domvpavlino.ru

История возникновения цифр и чисел. Проект учащихся "история возникновения цифр и чисел"

Всматриваясь в причудливые знаки, не сразу поймешь, что символизируют древние числа и цифры. Мешки с крупами, орудия труда. В хвостатых, изогнутых знаках читается менталитет древнего народа, уровень его развития, навыки, экономическая обстановка. Обозначения цифр сотканы из глубоких абстракций и художественных представлений о мире. Рождение цифр неразрывно связано с возникновением письменности, но узелковое письмо шумерских народов появилось даже раньше. Оно было создано для счета. О чем это говорит? Уметь считать было важно во II в. до н.э., и в высокотехнологичном ХХI столетии.

Числа и бизнес пребывают в прочном тандеме. Числа нужны для основания и раскрутки бизнеса (для вычисления рентабельности, расчета конверсии, КПД), а бизнес нужен для хороших цифр на счету в банке . Счет стал неотъемлемой частью человеческого мышления и настолько влился в повседневную жизнь, что мы даже не замечаем его. Предприниматель должен числа не просто видеть, считать и предполагать, а читать. Созерцать не глазами, а разумом.

Цифры и числа – это разные понятия. В обиходе мы их путаем, но существенная разница в сути слов от этого не исчезла. Цифра служит для условного обозначения числа. Число выражает количественную характеристику в цифрах, и представляет собой более обобщенное понятие.

Если проанализировать, какими были первые цифры, можно увидеть обширную историю культуры отдельного народа. Составление обозначений для чисел потребовало более высокого интеллектуального уровня. Поэтому наши предки оставляли тысячи зарубок на твердых материалах. Столько, сколько требовалось. Так, наивно, но достоверно, заполнялись древние отчетные документы, «чеки» и т.п. Первые цифры представляли собой примитивные засечки и значки.

Пример древних чисел и цифр

Генезис цифр останется для ученых неизведанной Марианской впадиной. Витиеватая история возникновения вызывает замешательство. Точно известно, что первые попытки письменной фиксации цифр были в Египте и Месопотамии: найденные древние математические записи тому свидетельство . Эти государства располагались далеко друг от друга, письменность и культура в каждом из них уникальна.

В Древнем Египте сформировалось скорописное иероглифическое письмо, месопотамские писцы использовали клинопись. Поэтому египетские первые цифры своей формой передавали природу всех окружающих предметов: животные, растения, предметы быта и т.д. Папирус Ринда (1650 г. до н.э.) и папирус Голенищева (1850 г. до н.э.) – числовые древнеегипетские документы - свидетельствуют о высоком культурном развитии народа. Месопотамская клинопись запечатлена на глиняных табличках, на которых цифры представлены небольшими клиньями, повернутыми в разные стороны соответственно своему значению.

И в египетских, и в месопотамских системах счисления есть цифры от 1 до 10, особые метки для обозначения десятков, сотен и тысяч, и ноль, который обозначали выделенным пустым местом.

Числа древнего Египта построены грамотно и логично. Рационализм и четкость отличают эти системы счисления от аналогичных попыток других народов. Цифры значением меньше десяти обозначались ׀. Например, цифра 6 выглядела как ׀׀׀׀׀׀. Число 10 обозначалось перевернутой подковой в иероглифической системе и особым символом – в иератической. Сколько десятков в числе, столько и «подков». Иератическая система письменности предполагала для каждого числа, на десяток выше предыдущего, отдельный символ. Начиная от 100, это была стилизованная клюшка, над которой с каждой новой сотней ставили крохотную пометку.

Читайте также

Искусство из денег

В иероглифах все проще. Число 100 выглядело почти как арабская цифра 9, но египтяне назвали ее лотосом. Далее все аналогично - 200 – 2 «лотоса», 300 – 3 и т.д.

Египетские числа и цифры

Вы заметили, что в древнем Египте с самого начала сформировалась десятичная система? Однако Месопотамия все же превзошла Египет, когда на ее территории обрел независимость и возвысился Вавилон. Там вырастала отдельная культура, вскормленная достижениями соседних завоеванных государств.

Достижение Вавилона

Числа древнего Вавилона мало отличались от месопотамских: те же клиновидные знаки служили для обозначения единиц — ˅, и десятков — ˃. Комбинация этих знаков применялась для обозначения чисел 11-59. Число 60 в письме выглядело как зеркальное отражение буквы «Г». 70 – Г˃, 80 — Г˃˃ и так далее, принцип ясен, клинопись не отличается гениальностью.

Вавилонская система счисления

Основная ценность заключается в том, что один и тот же знак – обратите внимание – в зависимости от того, где он расположен в записи числа, имеет разное значение. Речь идет о поместном размещении знаков в системе счисления. Те же клиновидные знаки, указанные в разных разрядах, обладают разной значимостью. Поэтому Вавилонскую систему счисления с нулем принято называть позиционной. Математики могут с этим поспорить, потому что не найдено ни одного источника, в которой ноль располагался бы в конце числовой записи, что говорит об относительной позиционности.

Вавилонская система стала своеобразным трамплином, с которого человечество совершило прыжок на новый этап своего развития. Идея со временем попала в руки индусов. Они внесли свои коррективы, усовершенствовав систему счисления. Переняли идею итальянские торговцы, которые привезли ее в Европу вместе с товаром. Позиционная система счисления облетела весь мир, обогатив своим появлением не только математические науки, но и современный счет.

Знаете, откуда взялось деление часа на 60 минут, а минут – на 60 секунд? Из рассмотренной выше шестидесятеричной системы чисел. Взгляните, как обозначали числа древние вавилоняне, и в клиновидных значках увидите сакральный смысл современного, привычного для всех счисления.

История цифр разных народов

Цифры древней Греции

Под плеядой легендарных античных математиков и философов сформировалось две системы счисления. Каждая из них приносила свои преимущества, но они не были открыты или доработаны в связи с политико-культурными переменами.

Аттическую систему можно было бы назвать десятичной, если бы в ней не была выделена цифра 5. Аттическая запись чисел использовала повторы коллективных символов, что напоминало месопотамский метод. Единицу обозначала черта, написанная нужное количество раз. Таким образом записывались числа до 4. Цифра 5 была под первой буквой слова «пента», 10 – под первой буквой слова «дека» («десять») и т.д.

История чисел и цифр:

Алфавитная (или ионическая) система достигла своего расцвета в преддверии Александрийской эпохи. По сути, объединила десятеричную систему счисления и древневавилонский способ позиционности. Цифры записывались буквами и черточками. Система счисления довольно перспективна, но греки с их фанатичным стремлением к совершенству так и не довели ее до ума. Пытаясь достигнуть максимальной строгости и четкости в числовых записях, математики внесли существенные трудности в работу с ней.

Читайте также

Доска визуализации желаний

Легкоузнаваемые, четкие, строгие и ясные обозначения стали весьма удачным изобретением римлян. Пройдя сквозь века, символы остались практически неизменными еще и потому, что Рим пользовался влиянием на древней государственной арене. А также перенимал некоторые культурные особенности у завоеванных народов. Бросается в глаза алфавитное обозначение цифр – главная «изюминка» аттической системы. Цифра V (5) – прототип ладони с раскрытыми пятью пальцами. Стало быть, Х (10) – две ладони. Палочками указывали единицы, а для сотен и тысяч предназначены прописные буквы алфавита.

Числа и цифры древнего Рима

Цифры древнего Китая

Система сложных, абстрактных иероглифов, в которую превратились невинные зарубки на гадальных костях, мало где применяется. Впрочем, иероглифы используются для формальных записей, а упрощенный набор символов применяется в повседневной жизни.

Числа в древней Руси

Как ни странно, Русь повторила алфавитную систему счисления. Каждая цифра была названа соответствующей ее рангу буквой алфавита. Цифра 1 выглядела как «А», 2 – «Б», 3 – «В» и т.д. Десятки и сотни также были подписаны соответствующими буквами славянского алфавита. Чтобы не путать в тексте слова с цифрами, над числовыми записями рисовали титло – горизонтальную волнистую линию.

числа и цифры Древней Руси

Древнеиндийские цифры

Сколько бы ни спорили ученые, сколько бы изменений ни претерпевала форма цифр, но возникновение арабских, «наших» цифр приписывают древней Индии. Возможно, арабы позаимствовали древнеиндийскую систему счисления или изобрели ее сами. Причиной научных мытарств стал фундаментальный математический труд Аль-Хорезми «Об индийском счете». Книга стала своеобразной «рекламой» десятичной позиционной системы. Иначе как объяснить внедрение индийской системы счисления на территории всего Халифата?

Полноценность позиционной системы укрепилась возникновением «нуля». В целом запись чисел не ушла далеко от аттической: для цифр 5, 10, 20… использовались коллективные символы, повторяющиеся нужное количество раз.

При таком подходе из древнеиндийских цифр не могли «вырасти» арабские. Это утверждение кажется логичным на первый взгляд, но история цифр загадочна, и демонстрирует непричастность древней Индии к возникновению знакомых нам символов.

Самые распространенные системы счисления

Арабские цифры значительно экономили время и материалы для письма. Один арабский ученый предложил обозначать цифру символом с определенным количеством углов. Количество углов должно равняться значению цифры. Например, «0» — «ничто», углов нет; 1 – 1 угол; 2 – 2 угла и т.д. Слово «цифра» также позаимствовано из арабских языков, где оно звучало как «сыфр», и обозначало «ничто», «пустота». У «сыфр» был синоним – «шунья». На протяжении веков «0» называли именно так. До тех пор, пока не появилось латинское «нуллум» («ничто»), как мы и называем «ноль».

Современный вариант символьного обозначения цифр выражен плавными, округлыми линиями. Это результат эволюции. В первозданном виде обозначения угловаты. Время действительно способно сглаживать углы – в прямом и переносном значениях. Неважно, откуда берет истоки история возникновения чисел, главное, они стали достоянием всего мира. Цифры легко пишутся и запоминаются, что облегчает и смысловое восприятие. Ведь перед вами не длинная вереница закорючек и букв.

