domvpavlino.ru

Датчики вибрации в схемах для мк. Датчик вибрации для охранного устройства Датчик виброускорения своими руками

Консоль 3 выгибают из такой же проволоки и надежно укрепляют на одном из ее концов груз 5 массой 10...15 г из свинца или припоя. После этого консоль припаивают одним концом к плате, а примерно серединой - к седловине стойки 4.

Во избежание отрыва верхней обкладки от пьезоэлемента перед припайкой консоли ее слегка изгибают так, чтобы после установки на место она создавала на пьезоэлементе избыточное прижимающее упругое усилие. Размеры деталей датчика непринципиальны, поэтому на рис.1 не даны. Паять необходимо легкоплавким припоем.

Выводами датчика служат фольговая площадка, к которой припаян пьезоэлемент, и впаянное в плату основание консоли. Плату укрепляют на поверхности,


вибрацию которой надлежит контролировать. При механическом колебании этой поверхности на выводах датчика возникает несколько слабых импульсов длительностью З...15 мс.

Для того чтобы усилить эти импульсы и придать им форму, необходимую для дальнейшей обработки, сигнал с датчика подают на вход усилителя-формирователя (см. схему на рис.2). Операционный уси

литель DA1 работает в режиме максимального усиления, а транзистор VT1 - в режиме переключения. Диод VD1 увеличивает своим напряжением отсечки зону нечувствительности транзистора.

ОУ вместе с диодом и транзистором образуют компаратор напряжения, отличающийся малым энергопотреблением. Порог срабатывания компаратора устанавливают подстроечным резистором R2. Если амплитуда отрицательной полуволны сигнала датчика менее напряжения на резисторе R2, транзистор VT1 остается закрытым, а выходное напряжениеравным нулю.

Механическое возбуждение датчика приводит к появлению на выходе формирователя нескольких прямоугольных импульсов длительностью 3...15 мс, по амплитуде пригодных для прямого введения их в цифровой анализатор, выполненный на микросхемах КМОП. Простейшее подобное устройство, способное выделить полезный сигнал на фоне ложных срабатываний, представляет собой счетчик(001 на рис.2), периодически обнуляемый по входу R импульсами электронных часов или специального генератора. Сигнал тревоги - напряжение высокого уровня - появится на выходе лишь тогда, когда число импульсов на входе счетчика в интервале между двумя соседними обнуляющими импульсами достигнет некоторого числа, устанавливаемого переключателем SA1 (на рис.2 оно установлено равным восьми).

Если не задаваться решением задачи исключения ложных сигналов, то сигнал с коллектора транзистора VT1 можно подавать непосредственно на вход узла формирования сигнала тревоги.

Как показывает опыт, датчик практически не реагирует на акустические сигналы, распространяющиеся в воздушной среде. Чувствительный прежде всего к нормальной составляющей вибраций, он довольно хорошо воспринимает и возмущения, лежащие в плоскости пьезоэле-мента,-очевидно вследствие возникновения реакции в точках крепления стойки. Таким образом, датчик реагирует на вибрации произвольной ориентации. Ток, потребляемый усилителем-формирователем в режиме ожидания при напряжении питания 9 В, не превышает -18 мкА, при 5 В - 10 мкА.

Данная статья описывает устройство сейсмического датчика-детектора представляющего собой чувствительный электронный узел, способного зафиксировать даже очень слабый уровень вибрации в земной коре.

В конструкции сейсмического детектора применен пьезоэлектрический датчик вибрации , который очень чувствителен к вибрациям и сотрясениям. Данную схему можно использовать для обнаружения сотрясений всевозможных объектов, вибраций происходящих в земной коре, либо как составную часть охранной системы.

Описание работы сейсмического детектора на пьезоэлементе

Как уже было сказано выше, основным элементом, который чувствителен к вибрациям, является простой зуммер (пьезоэлемент). Он довольно часто применяется в устройствах, предназначенных для обнаружения вибраций и сотрясений, к примеру, в охранной сигнализации для велосипеда. Преимуществом схемы является не только низкая цена, но и проста в монтаже датчика, зачастую просто путем приклеивания на контролируемой поверхность.

