domvpavlino.ru

Как рассчитать солнечные батареи для дома? Расчёт солнечных батарей.

Расчет солнечной батареи для дома или дачи

Для понимания, какое число солнечных батарей нужно и сколько мощности они будут вырабатывать надо знать, какое количество энергии необходимо для обеспечения всех потребителей, расположенных в здании.

Немного о комплектации

Для полноценной работы домашнего энергетического комплекса, необходимо использование следующего набора оборудования:

  • (инвертора).

Расчет мощности солнечных батарей

Расчет солнечной батареи для дома необходимо начинать с подсчета потребности в электрической энергии. Это можно решить двумя способами. Можно проанализировать показания электросчетчика, а можно подсчитать сумму установленной мощности всех потребителей. В этот список входят:

  • отопительное оборудование;
  • холодильник;
  • стиральная машина;
  • освещение и пр.

Для удобства представляем таблицу усредненного расхода электричества по дому

Потребитель Мощность Сезон Продолжительность работы за сутки Потребление за сутки
в среднем максимум В среднем максимум
Основные регулярные потребители
Инвертор 20 Вт всегда 24 часа 1.73 МДж (0.48 кВт ч)
Контроллер заряда 5 Вт всегда 24 часа 0.43 МДж (0.12 кВт ч)
Освещение 200 Вт зима 8 часов 10 часов 5.76 МДж (1.6 кВт-ч) 7.2 МДж (2 кВт ч)
(одновременно 10 энергосберегающих памп по 20 Вт. аналогичных пампам накаливания по 100 Вт) лето 2 часа 4 часа 1.44 МДж (0.4 кВт ч) 2.88 МДж (0.8 кВт-ч)
Холодильник 500 Вт зима 2 часа 2.5 часа 3.6 МДж (1 кВт ч) 4.5 МДж (1.25 кВт-ч)
(работа компрессора) пето 2.5 часа 3 часа 4.5 МДж (1.25 кВт ч) 5.4 МДж (1.5 кВт-ч)
Насос вибрационный 250 Вт зима 30 минут 40 минут 0.45 МДж (0.125 кВт ч) 0.6 МДж (0.17 кВт ч)
лето 2 часа 3 часа 1.8 МДж (0.5 кВт ч) 2.7 МДж (0.75 кВт-ч)
Насос центробежный 800 Вт всегда 15 мин 30 мин 0.72 МДж (0.2 кВт ч) 1.44 МДж (0.4 кВт ч)
Стиральная машина (механическая стирка и отжим, но без нагрева воды) 500 Вт всегда 1 час 6 часов 1.8 МДж (0.5 кВт ч) 10.4 МДж (3 кВт ч)
Утюг (с учётом работы термостата) 1500 Вт всегда 30 минут 2 часа 2.7 МДж (0.75 кВт ч) 10.4 МДж (3 кВт ч)
Телевизор с видеопроигрывателем или видеомагнитофоном 150 Вт всегда 2 часа 4 часа 1.08 МДж (0.3 кВт ч) 2.16 МДж (0.6 кВт-ч)
Ноутбук 100 Вт всегда 2 часа 4 часа 0.72 МДж (0.2 кВт ч) 1.44 МДж (0.4 кВт ч)
ИТОГО до 2.5 кВт максимум, обычно не более 1.5 кВт зима 19.5 МДж (5.5 кВт ч) 41 МДж (11.5 кВт-ч)
лето 15 МДж (4.5 кВт-ч) 39.5 МДж (11 кВт-ч)
Второстепенные регулярные потребители
Электрочайник 2 кВт всегда 5 раз по 3 минуты 20 раз по 3 минуты 0.9 МДж (0.5 кВт ч) 7.2 МДж (2 кВт ч)
Кухонный водонагреватель 1.2 кВт зима
(с 5 С)
2 часа
(25 литров)
5 часов
(50 литров)
9 МДж (2.5 кВт ч) 19.5 МДж (5.5 кВт-ч)
нагрев воды до 70еС. нагреваемая порция не бопее 10 литров пето (с 15С) 1.5 часа (25 литров) 3 часа (50 литров) 5.5 МДж (1.5 кВт-ч) 11.5 МДж (3.2 кВт-ч)
Электробойлер горячего водоснабжения 0.7/1.3/2.0 кВт зима (с 5С) 4 / 2 /1.25 часа (50 литров) 12/6/4 часа (150 литров) 9.5 МДж (2.5 кВт-ч) 28 МДж (8 кВт ч)
нагрев воды для ванной и душа до 50еС, нагреваемая порция не более 100 литров пето (с 15С) 3/1.5/1 час (50 литров) 10/5/3 часа (150 литров) 7 МДж (2 кВт ч) 21.5 МДж (6 кВт ч)
ИТОГО до 4 кВт максимум, обычно не более 2 кВт зима 20 МДж (5.5 кВт-ч) 56 МДж (15.5 кВт-ч)
лето 14.5 МДж (4 кВт-ч) 41 МДж (11.5 кВт-ч)
Нерегулярные потребители
Кухонные электроприборы (кухонный комбайн, мясорубка, миксер, соковыжималка и пр.) до 2 кВт всегда 30 минут 4 часа до 1.8 МДж(1 кВт ч) до 14.4 МДж (4 кВт ч)
Косметические электроприборы (электробритва, фен и пр.) до 2 кВт всегда 5 минут 30 минут до 0.3 МДж (0.15 кВт-ч) до 1.8 МДж(1 кВт-ч)
Пылесос 1800 Вт всегда 30 минут 2 часа 3.5 МДж (0.9 кВт-ч) 13 МДж (3.6 кВт-ч)
Электроинструмент
(болгарка, дрель, лобзик, электропилы и пр.)
до 2 кВт всегда 1 час 4 часа до 3.6 МДж (1 кВт ч) до 14.4 МДж (4 кВт-ч)
Газонокосилка или триммер 1500 Вт пето 1 час 4 часа 5.4 МДж (1.5 кВт-ч) 18 МДж (5 кВт ч)
Снегоуборщик 1500 Вт зима 1 час 4 часа 5.4 МДж (1.5 кВт-ч) 18 МДж (5 кВт ч)
ИТОГО до 2 кВт