Несмотря на то, что латынь называют «мертвым» языком, ее значимость в научной сфере подтверждена изучением в ВУЗах. Латинские цифры также нашли применение в документоведении, деловодстве, оформлении научных работ. Доступность, понятность и четкость сделали их завсегдатаями учебников и рефератов.

Древние люди добывали себе пищу главным образом охотой. На крупного зверя – бизона или лося – приходилось охотиться всем племенем: в одиночку ведь с ним не справишься. Командовал облавой обычно самый старый и опытный охотник. Чтобы добыча не ушла, ее надо было окружить, ну вот хотя бы так: пять человек справа, семь сзади, четыре слева. Тут уж без счета никак не обойдешься! И вождь первобытного племени справлялся с этой задачей. Даже в те времена, когда человек не знал таких слов, как “пять” или “семь”, он мог показать числа на пальцах рук.

Кстати сказать, пальцы сыграли немалую роль в истории счета. Особенно когда люди начали обмениваться друг с другом предметами своего труда. Так, например, желая обменять, сделанное им копье с каменным наконечником на пять шкурок для одежды, человек клал на землю свою руку и показывал, что против каждого пальца его руки нужно положить шкурку. Одна пятерня означала 5, две – 10. Когда рук не хватало, в ход шли и ноги. Две руки и одна нога – 15, две руки и две ноги – 20.

Часто говорят: “Знаю, как свои пять пальцев”. Не с этого ли далекого времени пошло это выражение, когда знать, что пальцев пять, значило то же, что уметь считать?

Пальцы были первыми изображениями чисел. Очень сложно было складывать и вычитать. Загибаешь пальцы – складываешь, разгибаешь – вычитаешь. Когда люди еще не знали, что такое цифры, в ход при счете шли и камешки, и палочки. В старину, если крестьянин-бедняк брал в долг у богатого соседа несколько мешков зерна, он выдавал вместо расписки палочку с зарубками – бирку. На палочке делали столько зарубок, сколько было взято мешков. Эту палочку раскалывали: одну половинку должник отдавал богатому соседу, а другую оставлял себе, чтобы тот потом не требовал вместо трех мешков пять. Если давали деньги друг другу в долг, тоже отмечали это на палочке. Словом, в старину бирка служила чем-то вроде записной книжки.

Как люди научились записывать цифры

Проходили многие-многие годы. Менялась жизнь человека. Люди приручили животных, на земле появились первые скотоводы, а затем и земледельцы. Постепенно росли знания людей, и чем дальше, тем больше увеличивалась потребность в умении считать и мерить. Скотоводам приходилось пересчитывать свои стада, а при этом счет мог идти уже сотнями и тысячами. Земледельцу надо было знать, сколько земли засеять, чтобы прокормить себя до следующего урожая. А время посева? Ведь, если посеять не во время, урожая не получишь!

Счет времени по лунным месяцам уже не годился. Нужен был точный календарь. К тому же людям все чаще приходилось сталкиваться с большими числами, запомнить которые трудно или даже невозможно. Нужно было придумать, как их записывать.

В разных странах и в разные времена это делалось по-разному. Очень разные и порою даже забавные эти “цифры” у разных народов. В Древнем Египте числа первого десятка записывали соответствующим количеством палочек. Вместо цифры “3” – три палочки. А вот для десятков уже другой знак – вроде подковы.

У древних греков, например, вместо цифр, были буквы. Буквами обозначались цифры и в древних русских книгах: “А” - это один, “Б” - два, “В” – три и т.д.

У древних римлян были другие цифры. Мы и сейчас пользуемся иногда римскими цифрами. Их можно увидеть и на циферблате часов, и в книге, где обозначается номер главы. Если внимательно рассмотреть, римские цифры похожи на пальцы. Один – это один палец; два – два пальца; пять – это пятерня с отставленным большим пальцем; шесть – это пятерня да еще один палец.

Так выглядели древние китайские цифры.

Индейцы майя ухитрялись писать любое число, используя только точку, линию и кружочек.

Все-таки, откуда же взялись те десять цифр, которыми мы пользуемся сегодня? Наши современные цифры пришли к нам из Индии через арабские страны, поэтому их и называют арабскими. Происхождение каждой из девяти арабских цифр хорошо видно, если их записать в “угловатой” форме.

Эти цифры произошли от счета по пальцам. Цифру “1” писали так же, как и сейчас, палочкой, цифру “2” – двумя палочками, только не стоячими, а лежачими. Когда эти две палочки быстро писали одну под другой, их соединяли косой черточкой, как мы соединяем буквы в слова. Вот и получился значок, напоминающий нашу теперешнюю двойку. Тройка получалась при скорописи из трех палочек, лежащих одна под другой. В пятерке можно узнать кулак с отставленным пальцем, даже само слово “пять” происходит от слова “пясть” – кисть руки.

От арабов к нам пришло и слово “цифра” от слова “сифр”. Цифрами называют все десять значков для записи чисел, которыми мы пользуемся: 0, 1, 2, 3, 4, 5, …….

Современное слово “нуль” появилось гораздо позже, чем “цифра”. Оно происходит от латинского слово “нулла” – “никакая”. Изобретение нуля считается одним из важнейших математических открытий. При новом способе записи чисел значение каждой написанной цифры стало прямо зависеть от нее.

позиции, места в числе. При помощи десяти цифр можно записать любое, даже самое большое число, и сразу ясно, какая цифра что обозначает.

Магия чисел

Какую цифру вы любите больше всего? Семерку? Пятерку? А может, единицу? Вас удивляет такой вопрос: как можно любить, или не любить какие - то цифры, числа? Однако не все так думают. У некоторых есть числа “плохие” и “хорошие”, например, число 7 – хорошее, а 13 – плохое и т.д. Впервые мистическое отношение к числам возникло несколько тысяч лет назад, а в середине века широко распространилось по всей Европе. Была даже целая наука – нумерология, в которой каждое имя имело свое число, получаемое при переводе букв имени в цифры.

Детей заинтересовало значение числа 7.

Ведь очень многое в жизни связано с этой цифрой. Дети-дошкольники, когда им исполняется 7 лет, идут в школу; 7 цветов радуги; 7 дней в неделе; 7 звезд в созвездии Большой медведицы; 7 нот нотной грамоты.

Цифру 7 всегда связывали с понятием везения (удачи). Иногда эту цифру называют знаком ангела.

Семь считали магическим, священным числом. Это объяснялось еще и тем, что человек воспринимает окружающий мир (свет, запахи, вкус, звуки) через семь “отверстий” в голове (два глаза, два уха, две ноздри, рот).

Нередко, приписывая числу 7 таинственную силу, знахари вручали больному семь разных лекарств, настоянных на семи разных травах, и советовали пить семь дней.

Это волшебное число 7 широко использовалось в сказках “Белоснежка и семь гномов”, “Волк и семеро козлят”, “Цветик-семицветик”; в мифах древнего мира.

Семь раз отмерь, один раз отрежь.

Семеро одного не ждут.

Лук – от семи недуг.

Семь бед – один ответ.

Семь пядей во лбу.

Семь пятниц на неделе.

Много еще можно узнать о значении числа 7, однако каждое число имеет свое магическое значение.

А сколько звезд на небе? Сколько животных в зоопарке? А сколько ходит детей в детский сад? Дети скоро пойдут в школу и научатся считать и записывать большое количество предметов с помощью этих простых, но нужных десяти цифр.

Возникновение чисел в нашей жизни не случайность. Невозможно представить себе общение без использования чисел. История чисел увлекательна и загадочна. Человечеству удалось установить целый ряд законов и закономерностей мира чисел, разгадать кое-какие тайны и использовать свои открытия в повседневной жизни. Без замечательной науки о числах – математики – немыслимо сегодня ни прошлое, ни будущее. А сколько ещё неразгаданного!

Древние люди не умели считать. Да и считать им было нечего, потому что предметов, которыми они пользовались – орудий труда, – было совсем немного: один топор, одно копье Постепенно количество вещей увеличивалось, обмен ими усложнялся и возникала потребность в счете. Издавна числа казались людям чем-то таинственным. Любой предмет можно было увидеть и потрогать. Число потрогать нельзя, и вместе с тем числа реально существуют, поскольку все предметы можно посчитать. Эта странность заставила людей приписывать числам сверхъестественные свойства

В наш скоростной быстролётный век – век большого изобилия информации, различных печатных изданий и виртуального мира трудно чем - либо удивить людей. Написать, создать что-либо, да так, чтобы интересно было читать! Итак

С самого раннего детства мы знакомимся с числами. А какие же бывают числа? На этот вопрос я попыталась ответить в своей работе. Моя работа можно - это мини-пособие для ознакомления с таким интересным понятием как «Числа». Возможно, не все подробно, но в своей работе я старалась затронуть все аспекты, связанные с выбранной темой. Этой работой могут воспользоваться те, кто хочет знать о математике больше, чем рядовой школьник.

История развития числа

На первых этапах существования человеческого общества числа служили для примитивного счета предметов, дней, шагов. В первобытном обществе человек нуждался лишь в нескольких первых числа. С развитием цивилизации ему потребовалось изобретать все больше числа, этот процесс продолжался на протяженности многих столетий и требовал напряженного интеллектуального труда. При обмене продуктами появилась необходимость сравнивать числа, возникли понятия больше, меньше, равно. На этом же этапе люди стали складывать числа, затем научились вычитать, делить, умножать. При делении двух натуральных чисел появились дроби, при вычитании – отрицательные числа.

Необходимость выполнять арифметические действия привела к понятию рациональных чисел. В IV в. до н. э. греческие математики открыли несоизмеримые отрезки, длины которых не выражались ни целым, ни дробным числом (например, длина диагонали квадрата со стороной, равной 1). Потребовалась не одна сотня лет, чтобы математики смогли выработать способ записи таких чисел в виде бесконечной непериодической десятичной дроби. Так появились иррациональные числа, которые вместе с рациональными назвали действительными числами.

