. Стоит сразу оговорить, что КМ создаются под выполнение данных задач, соответственно не могут вмещать в себя все возможные преимущества, но, проектируя новый композит, инженер волен задать ему характеристики значительно превосходящие характеристики традиционных материалов при выполнении данной цели в данном механизме, но уступающие им в каких-либо других аспектах. Это значит, что КМ не может быть лучше традиционного материала во всём, то есть для каждого изделия инженер проводит все необходимые расчёты и только потом выбирает оптимум между материалами для производства.

  • высокая удельная прочность (прочность 3500 МПа)
  • высокая жёсткость (модуль упругости 130…140 - 240 ГПа)
  • высокая износостойкость
  • высокая усталостная прочность
  • из КМ возможно изготовить размеростабильные конструкции
  • легкость

Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.

Недостатки композиционных материалов

Композиционные материалы имеют достаточно большое количество недостатков, которые сдерживают их распространение.

Высокая стоимость

Высокая стоимость КМ обусловлена высокой наукоёмкостью производства, необходимостью применения специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны.

Анизотропия свойств

Низкая ударная вязкость

Высокий удельный объем

Гигроскопичность

КМ могут впитывать также другие жидкости, обладающие высокой проникающей способностью, например, авиационный керосин .

Токсичность

При эксплуатации КМ могут выделять пары, которые часто являются токсичными . Если из КМ изготавливают изделия, которые будут располагаться в непосредственной близости от человека (таким примером может послужить композитный фюзеляж самолета Boeing 787 Dreamliner), то для одобрения применяемых при изготовлении КМ материалов требуются дополнительные исследования воздействия компонентов КМ на человека.

Низкая эксплуатационная технологичность

Композиционные материалы обладают низкой эксплуатационной технологичностью , низкой ремонтопригодностью и высокой стоимостью эксплуатации. Это связано с необходимостью применения специальных трудоемких методов, специальных инструментов для доработки и ремонта объектов из КМ. Часто объекты из КМ вообще не подлежат какой-либо доработке и ремонту.

Области применения

Товары широкого потребления

Характеристика

Технология применяется для формирования на поверхностях в парах трения сталь -резина дополнительных защитных покрытий . Применение технологии позволяет увеличить рабочий цикл уплотнений и валов промышленного оборудования, работающих в водной среде .

Композиционные материалы состоят из нескольких функционально отличных материалов. Основу неорганических материалов составляют модифицированные различными добавками силикаты магния , железа , алюминия . Фазовые переходы в этих материалах происходят при достаточно высоких локальных нагрузках, близких к пределу прочности металла . При этом на поверхности формируется высокопрочный металлокерамический слой в зоне высоких локальных нагрузок, благодаря чему удается изменить структуру поверхности металла.

  • брони для военной техники

Литература

  • Васильев В. В. Механика конструкций из композиционных материалов. - М.: Машиностроение, 1988. - 272 с.
  • Карпинос Д. М. Композиционные материалы. Справочник. - Киев, Наукова думка

См. также

Примечания

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Композиционный материал" в других словарях:

    КОМПОЗИЦИОННЫЙ МАТЕРИАЛ, состав, созданный путем сочетания двух или более других материалов, как, например, бетон, стеклопластик или фанера. Обычно композиционный материал по свойствам превосходит те, из которых он сделан … Научно-технический энциклопедический словарь

    композиционный материал - композит Материал неоднородной структуры, состоящий из нескольких однородных материалов (компонентов). [ПБ 03 576 03] Дополнительная информация в интернете: http://www.xumuk.ru/encyklopedia/2085.html Тематики полимерные и др. материалы Синонимы… … Справочник технического переводчика

    композиционный материал - 3.3 композиционный материал: Материал, содержащий активный резиновый порошок в качестве основы, а также целевые и функциональные добавки, предназначенный для модифицирования асфальтобетонных смесей. Источник … Словарь-справочник терминов нормативно-технической документации

    Composite material Композиционный материал. Комбинации из двух или более материалов (упрочняющие элементы, наполнители и составное матричное вяжущее вещество), отличающихся по форме, композиции, размерам. Составляющие части сохраняют свои… … Словарь металлургических терминов

    композиционный материал - kompozitas statusas T sritis radioelektronika atitikmenys: angl. composite; composite material vok. Verbundstoff, m rus. композит, m; композиционный материал, m pranc. composite, f; matériau composite, m … Radioelektronikos terminų žodynas


Композитный сайт – это особая технология, представленная компанией «1С-Битрикс». Целью применения данной технологии является ускорение работы сайта. Композитный сайт загружается в несколько раз быстрее, чем обычный сайт на 1С-Битрикс.