Предположим, суммарное потребление составляет 100 кВт*ч за один месяц, то это значит, что солнечные панели должны вырабатывать именно столько электроэнергии.

Солнечные панели , установленные во дворе или на кровле, способны производить энергию только при наличии . Максимальной (паспортной) мощности они достигают при безоблачном небосводе и попадании света на их поверхность под углом в 90 градусов. При других углах вырабатываемая энергия существенно сокращается. Более того, в облачную погоду, она может упасть в 15 — 20 раз. Все это необходимо знать, выполняя расчет солнечных батарей для частного дома.

При выполнении расчета количества солнечных батарей для дома имеет смысл ориентироваться на рабочее время, именно в эти часы солнечные панели работают в полную мощность. В утреннее и вечернее время количество вырабатываемой энергии будет составлять от 20 до 30% установленной мощности, а остальное количество будет генерироваться в рабочее время.

Расчет мощности солнечных батарей для дома показывает — панель мощностью в 1 кВт в летний день, гарантированно будет вырабатывать 7 кВт в день или 210 кВт в месяц. Можно, конечно, добавить и то количество, которое будет вырабатываться в сумеречное время суток (утром и вечером), но лучше его считать запасом на случай изменения погодных условий. Кстати, если панели установлены на одном месте, то, разумеется, они не будут генерировать всю, указанную паспортную мощность. То есть, если домовладелец установить панели суммарной мощностью в 2 кВт, то в месяц она выработает приблизительно 420 кВт энергии. Также количество выработанных киловатт зависит от уровня в вашем регионе.

Что необходимо учитывать при расчете солнечных панелей для дома

Как рассчитать мощность солнечных батарей для дома с учетом потерь? Конечно, иметь объем электроэнергии в 420 кВт в месяц совсем неплохо, но надо иметь в виду, что в нашей стране не бывает полностью солнечных месяцев. Наверняка окажется, что несколько дней будут пасмурными, то есть из полученной в итоге цифры можно смело вычеркивать эти дни. Соответственно, в распоряжении домовладельца будет не 420 кВт, а несколько меньше, к примеру, 360.

Кроме этого, необходимо понимать, что в межсезонье световой день меньше, да и пасмурных дней больше. То есть, если использовать энергию солнца с марта по октябрь, то имеет смысл увеличить число солнечных батарей на 30 — 50%, но это зависит от конкретного района. Про получение электроэнергии зимой, можно забыть из-за короткого светлого дня и большого количества облаков на небе.

Кроме всего, вышеизложенного необходимо учитывать потери, которые неизбежны в аккумуляторах и преобразователе.

Потери на аккумуляторных батареях и инверторе

Необходимое количество энергии в темное время суток должно быть достаточным чтобы его пережить. При потреблении3 кВт*ч, в аккумуляторах должно хранится именно такое количество энергии. Но, их недопустимо полностью разряжать, например, автомобильные батареи, можно опустошить на 50%. Можно рассчитать ориентировочный запас хранимой энергии - при суточном потреблении 10 кВт*ч, емкость АКБ должна равняться этой цифре.