Но затем выяснилось, что во множестве действительных чисел не имеют решения простейшие квадратные уравнения, например, х2 + 1 = 0. Математики пришли к необходимости расширить понятия числа, чтобы в новом множестве можно было всегда извлечь квадратный корень. Новое множество назвали множеством комплексных чисел, введя понятие мнимой единицы: i2 = – 1.

Выражение вида а + вi назвали комплексным числом. Долгое время многие ученые не признавали их за числа. Только после того, как нашли возможность представить мнимое число геометрически, так называемые мнимые числа получили свое место во множестве чисел.

N – натуральные числа.

Q – рациональные числа.

R – действительные числа.

Комплексными называются числа вида а + вi, где а и в – действительные числа, i – мнимая единица: i2 = – 1. а называется действительной частью, вi – мнимой частью комплексного числа.

Определение. Два комплексных числа называются равными, если равны их действительные части и коэффициенты при мнимых частях, т. е. а + вi = с + di a = c, b = d.

Для комплексных чисел не существует соотношений «больше», «меньше».

Учёные математики, которые внесли

Вклад в развитие теории чисел

Мы живем в мире больших чисел

Задумывались ли вы когда-нибудь о том, сколько километров проходит человек за свою жизнь, сколько товаров производится и приходит в негодность ежечасно в пределах города, страны? Во сколько раз скорость пассажирского реактивного самолета превосходит скорость тренированного спортсмена-пешехода? Ответы на эти и тысячи подобных вопросов выражаются числами, занимающими зачастую по числу своих десятичных разрядов целую строку и даже больше.

Для сокращения записи больших чисел давно используется система величин, в которой каждая из последующих в тысячу раз больше предыдущей:

1000 единиц – просто тысяча (1000 или 1 тыс.)

1000 тысяч – 1 миллион

1000 миллионов – 1 биллион (или 1 миллиард)

1000 биллионов – 1 триллион

1000 триллионов – 1 квадриллион

1000 квадриллионов – 1 квинтиллион

1000 квинтиллионов – 1 секстиллион

1000 секстиллионов – 1 септиллион

1000 нониллионов – 1 дециллион и т. д.

Таким образом, 1 дециллион запишется в десятичной системе единицей с 3 * 11= 33 нулями. 1. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000.

«Напрасно думают, что ноль играет маленькую роль»

Самуил Яковлевич Маршак

Степень числа – произведение его самого на себя требуемое число раз, которое называется показателем степени (а само число – ее основанием). Например, 3 * 3= 32 (здесь 3 – основание, 2- показатель степени), 2 * 2 * 2= 23, 10 * 10= 102=100, 105= 10 * 10 * 10 * 10 * 10= 100000.

Заметьте, что число нулей степени 10 всегда равно ее показателю:

101=10, 102 =100, 103 =1000 и т. д.

И еще одно: математики во всем мире давно приняли, что любое число в нулевой степени равно единице (а0 =1). При записи больших чисел часто используют степень числа 10.

Единица – 100=1

Тысяча – 103= 1000

Миллион – 106= 1000 000

Биллион – 109= 1000 000 000

Триллион – 1012=1000 000 000 000

Квадриллион – 1015 =1000 000 000 000 000

Квинтиллион – 1018 =1000 000 000 000 000 000

Секстиллион – 1021 = 1000 000 000 000 000 000 000

Септиллион – 1024 = 1000 000 000 000 000 000 000 000

Октиллион - 1027 = 1000 000 000 000 000 000 000 000 000

Теперь приведем несколько интересных сведений:

Радиус Земли – 6400 км.

Длина Земного экватора – около 40 тыс. км.

Площадь Земного шара 510 млн. км.

Среднее расстояние от Земли до Солнца – 150 млн. км.

Диаметр нашей Галактики – 85 тыс. световых лет.

С начала нашей эры прошло немногим более миллиарда секунд.

Число Шахерезады

Существуют числа, носящие имена великих математиков: число Архимеда - , Неперово число – основание натуральных логарифмов е=2, 718281 [Непер Джон (150-1617), шотландский математик, изобретатель логарифмов].

Число, о котором пойдет речь, не менее популярно. Это 1001. Его иногда называют числом Шехерезады, известно каждому, кто читал сказки «Тысяча и одна ночь». Число 1001 обладает рядом интересных свойств:

1. Это самое маленькое натуральное четырехзначное число, которое можно представить в виде суммы кубов двух натуральных чисел: 1001=103+13.

2. Состоит из 77 «злополучных чертовых дюжин». (1001=77*13), из 91 одиннадцатки или 143 семерок (вспомним, что число «7» считалось магическим числом); далее, если будем считать, что год равен 52 неделям, то 1001=143*7=(104+26+13)*7=2 года + ½ года+ ¼ года

3. На свойствах числа 1001 базируется метод определения делимости числа на 7, на 11 и на 13.

Рассмотрим этот метод на примерах:

Делится ли на 7 число 348285?

348285=348*1000+285=348*1000+348-348+285=348*1001-(348-285)

Так как 1001 делится на 7, то чтобы 348285 делилось на 7, достаточно, чтобы на 7 делилась разность 348-285. Так как 348-285=63, то 348285 делится на 7.

Таким образом, чтобы узнать, делится ли число на 7 (на 11 или 13), необходимо от этого числа без последних трех цифр отнять число из трех последних цифр; если эта разность делится на 7 (11 или 13), то и заданное число также делится на 7 (11 или 13).

Задумайтесь, может и вы найдёте сказочное число. Внесите свой вклад в царицу наук - МАТЕМАТИКУ!!!

Взаимно- обратные числа

Обратное число́ (обратное значение, обратная величина) - это число, на которое надо умножить данное число, чтобы получить единицу. Два таких числа называются взаимно обратными.

Примеры: 5 и 1/5, −6/7 и −7/6, π и 1 / π

Для всякого числа а, не равного нулю, существует обратное 1/a.

На земном шаре обитают птицы – безошибочные составители прогноза погоды на лето. Название этих птиц зашифровано примерами, записанными на доске. Последовательно решив примеры и заменив ответы буквами, вы прочтёте название птиц – метеорологов.

1. 17/8 5/6 6/5;

2. 3,4 7/3 3/7;

3. 11/12 5,6 12/11;

4. 2,5 0,4 3;

5. 2/3 0,1 3/2;

6. 41/2 1/2 2;

8. 11/12 31/3 12/11.

17/8 31/3 0,1 3,4 3 41/2 5,6 1

ф о и л м н а г

Простые числа

«Простые числа остаются всегда готовыми ускользнуть от исследования»

Если записать натуральные числа в ряд, и в тех местах, где стоят простые числа, зажечь фонарики, то не нашлось в этом ряду места, где была бы сплошная темнота. Фонарики расположились бы очень причудливо. Между ними есть только одно число - четное, это 2, а остальные нечетные. 2 и 3 последовательные натуральные числа, наименьшие простые -такая пара единственная, где одно число четное, а другое нечетное.

1, 2, 3,4 ,5 ,6, 7,8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Два последовательных нечетных числа, каждое из которых является простым – называются числами – близнецами.

Первые простые числа-близнецы:

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61),

(71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193),

(197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349),

(419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619),

(641, 643), (659, 661), (809, 811), (821, 823), (827, 829), (857, 859), (881, 883)

Греческий ученый Евклид в своей книге «Начала» утверждал следующее: «Самого большого числа не существует». До сих пор неизвестно, есть ли самые большие числа-близнецы. И до сих пор нет ответа на вопрос: существует ли бесконечно много пар простых чисел-близнецов.

Первым глубокие исследования о том, как разбросаны простые числа среди натуральных, получил русский математик Пафнутий Львович Чебышев. Но до сих пор математики не знают формулы, с помощью которой можно получить простые числа одно за другим, нет даже формулы, дающей только простые числа.

Над тем, как составить список простых чисел, задумался живущей в 3 веке до нашей эры александрийский ученый Эратосфен. Его имя вошло в науку в связи с методом отыскания простых чисел. В древности писали на восковых табличках острой палочкой-стилем, поэтому Эратосфен «выкалывал» составные числа острым концом стиля. После выкалывания всех составных чисел таблица напоминала решето. Отсюда и название «решето Эратосфена». Древнегреческих ученых заинтересовало: сколько может быть всех простых чисел в натуральном ряду.

В 1750 году Леонард Эймер установил, что число 231 – 1 является простым. Оно оставалось самым большим из известных простых чисел более ста лет. В 1876 году французский математик Лукас установил, что огромное число

2127 – 1 = 170. 141. 183. 460. 469. 231. 731. 678. 303. 715. 884. 105. 727 также простое. Оно содержит 39 цифр. Для его вычисления были использованы механические настольные счетные машины. В 1957 году было найдено следующее простое число: 23217- 1. А простое число 244497-1 состоит из 13000 цифр.

Рациональные числа

Рациональное число (лат. ratio - отношение, деление, дробь) - число, представляемое обыкновенной дробью, где m - целое число, а n - натуральное число. При этом число m называется числителем, а число n - знаменателем дроби. Такую дробь следует интуитивно понимать, как результат деления m на n, даже если нацело разделить не удаётся. В реальной жизни можно использовать рациональные числа для счёта частей некоторых целых, но делимых объектов, например, тортов или других продуктов, разрезаемых на несколько частей перед употреблением, или для грубой оценки пространственных отношений протяжённых объектов.

Совершенные числа

Совершенное число́ (др. греч. ἀριθμὸς τέλειος) - натуральное число, равное сумме всех своих собственных делителей (т. е. всех положительных делителей, отличных от самого́ числа).

Первое совершенное число - 6 (1 + 2 + 3 = 6), следующее - 28 (1 + 2 + 4 + 7 + 14 = 28). По мере того как натуральные числа возрастают, совершенные числа встречаются всё реже. Третье совершенное число - 496, четвёртое - 8128, пятое - 33 550 336, шестое - 8 589 869 056 (последовательность A000396 в OEIS).

«Перестаньте отыскивать интересные числа!