Что такое композитный сайт?

По сути, технология «композитный сайт

$this->setFrameMode(true).

$frame = $this->createFrame()->begin();

$frame->end().

Композитный сайт: что такое и зачем он нужен

Композитный сайт – это особая технология, представленная компанией «1С-Битрикс». Целью применения данной технологии является ускорение работы сайта. Композитный сайт загружается в несколько раз быстрее, чем обычный сайт на 1С-Битрикс.

Что такое композитный сайт?


По сути, технология «композитный сайт» – это улучшенная версия технологии html-кэширования сайта. Не секрет, что высокая скорость загрузки способствует лучшему ранжированию веб-ресурса поисковыми системами. Быстрые сайты работают более эффективно. Они удобны для посетителей и ценны для поисковых роботов.

Повысить скорость загрузки сайта стремится каждый веб-мастер. От того, насколько быстро работает ваш сайт, зависит поведение посетителей. Если страницы загружаются легко и за долю секунды, пользователи с удовольствием совершают переходы и просматривают больше информации. Когда посетителям приходится ждать, пока страница загрузится полностью, они начинают нервничать и думать: «А не уйти ли мне на другой сайт?».

Низкая скорость загрузки увеличивает процент отказов и становится причиной плохой конверсии сайта. Ваш потенциальный клиент может отказаться от оформления заказа, если при посещении страницы или при заполнении формы возникнут трудности с загрузкой отдельных элементов страницы. Посетители сайта не смогут просмотреть ваше презентационное видео, если скорость загрузки будет низкой.

Использование технологии композитного сайта позволяет решить проблемы с качеством загрузки страниц.

Как работает композитный сайт?


В html-шаблоне сайта можно выделять области статистического и динамического контента. За счет этого вы обеспечите пользователям мгновенный доступ к определенной информации на страницах. Статический контент – это такая область на странице, которую видят все посетители. Динамический контент показывается в индивидуальном порядке каждому отдельному посетителю. В качестве динамического контента может использоваться форма авторизации, корзина, баннеры и т.п.

При использовании композитного сайта статический контент загружается мгновенно. Посетитель сайта сразу видит содержимое статической области и может изучать его и выполнять другие необходимые действия. Динамическая область подгружается постепенно в фоновом режиме и кэшируется в браузере.

Как запустить технологию композитного сайта?


Для начала проверьте, какая версия 1С-Битрикс используется на вашем сайте. Технология композитного сайта доступна для версии 14.5 и выше. При наличии более ранней версии вам потребуется обновить программу до актуальной или приобрести продление.

Зайдите в раздел «Настройка продукта». Там вы увидите пункт «Композитный сайт». Чтобы данная технология заработала на вашем сайте, недостаточно ее просто включить. Для этого вам потребуется подогнать отдельные страницы под «композитный сайт». Каждый элемент шаблона страницы должен быть адаптирован к применению технологии. Если хоть один компонент не будет настроен под «композитный сайт», то технология не будет работать на всей странице.

Для настройки статической области на странице необходимо добавить в шаблон строку следующего вида:

$this->setFrameMode(true).

Для выделения динамических областей используйте:

$frame = $this->createFrame()->begin();
$frame->end().


Стоит отметить, что обновление динамического контента происходит с высокой скоростью. Пользователи практически не замечают, как подгружается динамическая область. Вся страница загружается намного быстрее, чем при использовании привычного способа отображения информации.

Используя технологию композитного сайта можно увеличить скорость загрузки страниц и обеспечить улучшение поведенческих факторов. На перевод ресурса в композитный режим потребуется совсем немного времени. Эффект же от применения данной технологии будет заметен уже в первые дни работы обновленного сайта.

Композитные материалы

Композицио́нный материа́л (компози́т, КМ ) - неоднородный сплошной материал, состоящий из двух или более компонентов , среди которых можно выделить армирующие элементы, обеспечивающие необходимые механические характеристики материала, и матрицу (или связующее), обеспечивающую совместную работу армирующих элементов.

Механическое поведение композита определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними. Эффективность и работоспособность материала зависят от правильного выбора исходных ком­понентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик.

В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композита, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композитах, в отличие от металлов , повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

Преимущества композиционных материалов

Стоит сразу оговорить, что КМ создаются под выполнение данных задач, соответственно не могут вмещать в себя все возможные преимущества, но,проектируя новый композит, инженер волен задать ему характеристики значительно превосходящие характеристики традиционных материалов при выполнении данной цели в данном механизме, но уступающие им в каких-либо других аспектах. Это значит, что КМ не может быть лучше традиционного материала во всём, то есть для каждого изделия инженер проводит все необходимые расчёты и только потом выбирает оптимум между материалами для производства.