Инверторы, которые являются неотъемлемой частью солнечной энергетической системы имеет КПД в 70 — 80%.
Таким образом, можно сделать вывод, что от использования АКБ, инвертора, контроллера, система будет терять от 40 до 50% вырабатываемой мощности. То есть, домовладелец должен будет увеличить количество панелей на эти теряемые проценты и эта цифра может изменить расчет стоимости солнечных батарей для частного дома.

Правила расчета количества солнечных батарей для дома

Для выполнения расчета мощности солнечной системы, можно использовать следующие правила:

  • определить, что максимально эффективно солнечные панели работают всего часов в сутки;
  • выполнить расчет энергопотребления, разделить полученный результат на 7 и появится потребная мощность солнечных панелей;
  • добавить к полученному результату 40 — 50% процентов, для компенсации потерь от АКБ и инвертора.

Применение энергии получаемой от солнца дело благое, но использовать его как основной, наверное, не совсем целесообразно, особенно в наших климатических условиях.

Как рассчитать сколько нужно приобрести оборудования для комфортного пользования солнечной энергией? Или как рассчитать мощность солнечных панелей и их количество? В этой статье постараемся рассмотреть такие непростые вопросы. Сразу хочется сказать, что для просчёта необходимой мощности батарей лучше всего обратиться к профессионалам своего дела, но если Вы хотите предварительно прикинуть и определиться для себя, то этот материал для Вас.

Прежде чем рассчитать солнечные батареи для дома


  • Что важно предварительно знать? На самом деле — ответственное дело и предварительные расчёты позволят не только сэкономить деньги, но и создать энергоэффективную систему с учётом всех элементов.
  • Начать нужно с расхода электроэнергии в вашем доме. Чтобы понять как рассчитать количество солнечных панелей для дома, нужно начинать именно с этого. Например, у Вас есть необходимость создать автономное обеспечение электричеством для электрического котла и четырёх лампочек. Рассчитать расход очень просто: достаточно составить таблицу подобного плана:

Как пользоваться такой табличкой? Узнаём сколько потребляет конкретный прибор в Ваттах. Сколько приборов каждого типа предполагается? В примере один котёл и четыре лампы накаливания. Дальше: какое времени работы в сутки предполагается? например, котёл будет работать четыре часа, лампы — три. Умножаем столбики по горизонтали между собой. Например для котла это будет 2000х1х4=4000 Вт·ч(потребление конкретным прибором в сутки). Дальше суммируем все полученные показания, узнаём общее энергопотребление в сутки. В случае с примеров — это 5200 Вт·ч

Необходимо определить сколько радиации в год выпадает конкретно в вашей местности , где Вы живёте и где расположен дом. Такие показатели можно либо запросить у метеорологической службы, либо найти таблицы по вашей местности в интернете. Кстати у Google есть отличный сервис, позволяющий определять уровень солнечной радиации, однако он доступен далеко не во всех странах. Поэтому всё же самый простой вариант — найти таблицы во всемирной паутине. Вот некоторые из них, солнечная радиации указана в “кВт·ч/м²/день”:





  • Идём дальше: как рассчитать мощность солнечной батареи? К примеру посмотрим в таблице показания по Киеву. Здесь самые эффективные месяца в плане инсоляции — это май и июль, с показателем 5,25. Ещё один важный момент — это учёт потерь зарядки аккумулятора. Этот показатель можно посмотреть в документации к оборудованию или узнать у специалистов, но зачастую этот показатель около 20%. То есть нам нужно сделать в расчётах “нахлёст” на перерасход зарядки и разрядки аккумулятора. Таким образом, этот показатель будет 1,2 — где 1(или 100%) — это наших посчитаных 5200 Вт·ч в сутки потребления, а 0,2(20%) — это перерасход на аккумулятора. Итак пример:

W=5200×1,2=6240 Вт·ч или 6,24 кВтч

  • Теперь дальше. Следующая формула основана на поправочных коэффициентах, для лета — это 0,5, а для зимы — 0,7. Эти коэффициенты помогут вычислить выработку одной панели в сутки. В зависимости от времени года и уровня инсоляции. Итак, к примеру, мы устанавливаем панели с мощностью в 130 Вт:

W= 0,5× 130×5,25=341,25 Втч
W=0,7× 130×0,86=78,26 Втч

Где соответственно первая формула отображает выработку в летний, самый эффективный месяц в году(данные взяты из таблицы). Вторая формула — для самого не эффективного зимнего месяца.