Оставьте для интереса хотя бы одно неинтересное число!»

Из письма читателя Мартину Гарднеру

Среди всех интересных натуральных чисел, издавна изучаемых математиками, особое место занимают совершенные и близко связанные с ними дружественные числа.

Совершенным называется число, равное сумме всех своих делителей (включая 1, но исключая само число). Наименьшее из совершенных чисел 6 равно сумме трех своих делителей 1, 2 и 3. Следующее совершенное число 28=1+2+4+7+14. Ранние комментаторы Ветхого завета, пишет в своей книге «Математические новеллы» Мартин Гарднер, усматривали в совершенстве чисел 6 и 28 особый смысл. Разве не за 6 дней был сотворен мир, восклицали они, и разве Луна обновляется не за 28 суток?

Первым крупным достижением теории совершенных чисел была теорема Евклида о том, что число 2n-1(2n-1) - четное и совершенное, если число 2n-1 - простое 1. Лишь две тысячи лет спустя Эйлер доказал, что формула Евклида содержит все четные совершенные числа. Поскольку не известно ни одного нечетного совершенного числа (у читателей есть шанс найти его и прославить свое имя), то обычно, говоря о совершенных числах, имеют в виду четное совершенное число.

Приглядевшись к формуле Евклида, мы увидим связь совершенных чисел с членами геометрической прогрессии 1, 2, 4, 8, 16, Эту связь лучше проследить на примере древней легенды, согласно которой Раджа обещал изобретателю шахмат любую награду. Изобретатель попросил положить на первую клетку шахматной доски одно зерно пшеницы, на вторую клетку - два зерна, на третью - четыре, на четвертую - восемь и так далее. На последнюю, 64-ю клетку, должно быть насыпано 263 зерен, а всего на шахматной доске окажется «кучка» из 264-1 зерен пшеницы. Это больше, чем собрано во всех урожаях за историю человечества.

Если на каждой клетке шахматной доски мы напишем, сколько зерен пшеницы причиталось бы за нее изобретателю шахмат, а затем снимем с каждой клетки по одному зерну, то число оставшихся зерен будет точно соответствовать выражению, стоящему в скобках в формуле Евклида. Если это число простое, то, умножив его на число зерен на предыдущей клетке (то есть на 2n-1), мы получим совершенное число! Простые числа вида 2n-1 называются числами Мерсенна в честь французского математика XVII века. На шахматной доске со снятыми по одному зерну с каждой клетки есть девять чисел Мерсенна, соответствующих девяти простым числам, меньших 64, а именно: 2, 3, 5, 7, 13, 17, 19, 31 и 61. Умножив их на число зерен на предыдущих клетках, мы получим девять первых совершенных чисел. (Числа n=29, 37, 41, 43, 47, 53, и 59 не дают числа Мерсенна, т. е. соответствующие им числа 2n-1 составные.)

Формула Евклида позволяет без труда доказывать многочисленные свойства совершенных чисел. Например, все совершенные числа треугольные. Это значит, что, взяв совершенное число шаров, мы всегда сможем сложить из них равносторонний треугольник. Из той же формулы Евклида следует другое любопытное свойство совершенных чисел: все совершенные числа, кроме 6, можно представить в виде частичных сумм ряда кубов последовательных нечетных чисел 13+33+53+ Еще более удивительно, что сумма величин, обратных всем делителям совершенного числа, включая его самого, всегда равна 2. Например, взяв делители совершенного числа 28, получим:

Кроме того, интересны представление совершенных чисел в двоичной форме, чередование последних цифр совершенных чисел и другие любопытные вопросы, которые можно найти в литературе по занимательной математике. Главные из них - наличие нечетного совершенного числа и существование наибольшего совершенного числа - до сих пор не решены.

От совершенных чисел повествование непременно перетекает к дружественным числам. Это такие два числа, каждое из которых равно сумме делителей второго дружественного числа. Наименьшие из дружественных чисел 220 и 284 были известны еще пифагорейцам, которые считали их символом дружбы. Следующая пара дружественных чисел 17296 и 18416 была открыта французским юристом и математиком Пьером Ферма лишь в 1636 году, а последующие числа находили Декарт, Эйлер и Лежандр. Шестнадцатилетний итальянец Никколо Паганини (тезка знаменитого скрипача) в 1867 году потряс математический мир сообщением о том, что числа 1184 и 1210 дружественные! Эту пару, ближайшую к 220 и 284, проглядели все знаменитые математики, изучавшие дружественные числа.

Дружественные числа

Дружественные числа - два натуральных числа́, для которых сумма всех собственных делителей первого числа́ равна второму числу и сумма всех собственных делителей второго числа́ равна первому числу. Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе.

Ниже приведены пары дружественных чисел, меньших 130 000.

6. 10744 и 10856

7. 12285 и 14595

8. 17296 и 18416

9. 63020 и 76084

10. 66928 и 66992

11. 67095 и 71145

12. 69615 и 87633

13. 79750 и 88730

14. 100485 и 124155

15. 122265 и 139815

16. 122368 и 123152

Прах Диофанта гробница покоит: дивись ей - и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругой он обручился;

С нею пять лет проведя, сына дождался мудрец.

Только полжизни отцовской возлюбленный сын его прожил,

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

Сколько лет прожил Диофант?

Фигурные числа

Давным-давно, помогая себе при счете камушками, люди обращали внимание на правильные фигуры, которые можно выложить из камушков. Можно просто класть камушки в ряд: один, два, три. Если класть их в два ряда, чтобы получались прямоугольники, мы обнаружим, что получаются все четные числа. Можно выкладывать камни в три ряда: получатся числа, делящиеся на три. Всякое число, которое на что-нибудь делится, можно представить таким прямоугольником, и только простые числа не могут быть "прямоугольными". А что если складывать треугольник? Треугольник получается из трех камушков: два в нижнем ряду, один в верхнем, в ложбинке, образованной двумя нижними камнями. Если добавить камень в нижний ряд, появится еще одна ложбинка; заполнив ее, мы получим ложбинку, образованную двумя камушками второго ряда; положив в нее камень, мы наконец получим треугольник. Итак, нам пришлось добавить три камушка. Следующий треугольник получится, если добавить четыре камушка. Выходит, что на каждом шаге мы добавляем столько камней, сколько их становится в нижнем ряду. Если теперь считать, что один камень - это тоже треугольник, самый маленький, у нас получится такая последовательность чисел: 1, 1+2=3, 1+2+3=6, 1+2+3+4=10, 1+2+3+4+5=15 и т. д. Итак, фигурные числа - это общее название чисел, геометрическое представление которых связано с той или иной геометрической фигурой. Числа древними греками, а вместе с ними Пифагором и пифагорейцами мыслились зримо, в виде камешков, разложенных на песке или на счетной доске - абаке.

По этой причине греки не знали нуля, т. к. его невозможно было "увидеть". Но и единица еще не была полноправным числом, а представлялась как некий "числовой атом", из которого образовывались все числа Пифагорейцы называли единицу "границей между числом и частями", т. е. между целыми числами и дробями, но в то же время видели в ней "семя и вечный корень". Число же определялось как множество, составленное из единиц. Особое положение единицы как "числового атома", роднило ее с точкой, считавшейся "геометрическим атомом". Вот почему Аристотель писал: "Точка есть единица, имеющая положение, единица есть точка без положения". Т. о. пифагорейские числа в современной терминологии - это натуральные числа. Числа камешки раскладывались в виде правильных геометрических фигур, эти фигуры классифицировались. Так возникли числа, сегодня именуемые фигурными. Древние греки, когда им приходилось умножать числа, рисовали прямоугольники; результатом умножения трех на пять был прямоугольник со сторонами три и пять. Это - развитие счета на камушках. Множество закономерностей, возникающих при действиях с числами, были обнаружены древнегреческими учеными при изучений чертежей. И долгие века лучшим подтверждением справедливости таких соотношений считался способ геометрический, с прямоугольниками, квадратами, пирамидами и кубами. В V - IV веках до нашей эры ученые, комбинируя натуральные числа, составляли из них затейливые ряды, придавая элементам этих рядов то или иное геометрическое истолкование. С их помощью можно выложить правильные геометрические фигуры: треугольники, квадраты, пирамиды и т. д. Увлеклись, причем независимо друг от друга, нахождением таких чисел Б. Паскаль и П. Ферма.

Даже в XVII века, когда была уже хорошо развита алгебра с обозначениями величин буквами, со знаками действий, многие считали ее варварской наукой, пригодной для низменных целей- бытовых расчетов, вспомогательных вычислений, - но никак не для благородных научных трудов. Один из крупнейших математиков того времени, Бонавентура Кавальери, пользовался алгеброй, ибо вычислять с ее помощью проще, но для обоснования своих научных результатов все алгебраические выкладки заменял рассуждениями с геометрическими фигурами.

Среди фигурных чисел различают: Линейные числа (т. е. простые числа) - числа, которые делятся только на единицу и на самих себя и, следовательно, представимы в виде последовательности точек, выстроенных в линию: (линейное число 5)

Плоские числа - числа, представимые в виде произведения двух сомножителей: (плоское число 6)

Телесные числа, выражаемые произведением трех сомножителей: (телесное число 8)

Треугольные числа: (треугольные числа 3,6,10)

Квадратные числа: (квадратные числа 4,9,16)

Пятиугольные числа:(пятиугольные числа 5,12)

Именно от фигурных числе пошло выражение "Возвести число в квадрат или куб".

Представление чисел в виде правильных геометрических фигур помогало пифагорейцам находить различные числовые закономерности. Например, чтобы получить общее выражение для n-угольного числа, которое есть не что иное, как сумма n натуральных чисел 1+2+3+. +n, достаточно дополнить это число до прямоугольного числа n(n+1) и увидеть (именно глазами!) равенство

Написав последовательность квадратных чисел, опять-таки легко увидеть глазами выражение для суммы n нечетных чисел:

Наконец, разбивая n-е пятиугольное число на три (n-1) треугольных (после чего остается ещё n "камешков"), легко найти его общее выражение

Разбиением на треугольные числа получается и общая формула для n-го k-угольного числа:

При k=3 мы получаем треугольные числа, а k=4 - квадратные числа и т. д.