Микросхема DA1 — операционный усилитель типа LM741, предназначена для усиления слабых сигналов от пьезоэлемента. Усиленный сигнал с выхода операционного усилителя через резистор R6 поступает на базу транзистора VT1. В результате этого транзистор открывается и на входе 2 таймера NE555 появляется сигнал низкого уровня (менее 1/3 напряжения питания).

На таймере NE555 построен классический ждущий мультивибратор, который запускается по низкому сигналу на выводе 2. В результате запуска мультивибратора, на его выходе (вывод 3) появляется сигнал включающий зуммер (с встроенным генератором) и зажигается светодиод.

Продолжительность сигнала определяется элементами RC-цепи (R8 и С2). С указанными значениями на схеме, этот период составляет примерно 3 минуты. По истечении этого времени устройство переходит в исходное состояние.

Конечно, можно приобрести охранный блок в магазине. На рынке представлены различные девайсы. Но что делать, если вы не хотите переплачивать за разные опции. К тому же руки у вас растут откуда нужно. Нет проблем!

Можно собрать вполне приемлемый вариант самому. У этой автосигнализации нет ничего лишнего: управления центральным замком, радиобрелка. Зато самоделка обезопасит ваш автомобиль от проникновения при помощи концевых выключателей дверей и багажника. А также при помощи датчика удара-вибрации предупредит владельца об откручивании, например, колёс. Кстати, знаете ли вы, что отключить злоумышленнику такого рода сигнализацию гораздо сложнее. Он ведь не знает, что вы там могли внедрить. К тому же при отсутствии брелка степень защиты во много раз повышается,так как автожулики не смогут считать код (ведь известно, что большинство взломов происходит этим методом).

Схема устройства

Принцип работы заключается в следующем. Сигнал с A1 датчика вибрации поступает на усилитель, который выполнен на VT1, VT2 и управляет тиристором VS1. На базу транзистора VT2 также поступает сигнал от концевых выключателей дверей, капота, багажника. На транзисторах VT3,VT4 собран таймер, который управляет анодом тиристора VS1. В цепи базы VT3 используется конденсатор большой ёмкости C3. Благодаря чему при постановке на охрану надёжно спрятанном тумблером C3 начинает заряжаться через сирену автомобиля и цепь из резисторов R6,R7. В процессе заряда конденсатора VT3,VT4 будут закрыты, следовательно, тиристор VS1 заперт. Благодаря чему схема встаёт под охрану с некоторой задержкой, давая водителю время покинуть авто и закрыть дверь.

По прошествии 20 секунд конденсатор C3 набирает ёмкость, VT3 открывается и включает охрану в работу. Предположим, произошло воздействие на автомобиль или вскрытие какой-либо двери. Тиристор VS1 отпирается, начинает заряжаться C4 через VS1, VT4, R10. Тиристор устроен таким образом, что он остаётся открытым при прохождении постоянного тока. При закрывании двери (прекращении сигналов) тревожная сирена будет извещать владельца о проникновении. Если срабатывание датчиков произошло с появлением владельца, то за время заряда C4 (20 секунд) он отключит замаскированный тумблер. Если этого не сделать, то откроются VT5,VT6, включится реле KV1 , которое в свою очередь подключит сирену. Чтобы не беспокоить соседей и самому не бежать к автомобилю во время ложных срабатываний, как например проезжающий мимо грузовик, в данной автосигнализации реализована функция ограничения времени тревоги. Действует она следующим образом. Когда контакты KV1 замкнуты и ток протекает через R6,R7 , заряжается конденсатор C3. Через небольшое время закроются VT2, VT3, VS1, VT5, VT6 и реле KV1 отключится и снова возьмёт под охрану.

Какие детали можно использовать для реализации схемы. Требования к ним не критичные. Конденсаторы и резисторы любого типа, желательно малогабаритного. Реле KV1 с рабочим напряжением 12 вольт и током катушки в пределах 100 мА.Силовые контакты реле должны выдерживать ток в 5 А. Но можно снизить до 0,5 А, если применить промежуточное реле.