  • Теперь необходимо разделить 6240 Вт·ч, полученные в первом примере, разделить на полученные результаты во второй и третьей формуле:

N=6240/341,25=18,3
N=6240/78,26=79,73

  • Итак полученные результаты — это наше количество необходимых панелей для выработки заданного показателя энергии. Соответственно для летнего периода понадобится 18 панелей, а для зимнего периода 80. Вот настолько могут быть разные показатели для разных периодов года. Конечно, такие расчёты не совсем точны и по факту есть ещё очень много факторов, которые влияют на выработку энергии. О них Вы можете почитать в статье про установку солнечных батарей.

На эффективность могут существенно повлиять угол наклона панелей, наличие приводов, которые разворачивают панели к солнцу или их отсутствие. Напоследок хочется сказать, что вряд ли батареи будут способны снабдить Ваш дом необходимой энергией, только если у Вас не предусмотрены большие площади под солнечные батареи. Но всё же главный плюс батарей состоит в том, что Вы всегда можете нарастить мощность, добавляя новые панели. Или же заменив одни солнечные элементы на другие, более мощные.


Солнечные батареи становятся с каждым годом все более востребованным видом автономных систем, являющихся альтернативой традиционного электроснабжения. Особенно популярны установки солнечных коллекторов в загородной зоне, на дачах где отсутствует подача электроэнергии.

Расчеты мощности

При покупке солнечных батарей для дома, владельцев, прежде всего, интересует, какой объем мощности батарей понадобится для того, чтобы удовлетворить все насущные потребности. Так как система может обеспечить электроэнергией много приборов лишь в том случае, когда энергопотребление не будет выше количества энергии, производимой генератором.

Система состоит из основных 4 компонентов:

  • Аккумуляторов;
  • Контролера заряда;
  • Фотоэлектрических панелей;
  • Инвертора.

Расчет мощности солнечных батарей для дома актуален, прежде всего, тем, что при всех финансовых и материальных ограничениях важно знать, какого результата ожидать от батарей и стоит ли вообще покупать подобную систему энергоснабжения. Для каждого режима использования электроэнергии существует своя система расчета.

За основу расчетов необходимой энергии берутся данные о возможности Солнца (мощность солнечного излучения), а так же стоит рассчитать сколько энергии планируется потреблять. Это можно сделать самостоятельно, посмотрев в таблицу «Расчет потребления электроэнергии»:


При этом учитываются:

  • Регион;
  • Погодные условия;
  • Угол наклона панели.

Устанавливая угол наклона панели важно определиться, будет использование батарей круглогодичным или предполагается их эксплуатация только в летний период. Предпочтительно устанавливаемый для панелей угол наклона на 15° больше, чем географическая широта. Чем больше наклон, тем эффективнее выработка энергии.

Расчет солнечных батарей для дома желательно проводить, имея данные и по горизонтальной, и по вертикальной установкам панелей.

Процесс расчета

Для того чтобы оценить производительность солнечных батарей, желательно взять для расчетов самый худший месяц зимой (январь в Москве) и летний максимум (июль в Москве).

Стандартный поток солнечного света при 25° в 1 кВТ/м? — это номинальная мощность солнечной панели. Взяв месячную инсоляцию, и умножив ее на соотношение мощностей максимальной инсоляции и батареи можно получить оценку выработки батареи за конкретный месяц.

Выработка фотоэлектрических панелей рассчитывается по формулам:

1. Eсб = Eинс х Pсб х? / Pинс

Eсб - энергия солнечной батареей;
Eинс - инсоляция 1 м? (конкретный месяц из таблицы);
? - КПД передачи электрического тока;
Pсб - номинальная мощность батареи;
Pинс - максимальная мощность инсоляции 1 м? земной поверхности.

Так же можно делать расчет мощности солнечных батарей, необходимой для месячного энергопотребления.

2. Рсб = Ринс х Есб/ (Еинс х?)

В расчет КПД можно заложить потери (от 10 до 25%), которые могут происходить от дешевых контролеров заряда, которые, как правило, либо занижают выходное напряжение батареи или попросту игнорируют излишки энергии.

2 Формула удобна, если необходимо рассчитать номинальную мощность солнечных батарей, учитывая конкретные условия инсоляции, но она не очень подходит для расчетов возможностей на весь год.
1 Формула позволяет рассчитать мощность для различных режимов энергоснабжения батарей с разной номинальной мощностью.