Аналогично можно представить число в виде прямоугольника. Для числа 12 это можно сделать многими способами (рис.), а для числа 13 - лишь расположив все предметы в одну линию. Такое древние не считали прямоугольным.

Таким образом, прямоугольными числами являются все составные числа, а не прямоугольными - простые числа. Фигурное представление чисел помогало пифагорейцам открывать законы арифметических операций, а также легко переходить к числовой характеристике геометрических объектов - измерению площадей и объемов.

Так, представляя число 10 в двух формах: 5*2=2*5, легко "увидеть" переместительный закон умножения: a*b=b*a. В том же числе 10: (2+3)*2=2*2+3*2=10 можно "разглядеть" и распределительный закон сложения относительно умножения: (a+b)c=ac+bc.

Наконец, если "камешки", образующие фигурные числа, мыслить в виде равных по площади квадратиков, то, укладывая их в прямоугольное число ab:. автоматически получаем формулу для вычисления площади прямоугольника: S=ab. К фигурным числам также относятся пирамидальные числа, которые получаются, если шарики складывать пирамидой, как раньше складывали ядра около пушки.

Нетрудно заметить, что пирамидальное число равно сумме всех треугольных чисел - от первого до n-го. Формула для вычисления n-го пирамидального числа имеет вид:

«Числовые забавы »

Это число, прежде всего, замечательно тем, что определяет число дней в не високосном году. При делении на 7 оно даёт в остатке 1, эта особенность числа 365 имеет большое значение для нашего семидневного календаря.

Существует ещё одна особенность числа 365:

365=10×10×11×11×12×12, то есть 365 равно в сумме квадратов трёх последовательных чисел, начиная с 10:

10²+11²+12²=100+121+144=365.

Но и это ещё не всё. Число 365 равно сумме квадратов двух следующих чисел, 13 и 14:

13²+14²=169+196=365.

Если человек не знает выше изложенных свойств числа 365, то он при решении примера:

10²+11²+12²+13²+14²

365 начнёт выполнять громоздкие вычисления.

Например:

10²+11²+12²+13²+14² ‗ 100+121+144+169+196 ‗ 221+313+196 ‗ 730

Человек же знающий решит этот пример в уме моментально и получит в ответе 2.

10²+11²+12²+13²+14² ‗ 365+365 ‗ 730

Следующее число, которое я буду описывать – это 999.

Оно намного удивительнее, чем его перевёрнутое изображение – 666 –«звериное число»

Апокалипсиса, вселяющее страх в суеверных людей, но оно по своим арифметическим свойствам ничем не выделяется среди других чисел.

Особенность числа 999 в том, что его можно легко умножить на трёхзначные числа. Тогда получится шестизначное произведение: первые три цифры его есть умножаемое число, уменьшенное на единицу, а остальные три цифры являются дополнениями первых трех до 9. Например,

Стоит лишь взглянуть на следующую строку, чтобы понять происхождение этой особенности:

573×999=573×(1000-1)= 573

Зная эту особенность, мы можем мгновенно умножить любое трёхзначное число на 999.

Например:

947×999=946053, 509×999=508491, 981×999=980019,

543×999=542457, 167×999=166833, 952×999=951048 и т. п.

А так как 999=9×111=3×3×3×37,то вы можете описать целые столбцы шестизначных чисел, кратных 37. Не знакомый же со свойствами числа 999, этого сделать не сможет.

1. Число 1001

Сначала рассмотрим число 1001. Это число сказок, которое царица Шехерезада рассказывала царю Шахрияру.

Число 1001 с первого взгляда кажется самым обыкновенным. Его можно разложить на три последовательных простых множителя 7, 11 и 13. Следовательно, оно является их произведением.

Но в том, что 1001=7×11×13 нет ничего интересного. Замечательно то, что если его умножить на любое трехзначное число, то в результате получится тоже самое число, записанное дважды. Нужно применить распределительный закон умножения.

Разложим 1001 на сумму 1000+1.

Например:

247×1001=247×(1000+1)=247×1000+247×1=247000+247=247247

Число 111111

Следующее число, о котором я хочу рассказать – это 111 111.

Благодаря знакомству со свойствами числа 1001 мы сразу видим, что

111 111=111×1001

Но мы знаем, что

111=3×37, 1001=7×11×13.

Отсюда следует, что наша новая числовая диковинка, состоящая из одних единиц, представляет собой произведение пяти простых множителей. Соединяя же эти 5 множителей в две группы на всевозможные лады, мы получаем 15 пар множителей, дающих в произведении одно и то же число, 111 111.

3×(7×11×13×37)=3×37037=111 111

7×(3×11×13×37)=7×15873=111 111

11×(3×7×13×37)=11×10101=111 111

13×(3×7×11×37)=13×8547=111 111

37×(3×7×11×13)=37×3003=111 111

(3×7)×(11×13×37)=21×5291=111 111

(3×11)×(7×13×37)=33×3367=111 111

(3×13)×(7×11×37)=39×2849=111 111

(3×37)×(7×13×11)=111×1001=111 111

(7×3)×(11×13×37)=21×5291=111 111

(7×11)×(3×13×37)=77×1443=111 111

(7×13)×(11×3×37)=91×1221=111 111

(7×37)×(11×3×13)=259×429=111 111

(11×13)×(7×37×3)=143×777=111 111

(37×11)×(13×7×3)=407×273=111 111

«Фокус с числом»

Арифметические фокусы – честные, добросовестные фокусы. Здесь никто никого не стремится обмануть, ввести транс или усыпить внимание зрителя. Чтобы выполнить такой фокус, не нужны, ни чудодейственная ловкость рук, ни изумительное проворство движений, ни какие – либо другие артистические способности, требующие иногда многолетних упражнений. Кружок товарищей, не посвящённых в математические тайны можно поразить следующими фокусами.

Фокус № 1.

Запишите число 365 два раза: 365 365.

Разделите полученное число на 5: 365 365÷5=73 0 73.

Разделите полученное частное на 73: 73 0 73÷73=1001.

У вас получится число Шехерезады, то есть 1001.

Разгадка фокуса, очень проста: число 365=5×73. То есть число 365365 мы делим на 365 и получаем в ответе 1001.

Фокус № 2.

Пусть кто-нибудь напишет любое трехзначное число, и затем к нему припишет еще раз это же самое число. Получится шестизначное число, состоящее из повторяющихся цифр.

Предложите своему товарищу разделить это число в тайне от вас на 7. Результат нужно передать соседу, который должен разделить его на 11. Полученный результат передается следующему ученику, которого вы просите разделить это число на 13.

Результат третьего деления вы, не глядя, вручаете первому товарищу. Это и есть задуманное число.

Этот фокус объясняется очень просто. Если приписать к трехзначному числу его само – значит умножить его на 1001, или на произведение 7×11×13=1001. Шестизначное число, которое ваш товарищ получит после того, как припишет к заданному числу его само, должно будет делиться без остатка и на 7, и на 11, и на 13.

Фокус № 3.

Запишите любую цифру три раза подряд. Полученное число разделите на 37 и на 3. И у вас получится в ответе ваша цифра.

Разгадка: когда мы делим трехзначное число, записанное тремя одинаковыми цифрами вначале на 37, а затем на 3,то мы, не замечая, делим на 111.

Фокус № 4.

Число 111 111 так же можно использовать для проделывания фокусов, как и число 1001. В данном случае надо предлагать товарищу число однозначное, и попросить записать его уже шесть раз подряд. Делителями здесь могут служить пять простых чисел: 3, 7, 11, 13, 37 и получающиеся из них составные: 21, 33, 39 и т. п. Это дает возможность очень разнообразить выполнение фокуса.

Например: предложите своим товарищам задумать любую цифру, кроме нуля. Нужно умножить ее на 37. Затем умножить на 3. Результат приписать еще раз справа. Полученное число разделить на первоначально задуманную цифру.

Получилось число 111 111.

Разгадка фокуса основана на свойстве числа 111 111. Когда мы умножаем его на 1001 (со свойствами числа 1001 мы познакомились в предыдущей главе) и получилось задуманное число, записанное в начале. Далее при делении на задуманное число явно получается шесть единиц.

Фокус № 5.

Пусть ваш товарищ запишет любое трехзначное число. Справа к нему нужно приписать три нуля. От шестизначного числа предложите отнять первоначальное трехзначное. Затем попросите товарища разделить на задуманное, полученный результат. Частное нужно разделить на 37.

Получилось число 27.

Секрет фокуса понять просто. Он основан на свойствах числа 999.

Число 999 является произведением четырех простых множителей:

3×3×3×37=999, а, следовательно, 999÷37=27

Когда умножают на него трехзначное число, получается результат, состоящий из двух половин: первая – это умножаемое число, уменьшенное на единицу, а вторая – результат вычитания первой половины из множителя.

Фокус № 6.

Число 111 111 111: можно также использовать для наших числовых фокусов:

Спросим у одноклассника его любимую цифру (от 1 до 9).

Попросим эту цифру умножить на 9, а затем полученное произведение умножить на число 123456789. В результате получится число, состоящее из любимых цифр одноклассника.

Например:

5 – это любимая цифра ученика, тогда

45×123456789=555 555 555 т. е. 9×123456789=111 111 111

Заключение

Я думаю, что моя работа является мини-пособием для изучения числового разнообразия. Интересные способы вычисления чисел очень могут помочь в школе, в вузе, на работе, и вообще в жизни. Так в кругу товарищей можно загадывать интересные арифметические фокусы без обманов и волшебства. Исходя из всего вышесказанного, я делаю вывод, что эти и многие другие числовые диковинки желательно знать каждому. Эти знания обязательно понадобятся в жизни!

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

На уроке математики мы проходили тему «Натуральные числа», и мне стало интересно:

Как выглядели первые цифры?