Датчик вибрации A1 не сложно изготовить самому. Он выполнен в виде катушки со стальным сердечником, от которого на небольшом расстоянии закреплен постоянный магнит на плоской пружине. При малейшем ударе по кузову автомобиля колебания через пружину передадутся на магнит. Тот в свою очередь создаст переменное магнитное поле, которое наведёт ЭДС в катушке. Последняя размером Ø10Χ15 мм мотается на сердечнике Ø3 мм из стали. Для обмотки используют медный провод 0,06...0,07 мм. Магнит с размерами 25Χ10Χ5 мм при помощи клея и ниток нужно закрепить на пружине. В качестве которой можно использовать пружину от будильника. Длина последней выбирается в пределах 60 — 80 мм. В процессе сборки датчика удара следует обратить внимание на то, чтобы магнит мог располагаться как можно ближе к боковой стороне катушки. Готовый датчик вибрации следует располагать в пространстве так, чтобы магнит имел возможность совершать колебания перпендикулярно поверхности земли.

Самодельный датчик вибрации

Теперь остаётся самое главное — спрятать тумблер, через который подаётся питание на схему. К этому вопросу стоит подойти с не меньшей ответственности. Поскольку вам придётся пользоваться им постоянно, ну а злоумышленник не должен его обнаружить.

О чем эта статья

Датчик вибрации (виброметр) - прибор, позволяющий определять параметры вибрационных явлений. Наиболее часто виброметры используются для определения:

  1. Виброскорости
  2. Виброускорения
  3. Виброперемещения

Проще говоря, если вибрирующий объект считать простым осциллятором, то виброметр позволяет получить сведения как о базовых параметрах его колебаний (частота и амплитуда), так и, в некоторых случаях, получить спектральную характеристику колебательного процесса.

Рисунок 1. Схема датчика вибрации.

Общая схема датчика вибрации содержит два основных блока (Рисунок 1): вибропреобразователь (1) и электронный блок обработки (2). Функциональное назначение первого блока - преобразование механических вибраций в электрический сигнал. Механизмов преобразования несколько:

  • Пьезоэлектрический
  • Оптический
  • Вихретоковый
  • Индукционный

Механизм преобразования в значительной мере определяет как характеристики прибора, так и его стоимость.

Второй блок - электронный блок обработки - служит для «расшифровки» полученного сигнала. Как правило, на входе таких блоков стоит аналогово-цифровой преобразователь, и основная часть операций над сигналом производится уже в цифровом виде, что расширяет функциональные возможности процесса пост-обработки, улучшает помехоустойчивость и позволяет осуществлять вывод информации по внешнему интерфейсу.

При использовании на производстве стационарные виброметры могут входить в состав регулирующих систем в качестве датчиков обратной связи, для этих целей некоторые модели виброметров имеют аналоговый выходной сигнал (как правило, напряжение).

Для получения комплексной характеристики вибрационного процесса в состав измерительной системы может быть добавлен спектроанализатор. Если спектроанализатор многоканальный - он может служить основой распределённой системы вибрационной диагностики, содержащей более одного вибродатчика.

В настоящее время большинство виброметров относится к одному из двух типов:

  1. Оптический виброметр
  2. Пьезоэлектрический виброметр

Рассмотрим более подробно каждый тип датчиков.

Оптический виброметр

В основу работы оптического виброметра подобно ультразвуковым датчикам перемещения положен эффект Доплера. Прибор обычно содержит лазерный источник излучения, приёмную оптическую схему, а также электронную схему обработки (Рисунок 2). При отражении излучения от неподвижного объекта длина волны принятого луча не отличается от истинной длины волны лазера. Если объект перемещается вдоль оси излучения, происходит сдвиг длины волны отражённого излучения на некоторую величину (эффект Доплера), значение и знак которой несут информацию о скорости и направлении движения объекта, а используемая в составе приёмного оптического модуля интерферометрическая схема позволяет определить эту величину. Таким образом, колебания отражающей поверхности модулируют частотный сдвиг, и электронная обработка этого сигнала модуляции позволяет получить параметры вибрационных колебаний.

Рисунок 2. Схема оптического виброметра.