  • высокая удельная прочность
  • высокая жёсткость (модуль упругости 130…140 ГПа)
  • высокая износостойкость
  • высокая усталостная прочность
  • из КМ возможно изготовить размеростабильные конструкции

Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.

Недостатки композиционных материалов

Большинство классов композитов (но не все) обладают недостатками:

  • высокая стоимость
  • анизотропия свойств
  • повышенная наукоёмкость производства, необходимость специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны

Области применения

Товары широкого потребления

Машиностроение

Характеристика

Технология применяется для формирования на поверхностях в парах трения сталь -резина дополнительных защитных покрытий . Применение технологии позволяет увеличить рабочий цикл уплотнений и валов промышленного оборудования, работающих в водной среде .

Композиционные материалы состоят из нескольких функционально отличных материалов. Основу неорганических материалов составляют модифицированные различными добавками силикаты магния , железа , алюминия . Фазовые переходы в этих материалах происходят при достаточно высоких локальных нагрузках, близких к пределу прочности металла . При этом на поверхности формируется высокопрочный металлокерамический слой в зоне высоких локальных нагрузок, благодаря чему удается изменить структуру поверхности металла.

Технические характеристики

Защитное покрытие в зависимости от состава композиционного материала может характеризоваться следующими свойствами:

  • толщина до 100 мкм;
  • класс чистоты поверхности вала (до 9);
  • иметь поры с размерами 1 - 3 мкм;
  • коэффициент трения до 0,01;
  • высокая адгезия к поверхности металла и резины.

Технико-экономические преимущества

  • На поверхности формируется высокопрочный металлокерамический слой в зоне высоких локальных нагрузок
  • Формируемый на поверхности политетрафторэтиленов слой имеет низкий коэффициент трения и невысокую стойкость к абразивному износу ;
  • Металлоорганические покрытия являются мягкими, имеют малый коэффициент трения, пористую поверхность, толщина дополнительного слоя составляет единицы микрон.

Области применения технологии

  • нанесение на рабочую поверхность уплотнений с целью уменьшения трения и создания разделительного слоя, исключающего налипание резины на вал в период покоя.
  • высокооборотные двигатели внутреннего сгорания для авто и авиастроения.

Авиация и космонавтика

Вооружение и военная техника

Благодаря своим характеристикам (прочности и лёгкости) композиционные материалы применяются в военном деле для производства различных видов брони :

  • брони для военной техники

См. также

  • IBFM_(Инновационные_строительные_и_отделочные_материалы)

Ссылки

Wikimedia Foundation . 2010 .

  • Композит
  • Морской энциклопедический справочник
  • Композитные гибкие связи - Рисунок 1. Схема трехслойной стены: 1. Внутренняя часть стены; 2. Гибкая связь; 3. Утеплитель; 4. воздушный зазор; 5. Облицовочная часть стены Композитные гибкие связи используются … Википедия

    IBFM (Инновационные строительные и отделочные материалы) - IBFM (сокращение от англ. Innovation Buildind and Facing Materials, Инновационные Строительные и Отделочные Материалы) это новая категория товаров для строительства, в которую объединяются строительные и отделочные материалы по принципу… … Википедия

    углепластики - Термин углепластики Термин на английском carbon fibre reinforced plastics Синонимы Аббревиатуры CFRP Связанные термины композиционные материалы, полимерные, углеродные наноматериалы Определение композитные материалы, состоящие из углеволокон и… … Энциклопедический словарь нанотехнологий

    ПЛАСТМАССЫ - (пластические массы, пластики). Большой класс полимерных органических легко формуемых материалов, из которых можно изготавливать легкие, жесткие, прочные, коррозионностойкие изделия. Эти вещества состоят в основном из углерода (C), водорода (H),… … Энциклопедия Кольера

    Нож - У этого термина существуют и другие значения, см. Нож (значения). Нож (праслав. *nožь от *noziti протыкать) режущий инструмент, рабочим органом которого является клинок полоса твёрдого материала (обычно металла) с лезвием на … Википедия

    Летно-технические характеристики вертолета Colibri EC120 B - Colibri EC120 B - многоцелевой легкий вертолет, способный перевозить до четырех пассажиров. Просторный грузовой отсек позволяет вместить пять больших чемоданов. Авария вертолета под Мурманском Разработчик: франко германо испанская Группа… … Энциклопедия ньюсмейкеров

    Углеродные нанотрубки - У этого термина существуют и другие значения, см. Нанотрубки. Схематическое изображение нанотрубки … Википедия

Загрузка...