Что знают ученики моего класса о возникновении чисел?

На эти вопросы я попытаюсь ответить в своей работе.

Актуальность темы моего исследования состоит в том, что числа очень важны в нашем мире. Числа сопровождают нашу жизнь повсюду, а задумывались ли мы, что пытаясь подсчитать количество яблок в килограмме, сколько остановок нам ехать до дома, или сколько ступенек до нашего этажа, используем как раз натуральные числа.История возникновения натуральных чисел берет свое начало еще с первобытного общества. Тогда, конечно, оно возникло в самом простейшем виде, но вместе с человечеством развивались и числа. Изначально они использовались только для того, чтобы что-то подсчитать, измерить, т.е. помогали именно в том, что было нужно в практической деятельности людей. Потом число становится частью математики, и история возникновения и развития натуральных чисел обуславливается уже наукой. В самые древние времена люди считали на пальцах, то есть понятия число, в котором мы привыкли его понимать, у них не было. С развитием письменности, развивалось и расширялось понятие числа. Сначала это были черточки, затем были введены другие обозначения, для обозначения больших чисел. До нас дошли вавилонские клинописные таблички с первыми обозначениями натуральных чисел. Сохранившиеся до наших дней «римские цифры» тоже берут свое начало в древности. Огромным прорывом стала индийская позиционная система исчисления, которая позволила записывать числа, используя десять знаков цифр. Греческие философы Пифагор и Архимед тоже внесли свой вклад в историю возникновения чисел. Впервые, в 3 веке до нашей эры, они обосновали понятие бесконечности натурального числа.

Интересно, что ноль появился в системах исчисления гораздо позже, изначально самым маленьким натуральным числом был 1.

Я решил узнать, а что ребята в классе знают о возникновении чисел. Для этого, с разрешения учителя математики, я провёл небольшое анкетирование, которое показало, что 80% одноклассников ничего не знают об истории возникновения натуральных чисел. Я решил сам изучить этот вопрос и с разрешения учителя математики донести изученный материал до одноклассников.

Цель моего исследования - изучение происхождения натуральных чисел и написания цифр.

Задача - узнать историю происхождения натуральных чисел и донести данный материал до одноклассников.

Методы исследования:

    Анкетирование одноклассников.

    Использование информации из Интернет-ресурсов.

    Изучение литературы.

    Обобщение найденного материала.

Практическая значимость: данный материал можно использовать на уроках математики, как дополнительный материал и во внеклассной работе по предмету.

Интересный факт

Австралийские аборигены племени гумулгал, образ жизни которых примерно такой же, как в неолите, пользовались двоичной системой счисления, то есть у них было всего два слова для чисел: урапон — один, и укасар — два. Все прочие числа образуются из этих двух: урапон- укасар — 3, укасар-укасар — 4, укасар-укасар- урапон — 5 и т. д. Нетрудно заметить, что эта система не очень удобна для обращения с большими числами.

Происхождение чисел

Ученые считают, что история возникновения чисел зародилась еще в доисторические времена, когда человек научился считать предметы. Но знаки для обозначения чисел появились значительно позже: их изобрели шумеры — народ, живший в 3000—2000 гг. до н. з. в Месопотамии (ныне в Ираке). История гласит, что на табличках из глины они выдавливали клинообразные черточки, а потом изобрели знаки. Некоторые клинописные знаки обозначали числа 1, 10, 100, то есть были цифрами, остальные числа записывались посредством соединения этих знаков. Пользование цифрами облегчало счет: считали дни недели, головы скота, размеры земельных участков, объемы урожая.

История цифр началась 5 тысячелетий назад в Египте и Месопотамии. И хотя эти два культурных пласта мало пересекались друг с другом, их системы исчисления очень похожи. Первоначально для записей использовали камень или выполняли засечки на дереве. Впоследствии в Месопотамии стали пользоваться глиняными табличками, а в Египте писали на папирусе. Внешний вид цифр в этих культурах отличается, однако одно можно сказать точно: найденные археологами артефакты подтверждают, что это были не просто записи чисел, а именно математические действия.

Искусство счета развивалось с развитием человечества. В те времена, когда человек лишь собирал в лесу плоды и охотился, ему для счета хватало четырех слов: один, два, три и много. Именно так считают сейчас некоторые племена, живущие в джунглях Южной Америки.

Однако, когда люди начали заниматься животноводством и земледелием, то им уже стало необходимо пересчитывать коз в стаде или количество корзин с выращенными плодами (которых было больше трех), заготовленными на зиму.

Способов счета было придумано не мало: делали зарубки на палке по числу предметов, завязывались узлы на веревке, складывались в кучу камешки. Но палку с зарубками с собой не возьмешь, да и камни таскать не очень приятно, а пастуху нужно знать - не отбилась ли какая коза от стада. И тут на помощь приходят пальцы рук - отличный счетный материал, им до сих пор пользуются не только первоклассники. А если предметов больше десяти? Конечно, можно использовать и пальцы на ногах, а дальше? Тут уже ничего не оставалось делать, как придумать десятичную систему, которой мы пользуемся сейчас: считаем десятки; когда наберется десять десятков, называем их сотней; потом десять сотен-тысячей. В Древней Руси десять тысяч называли “тьма”. Отсюда выражение “тьма народу”.

Мы привыкли пользоваться благами цивилизации - автомобилем, телефоном, телевизором и прочей техникой, делающей нашу жизнь легче и интереснее. Тысяча изобретений потребовались для этого, но самым важным из них были первые - колесо и число. Без них не было бы всего нашего технического великолепия. У этих двух изобретений есть общая черта - ни колеса, ни числа нет в природе, и то и другое - плод деятельности человеческого разума.

Казалось бы, что понятие числа должно возникнуть одновременно с умением считать, но это далеко не так. Замечено, что считать до пяти умеют и кошки и свиньи, но чтобы перейти от пяти предметов к числу “пять”, требовалось великое открытие, и вот почему. Пять собак или пять свиней - это совсем не то, что пять орехов. Ведь пять орехов - очень мало, съел - и не заметил, а пять свиней - очень много, их хватит, чтобы долго кормиться большой семье. Пять собак - это стая, которая может хорошо защитить от диких зверей, а пять блох на собаке и разглядеть то трудно. Разве можно их сравнивать?

Знаменитый русский путешественник Н.Н. Миклуха-Маклай, проведши много лет среди туземцев на островах Тихого океана, обнаружил, что у некоторых племен имеется три способа счета: для людей, для животных и для утвари, оружие и прочих неодушевленных предметов. Т.е. там в то время еще не появлялось понятие числа, не было осознано, что три ореха, три козы и три ребенка обладают общим свойством - их количество равно трем.

Итак, появились числа 1, 2, 3…, которыми можно выразить количество коров в стаде, деревья в саду, волос на голове. Эти числа впоследствии получили название натуральных. Гораздо позднее появился ноль, которым обозначали отсутствие рассматриваемых предметов.

Вавилон нумерация

Знакомясь с числами, мы не можем не заняться знаками, с помощью которых числа обозначаются на бумаге. Знаки эти мы называем цифрами.

Самыми древними цифровыми знаками являются вавилонские знаки. Если мы взглянем на карту, то увидим на ней реки Тигр и Ефрат.

Древние греки назвали эту страну Месопотамией, что по-русски обозначает междуречье, так как расположена она была в долине между двумя реками-близнецами. Часть Месопотамии занимало могучее государство, столицей которого был город Вавилон. Уже четыре тысячелетия назад в Вавилоне расцветала наука и существовали библиотеки. Правда, в те времена еще не было печатных книг, но зато существовали глиняные таблички, на которых вавилонские мудрецы писали свои труды. Современные ученые нашли 44 таблички, на которых записана вся математическая наука, известная вавилонцам. Ученые Вавилона пользовались, так называемой, клинописью. Вавилонские числа являются, собственно говоря, комбинации трех клинописных знаков: единица, десятка и сотни.

С помощью этих знаков можно было написать число тысяча, а также любое другое число, при этом использовались, как принцип сложения, так и умножение, а более крупные числа всегда предшествовали меньшим.

Египетская нумерация

Почти столь же древними являются египетские цифры. Для выражения своих мыслей и слов на бумаге египтяне использовали знаки, которые мы в настоящее время называем иероглифами.

Затем иероглифное письмо было заменено более простым и иератическим письмом. В обоих видах письма египтяне имели специальные знаки для цифр. Египтяне вначале писали числа высшего порядка, а затем низшего. При этом использовался принцип сложения или умножения. Египтяне также умели пользоваться дробями. Все египетские дроби имели в числителе единицу, других дробей они не умели даже выговорить (исключение составляло 2/3). Дроби писали так же, как и натуральные числа, только над ними ставилась точка, причем для 1/2 и для 2/3 имели специальные знаки.

Греческая и римская нумерации

Римские цифры общеизвестны и используются еще сейчас, между прочим, на циферблатах часов, надписях на мемориальных досках, при нумерации страниц книг и т.д. Известно, например, что L-это 50, С-это 100, D-это 500, M-это 1000. Знаки C и M это первые буквы слов “centum” -100 и “mille” - 1000. Знаки L и D очевидно также были первыми буквами каких-то слов, однако слова эти до нас не дошли. Можно только предполагать, что это были этрусские слова или же выражения какого-то латинского наречия. С помощью этих цифр римляне писали числа, используя правила сложения и вычитания, например, LX=60(50+10); XL=40(50-10); CM=900(1000-100); MC=1100(1000+100) и т.д. Римские цифры:

I=1 X=10 C=10^2 M=10^3

Римляне пользовались дробями со знаменателями 60 (вавилонские) и со знаменателями 12, 24, 48:

1/24 - это половина, а 1/48 - это одна четвертая 1/12.

Римские ученые осваивали дроби в связи со счетом денег и использованием мер и весов. Римская монета Aс, чеканенная первоначально из меди, весила 1 фунт и делилась на 12 унций. Существовало даже специальное название “deunx” для выражения 11/12 (deunx= de uncia), т.е. Ас без одной унции.