Пример расчета для Москвы


Предположим, что нужно рассчитать наклон 70°, но для Москвы нет таких данных, но есть данные угла наклонов панели 40° и 90°. В этом случае между этими данными берется среднее значение и округляется до 1 кВт/ч на меньшее число. При расчете мощности учитывается суммарный КПД контролера и инвертора – 91%. Значение «режим дефицита» говорит о том, что мощности не хватит даже для постоянной работы самой системы.

Анализ расчетов

Учитывая погодные особенности и номинальную мощность батарей можно сделать вывод, что 400 Вт батареи в Москве будет недостаточно даже на поддержку аварийного режима в летнее время. Хотя для дачи превышение выработки аварийного уровня 80% можно считать допустимым вариантом, особенно при непостоянной работе инвертора, а только при необходимости подачи электроэнергии.

Маломощные системы не предназначены для круглосуточного бытового электроснабжения даже летом. Так как энергия в таких системах является критически важной для собственного потребления контролера заряда и инвертора. В зимнее время мощности солнечного коллектора будет не достаточно для работы всех электроприборов дома, но в летнее вполне допустимо, что электроснабжение будет бесперебойным.

Возможности батарей из расчетов мощности для Москвы:

  • 500 Вт – дает аварийный минимум 80% с мая до конца августа;
  • 600 Вт – середина марта – сентябрь;
  • 800 Вт – с превышением аварийного уровня (кроме декабря и января) обеспечивает напряжение с марта по сентябрь;
  • 1 кВт – обеспечивает базовое потребление электроэнергии почти весь год, но в зимний период (декабрь и январь) энергии может не хватать;
  • 1.2 кВт – обеспечивает умеренный режим в июле, в марте – сентябре режим энергопотребления базовый. Аварийный минимум приходится на период ноябрь – январь;
  • 2 кВт – поддерживает комфортный режим, или близкий к нему в период май – август и базовый с февраля месяца по август. Но в длинные темные месяцы данной мощности солнечного коллектора может быть недостаточно;
  • 3.2 кВт – обеспечивает комфортный режим на все длинные дни и в течение года позволяет рассчитывать на аварийный минимум;
  • 5.3 кВт – батареи номинальной мощности, позволяющие практически без ограничений использовать электроэнергию в период май – август и круглый год в базовом режиме;
  • 8 кВт – мощность солнечной батареи, обеспечивающая использование электричества круглый год в умеренном режиме;
  • 13.5 кВт – круглогодичный комфортный режим энергопотребления.

Основные критерии выбора оборудования


На обеспечение электроснабжения от солнечных коллекторов влияют:

  • Продолжительность дня и ночи (ночью солнечные системы прекращают подавать энергию);
  • Погодных условий (в пасмурные дни уровень энергообеспечения спадает);
  • Сезонности (когда дни становятся короче ночей).
  • Только для летнего периода — не менее 400 А/ч на 1 кВт/ч суточного потребления в минимальном режиме;
  • Для круглогодичного энергопотребления – не менее 800 А/ч на 1 кВт/ч в минимальном режиме потребления.

При выборе панели учитывается три основных фактора:

  1. Геометрия;
  2. Тип фотоэлементов;
  3. Номинальное выходное напряжение.

Когда стоит вопрос: «приобретать одну большую панель или несколько маленьких», наш совет — лучше одну. Маленькие панели хорошо устанавливать там, где нет возможности установить большую панель (размер ее не превышает 1,5 – 2 метров). В этом случае площадь соединений будет меньше, а уровень надежности повысится.

Наиболее часто предлагаемые типы фотоэлементов:

  • На монокристаллическом кремнии;
  • На поликристаллическом кремнии.

Монокристаллический тип дороже, но его преимущества намного выше поликристаллического.

Если суммарная мощность панелей будет превышать мощность инвертора, это в разы оправдается даже с учетом постоянной мощной нагрузки и мощного аккумуляторного блока.

При выборе размещения панелей учитываются ориентирование дома по сторонам света и его «посадки» на местность. Традиционной ориентацией считается размещение панелей на юг.

Сейчас не проблема приобрести систему отслеживания Солнца. Будут оправданы расходы на такое дополнительное оборудование для солнечного коллектора или нет – решение сугубо индивидуальное.

Подсчитана мировая доля энергии, полученной с помощью ВИЭ за 2013 год

По мере того как растут потребительские цены на электроэнергию, а также на газ, бензин и дизельное топливо, владельцы собственных домов всё чаще...



Хорошее освещение является неотъемлемым фактором сохранения здорового зрения. Около 90% знаний человек получает посредством глаз. Поэтому к...


Загрузка...