Несмотря на то, что в состав оптических виброметров входит источник лазерного излучения, такие приборы достаточно безопасны, поскольку за счёт высокой чувствительности приёмной оптической системы для проведения измерений достаточной оказывается весьма незначительная оптическая мощность.

Одним из основных достоинств оптических виброметров является то, что диагностика с их помощью может проводиться бесконтактно, при их использовании в стационарном измерительном комплексе требуется лишь однократная фокусировка на измеряемой поверхности. Кроме того, устройства этого типа обладают высокой точностью и быстродействием, поскольку лишены подвижных элементов. К недостаткам можно отнести довольно высокую цену.

Пьезоэлектрический виброметр

Как ясно из названия, в основу работы данного типа приборов положен пьезоэффект - явление возникновения разности потенциалов на пьезокристалле при его механической деформации. Внутри корпуса виброметра содержится инертное тело, подвешенное на упругих элементах, содержащих пьезоэлектрический материал (Рисунок 3). Если корпус прибора прикреплён к вибрирующей поверхности, упругие элементы зарегистрируют колебания инертного тела, которое не прикреплено непосредственно к корпусу, а потому стремится сохранять своё первоначальное положение. В целом, в данной конфигурации пьезоэлектрический виброметр есть не что иное, как акселерометр, и часто довольно сложно провести границу между этими видами чувствительных устройств.

Рисунок 3. Схема пьезоэлектрического виброметра.

Электрический сигнал с пьезокристалла, как правило, подаётся на аналогово-цифровой преобразователь, и его обработка осуществляется в цифровом виде. В целом, как и в случае с оптическим виброметром, основным назначением приёмного чувствительного блока является преобразование вибрации в электрический сигнал, а характер его дальнейшей обработки определяется параметрами цифровой электронной схемы.

Основным недостатком этого класса приборов является необходимость соприкосновения чувствительной части с измеряемым объектом, что не всегда уместно в условиях производства. Кроме того, пьезоэлектрические приборы имеют, как правило, более узкий диапазон воспринимаемых частот, поскольку имеют механический тракт передачи вибрации, где максимальная частота определяется инертностью компонентов.

К достоинствам пьезоэлектрических виброметров можно отнести их относительно невысокую стоимость, а также относительно простое устройство, что обеспечивает надёжность и устойчивость к внешним воздействиям.

Датчик вибрации своими руками — дополненный простой системой крепления и несколькими спаянными «на весу» компонентами, пьезоэлемент может детектировать механические удары. Собственно датчик состоит из керамического пьезоэлемента и тонкого латунного диска. Такого рода сборка раньше использовалась во многих телефонных аппаратах в качестве источника вызывного сигнала или в наручных часах с будильником.

В зависимости от способа монтажа, датчик может воспринимать удары в направлении одной оси (Рисунок 16) или трех (Рисунок 16). Для одно осевого измерения припаяйте один край датчика к завернутому в монтажное основание винту. На противоположный край припаяйте груз, чтобы увеличить чувствительность датчика. Пара небольших крючков, прикрепленных к основанию, ограничивает движение датчика, не допуская поломки пьезоэлемента.

Если вы хотите, чтобы система была чувствительна к ударам в трех измерениях, один край датчика припаяйте к винту точно так же, как в первом случае. На другой край припаяйте винт с плоской потайной головкой, направленный в сторону, противоположную монтажному основанию. Используйте пару контр-гаек, чтобы увеличить полярный момент инерции конструкции. Положение контр-гаек определяет чувствительность пьезоэлемента. В обоих случаях, для того чтобы не нарушить соединение пьезоэлемента с латунным диском, время пайки должно быть минимально возможным.

На Рисунке 2 изображена простая схема сигнализации. При хорошем щелчке по пьезозлементу на 10-мегаомном резисторе R1 возникнет напряжение в несколько вольт. После этого микросхема сдвоенного таймера 1с1 в течение одной минуты будет включать питание звукового излучателя с периодичностью 1 с. Излучатель звука имеет собственную встроенную схему управления, генерирующую пронзительный сигнал со звуковым давлением 90 дБ.

Загрузка...