Индийская нумерация

Цифры, которыми мы пользуемся в настоящее время, пришли к нам из Индии.

Европейские народы познакомились с ними благодаря арабам. Известный математик Леонардо Пизанский первым упоминает о них в своем основном труде “Книга Араба” изданном в 1202 году. Польша была одной из первых стран, которая ввела у себя индийскую нумерацию - произошло это в 14 веке. Арифметика, основанная на индийской нумерации, преподавалась в Польше в Краковской академии.

Цифры русского народа

Наши предки пользовались алфавитной нумерацией, то есть числа изображались буквами, над которыми ставится значок - называемый «титло». Чтобы отделить такие буквы - числа от текста, спереди и сзади ставились точки.

Этот способ обозначения цифр называется цифирью. Он был заимствован славянами от средневековых греков - византийцев. Поэтому цифры обозначались только теми буквами, для которых есть соответствия в греческом алфавите.

Для обозначения больших чисел славяне придумали свой оригинальный способ:

десять тысяч - тьма,

десять тем - легион,

десять легионов - леорд,

десять леордов - ворон,

десять воронов - колода.

Такой способ обозначения чисел по сравнению с принятой в Европе десятичной системой был очень неудобен. Поэтому Петр 1 ввел в России привычные для нас десять цифр, отметив буквенную цифирь.

Литература:

1. Владимир Лёвшин “Магистр рассеянных наук”. Издательский Дом Мещерякова, Москва 2007.

2. Льюис Кэррол “История с узелками”. Издательство “Мир”, Москва 1973.

3. Станислав Коваль “От развлечения к знаниям. Математическая смесь”. WYDAWNICTWA. NAUKOWO-TECHNICZNE WARSZAWA 1972.

4. А.П. Савин, В. В. Станцо, А. Ю. Котова “Я познаю мир. Математика”. “Издательство АСТ-ЛТД”, Москва 1997.

Интернет-ресурсы:

    Сайт RealProjoe.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    • 1. Возникновение числа
      • 1.1 Зарождение счета в глубокой древности
      • 1.2 Пальцевой счёт
      • 1.3 Появление систем счисления
      • 1.4 Письменная нумерация у древних народов
    • 2. От натуральных чисел к комплексным
      • 2.1 Натуральные числа
      • 2.2 Дробные числа
      • 2.3 Рациональные числа

    1. Возникновение числа

    1.1 Зарождение счета в глубокой древности

    Наши первоначальные представления о числе и форме относятся к очень отдаленной эпохе древнего каменного века - палеолита. В течении сотен тысячелетий этого периода люди жили в пещерах, в условиях, мало отличавшихся от жизни животных, и их энергия уходила преимущественно на добывание пищи простейшим способом - собиранием её, где только это было возможно. Люди изготовляли орудия охоты и рыболовства, вырабатывали язык для общения друг с другом, а в эпоху позднего палеолита украшали своё существование, создавая произведения искусства, статуэтки и рисунки.

    Пока не произошёл переход от простого собирания пищи к активному её производству, от охоты и рыболовства к земледелию, люди мало продвинулись в понимании числовых величин и пространственных отношений. Лишь с наступлением этого фундаментального перелома, переворота, когда пассивное отношение человека к природе сменилось активным, мы вступаем в новый каменный век, в неолит.

    Самым трудным этапом, который прошло человечество при выработке понятия о числе, считается выделение им понятия единицы из понятия «много». Оно произошло, по всей вероятности, ещё тогда, когда человечество находилось на низшей ступени развития. В.В. Бобынин объясняет такое выделение тем, что человек обычно захватывает рукой один предмет, а это, по его мнению, и выделило единицу из множества. Таким образом, начало счисление Бобынин мыслит как создание системы, состоящей из двух представлений: единица и неопределенное множество. .

    Так, например, племя ботокудов, жившее в Бразилии, выражало числа только словами «один» и «много». Появление элемента «два» объясняется выявлением возможности взять по одному предмету в каждую руку. На первоначальном этапе счёта человек связывал это понятие с понятием обеих рук, в которых находится по одному предмету в каждой. При выражении понятия «три» встретилось затруднение: у человека нет третьей руки; это затруднение было преодолено, когда человек догадался помещать третий предмет у своих ног. Таким образом, «три» характеризовалось поднятием обеих рук и указанием на ноги. Отсюда сравнительно характерно произошло выделение и понятие «четыре», так как с одной стороны, к этому побуждало сопоставление двух рук и двух ног, а с другой - возможность поместить по одному предмету у каждой ноги. На первой ступени развития счета человек еще отнюдь не пользовался наименованием чисел, а выражал их или у ног, или соответствующими телодвижениями или жестами.

    Дальнейшее развитие счета относится, вероятно, к той эпохе, когда человечество ознакомилось с некоторыми формами производства - охотой и рыболовством. Человеку пришлось изготавливать простейшие орудия для овладения этими производствами. Кроме того, продвижение человека в холодные страны заставило его делать одежду и создавать орудия для обработки кожи.

    Мало-помалу сложилось первобытно-коммунистическое общество с соответствующим распределением пищи, одежды и орудия. Все эти обстоятельства вынудили человека так или иначе вести счет общего имущества, сил врага, с которым приходилось вступать в борьбу за овладение новыми территориями. Процесс счета уже не мог остановиться на четырех и должен был развиваться далее и далее.

    На этой ступени развития человек уже отказывается от необходимости брать пересчитываемые предметы в руку или класть к ногам. В математику входит первая абстракция, заключающаяся в том, что пересчитываемые предметы заменяются какими-либо другими однородными между собой предметами или знаками: камешками, узелками, ветками, зарубками. Операция производится по принципу взаимно-однозначного соответствия: каждому пересчитываемому предмету в соответствие один из предметов, выбранных в качестве орудия счета (то есть один камешек, один узелок на веревке и т.д.). Следы такого рода счета сохранились у многих народов и до настоящего времени. Иногда такие примитивные орудия счета (камешки, раковины, косточки) нанизывали на шнурок или палочку, чтобы не растерять. Это впоследствии привело к созданию более совершенных счётных приборов, сохранивших своё значение и до наших дней: русские счёты и сходный с ними китайский суан-пан.

    1.2 Пальцевой счёт

    Развитие счёта пошло значительно быстрее, когда человек догадался обратиться к самому близкому ему, самому естественному счётному аппарату - к своим пальцам. Быть может, первым актом счёта по пальцам было оказание предмета, указательным пальцем; тут палец сыграл роль единицы. Участие пальцев в счёте помогло человеку переступить за число четыре, так как когда все пальцы на одной руке стали считаться равноценными единицами, это сразу позволило довести счёт до пяти. Дальнейшее развитие счёта потребовало усложнения счётного аппарата, и человек нашёл выход, привлекая к счёту сначала пальцы второй руки, а затем распространяя свой приём на пальцы ног: для племён, не носивших обуви, использование пальцев ног было вполне естественным. При этом такое расширение счётных этапов, очевидно, произошло в следствии возможности привести в однозначное соответствие пальцы рук и ног, что и отмечается у некоторых народов.

    Так, для выражения числа «двадцать» индейцы из Южной Америки противопоставляют пальцы на руках пальцам на ногах.

    В описываемую эпоху хозяйственные расчёты людей ограничивались тем, что после распределения пищи и одежды, захваченных в результате стычки с врагом, уже не было потребности помнить числа, возникшие во время расчётов, а потому счёт и не нуждался в наименованиях для чисел, а производился главным образом путём соответствующих жестов.

    Например, туземные жители Андоманских островов, расположенных в Бенгальском заливе Индийского океана, не имели слов для выражения чисел и при счете объяснялись теми или иными жестами. Отсюда видно, что жестикуляция при счете как пережиток еще надолго сохранилось у многих народов, которые не вырабатывали словесную нумерацию.

    Словесный счет начал развиваться, лишь когда ведущей формой производства стало сельское хозяйство. В ту пору постепенно возникла частная собственность, объектами которой служили поля, огороды, стада. Обладатели полей, домашних животных, будучи крепко связанными с ними, вынуждены были не только считать принадлежащие им объекты, но и запоминать их число, а это и толкнуло человека путь создания именованных чисел. Сначала запоминание проводилось весьма громоздким и неуклюжим способом: путем восстановления в памяти внешних признаков запоминаемых предметов. Например, обладатель стада волов запоминал количество принадлежащих ему животных по тем признакам, что один вол серый, другой - черный и т.д. Разумеется такой способ запоминания не мог быть пригоден, когда число запоминаемых объектов было большим.

    Следующей ступенью в развития наименования чисел надо признать появление описательных выражений совокупность нескольких единиц. Например, вместо наименования числа, выражающего два предмета, употреблялась фраза «столько, сколько у меня рук», наименование четыре передавалось фразой: «столько, сколько ног у животного». Итак, словесными выражениями нескольких предметов явилось преимущественно части тела человека и животного.

    В дальнейшем эти описания выражения у многих народов заменились наименованием соответствующих слов, и таким образом эти наименования закрепились за числами. Так, число два стало выражаться словами, обозначающими «уши», «руки», «крылья», четыре - «нога страуса» (четырехпалая) и пр.

    Пальцевой счет постепенно приводил к упорядочению счета, и человек стихийно приходил к упрощению словесного выражения чисел. Так, например, выражение, которое должно соответствовать числу 11 - «десять пальцев на обеих руках и один палец на одной ноге» - упрощалось в «палец на ноге»; для выражения числа 23 вместо слов «десять пальцев на обеих руках, десять пальцев на обеих ногах и три пальца на руке другого человека» говорилось просто: «три пальца другого человека».

    Подобного рода сокращения в то же время приводили как бы к выделению единиц из высшего разряда. В самом деле, такие называния, как «рука» - для обозначения пяти, «две руки» - для обозначения десяти, «нога» - для обозначения пятнадцати «человек» - для обозначения двадцати и т.п., служили для обозначения единиц высшего разряда, чем пальца, а пальцы играли роль единиц низшего разряда.

    В этом смысле выражение «один на другой руке», означающее «шесть» можно рассматривать как «один из второго пятка» или как «пять и один», т.е. «рука» - единица высшего разряда. Точно также наименование «два на ноге», означающее «двенадцать», указывало на то, что две единицы взяты из второго десятка; это можно было бы передать и такой фразой: «две руки и два пальца», где «две руки» играют роль единицы высшего порядка по отношению к пальцам.

    Например, у некоторых племен с островов Торресова пролива существуют только единица - «урапун» и двойка - «оказа». При помощи этоих чисел и происходит счет. На их языке три выражается, как «оказа урапун», четыре - «оказа оказа», пять - «оказа оказа урапун», шесть - «оказа оказа оказа» и т.д. Вот примеры счета некоторых австралийских племен: племя реки Муррей: 1 - «энэа», 2 - «петчевал», 3 - «петчевал энэа», четыре - «петчевал петчевал».

    1.3 Появление систем счисления

    Переход человека к пальцевому счету привел к созданию нескольких различных систем счисления.

    Самой древней из пальцевых систем счисления считается пятеричная. Эта система, как полагают, зародилась и наибольшее распространение получила в Америке. Её создание относится к этой эпохе, когда человек считал по пальцам одной руки. Очевидно, при таком способе счета делался какой-нибудь всякий раз, когда заканчивался отсчет всех пальцев одной руки. До последнего времени у некоторых племен пятеричная система сохранилась еще в чистом виде (например, у жителей Полинезии и Меланезии).

    Дальнейшее развитие систем счисления пошло по двум путям. Племена, не остановившиеся на счете по пальцам на одной руке, перешли к счету по пальцам второй руки и далее - по пальцам ног. При этом часть племен остановилась на счете пальцев только на руках и этим положило основу для десятичной системы счисления, а другая часть племен, вероятно большая, распространила счет на пальцы ног и тем самым создало предпосылки на основание системы с основанием 20. Такая система получила распространение главным образом среди значительной части индейских племен Северной Америки и Туземных обитателей Центральной и Южной Америки, а так же в северной части Сибири и в Африке.

    Десятичная система счисления является преобладающей у народов Европы. Однако это не означает, что в Европе эта система всегда была единственной: некоторые народы перешли к десятичной системе уже в более поздние времена, а ранние пользовались другой системой.

    Естественной единицей высшего разряда при возникновении двадцатеричной системы явился «человек» как обладатель 20 пальцев. В этой системе 40 выражается как «два человека», 60 - «три человека» и т.д. Двадцатеричная система имеет большой недостаток: для её словесного выражения надо иметь 20 различных названий для основных чисел. Поэтому, когда у некоторых племен развилась десятичная система счисления, то и многие другие племена, употреблявшие двадцатеричную, постепенно отошли от нее, переняв десятичную. Как полагают, переходу от двадцатеричной системы к десятеричной способствовало и то, что с тех пор, как люди стали употреблять обувь, закрывавшую пальцы ног, возможность непосредственного счета двумя десятками утратилось. Двадцатеричная система в наше время в чистом воде не отмечена ни у одного народа; обычно она соединяется с десятичной или с пятеричной. Однако следы этой системы сохранились в называниях у некоторых, даже достигших высокого культурного развития народов.

    Так, например, у французов число 80 выражается словом quatre-vingts (четырежды двадцать), а 90 - словом quatre-vingt-dix (четырежды двадцатьт и десятьт), у грузин числа 40, 60 и 80 называются ормацы, сомацы и отхмацы, т.е. 2х20, 3х20 и 4х20 (где «оцы» означает 20, «ори» - 2, «сами» - 3, а «отхи» - 4). Числа 30, 50, 70 и 90 называются оцдаати, ормоцдаати, цамоцдаати и отхмоцдаати, т.е. 20+10, 2х20+10, 3х20+10 и 4х20+10.

    Некоторые племена в качестве счетного аппарата применяли не сами пальцы рук, а их суставы. В этом случае счет иногда развивался тоже достаточно продуктивно и оформлялся в стройные системы. Здесь процесс счета протекал таким образом: большой палец одной руки является счетчиком суставов остальных пальцев этой руки; т.к. на каждом из остальных четырех пальцев этой руки содержится по три сустава, то следующий за суставом выше единицей являлось число 12, что и послужило двенадцатеричной системой счисления. Этот процесс иногда не останавливался на двенадцати, а продолжался далее, причем каждый палец другой руки служил единицей высшего разряда, т.е. представлял собой 12, и после отсчета всех пальцев на второй руке создавалась новая единица высшего разряда 12х5, т.е. 60. Возможно, что такого рода счет способствовал созданию шестидесятеричной системы счисления, имевшей большое распространение в древнем Вавилоне и перешедшей позднее ко многим другим народам.

    Следы двенадцатеричной и шестнадцатеричной систем счисления сохранились и до нашего времени. Стоит вспомнить хотя бы счет часов в сутках, измерение углов градусами, минутами и секундами.

    Так постепенно, под влиянием потребностей экономического характера, человечество создавало свои методы счета и достигло, наконец, стройного метода, который в дальнейшем сознательного совершенствовался и упрощался, пока не превратился в метод, которым и пользуется современная математика.

    1.4 Письменная нумерация у древних народов

    Если развитие трудовых процессов и появление собственности заставили человека изобрести числа и их названия, то дальнейший рост экономических потребностей у людей вел их по пути все большего и большего расширения и углубления понятия о числе. Особенно значительные сдвиги в этом смысле произошли, когда возникли государства с более или менее сложным государственным аппаратом, потребовавшим учета имущества и создание налоговой системы, и когда товарообмен перешел в стадию развития торговли с применением денежной системы. С одной стороны, это повлекло за собой зарождение письменной нумерации, а с другой - стали развиваться счетные операции, т.е. появились действия над числами.

    Своего рода запись чисел производилась еще в те отдаленные эпохи жизни человечества: все эти узелки, зарубки, нанизанные на шнур раковины, являлись ни чем иным, как зародышем записанного числа. Далее стали обозначать число 1 - одной черточкой, 2 - двумя, 3 - тремя и т.д.

    Развитие числовой записи всегда сопутствовало общему подъёму культурного уровня народов, а потому, протекало наиболее интенсивно в тех странах, которые быстро шли по пути развития государственности.

    Среди народов земного шара в наиболее благоприятных условиях для развития их экономической и политической жизни были такие, которые обитали на стыке трех материков: Европы, Африки и Азии, а также народы занимавшие территории полуострова Индостан и современного Китая. Природные условия в этих местах были на редкость разнообразны. Это разнообразие и крайняя дифференцированность наблюдались в развитии производительных сил и соответственно общественного быта.

    Государства расположенные на этих территориях, явились первыми в истории человечества государствами, где мы находим зародыш современных наук и математики в частности.

    Нумерация государств Древнего Востока и Рима.

    Древневавилонское государство располагалось в той части Месопотамии где наиболее сближаются русла рек Тигра и Евфрата. Главный город этого государства - Вавилон находился на берегу Евфрата.

    Расцвет вавилонского государства относится ко второй половине XVIII в. до н.э. Продукты сельского хозяйства (зерно, фрукты, скот) являлись предметами вывоза в соседние страны. Торговле благоприятствовало центральное положение Вавилона на берегу судоходных рек. Расцвет торговли повлек за собой развитие денежной системы мер. В Вавилоне была создана система мер аналогичная нашей метрической, только в основе её лежало не число 10, а число 60. Полностью эта система выдерживалась у вавилонян для измерения времени и углов, и мы унаследовали от них деление часа и градуса на 60 минут, а минуты на 60 секунд.

    Исследователи по-разному объясняют появление у вавилонян шестидесятеричной системы счисления. Скорее всего здесь учитывалось основание 60, которое кратно 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 и 60, что значительно облегчает всякие расчеты.

    Числовая запись у вавилонян возникла в весьма отдаленную эпоху. Предполагают, что вавилоняне заимствовали её у народов, которые жили на территории Вавилонского государства еще до его сформирования. Эта запись, подобно вавилонской письменности, производилась на глиняных табличках путем выдавливания на них треугольных клиньев, причем орудием для записи служил трехгранный брусок. Такого рода клинопись состояла главным образом из трех положений клинка: вертикального острием вниз, горизонтального острием влево и горизонтального острием вправо. При этом знак Ў означал единицу, 3 - десяток. При помощи этих знаков, применяя еще метод сложения, можно было выражать и многозначные числа. Например, знак ЎЎЎ изображал 5, знак 33 ЎЎЎ - число 23 и т.д. ЎЎ

    Зарождение египетской культуры относится к периоду времени за 4000 лет до н.э. Предполагают, что в эту эпоху была создана и египетская письменность. Первоначально она носила иероглифический характер, т.е. каждое понятие изображалось в виде отдельного рисунка. Но постепенно иероглифические записи принимали несколько иную форму, именуемую иероглифической записью.

    Таким же методом производилась и запись чисел. При иероглифической записи числа выражались уже в десятичной системе, причем существовали особые знаки для разрядных чисел: единиц, десятков, сотен и т.д. Единица изображались знаком |, десяток, сотня, тысяча, десять тысяч, сто тысяч, миллион, десять миллионов. При этом если единица какого-нибудь разряда содержалась в числе несколько раз, то она столько же раз повторялась в записи, т.е. соблюдался закон сложения. Например, число 5 выражалось так: . Число 122 имело вид: .

    У египтян употреблялись только единичные дроби, т.е. такие которые выражают только одну долю в нашей записи имеют в числителе единицу (сакие дроби мы называем аликвотными ). Исключение составила дробь 2/3, для которой существовал особый знак: ; Ѕ тоже имела особый знак, а все остальные выражались при помощи символа «ро», который имел вид. Чтобы изобразить какую-нибудь дробь рисовали этот символ и под ним ставили число, представлявшее знаменатель. Например, одна седьмая записывалась так: .

    Записи производились преимущественно красками на папирусе. Иногда же материалом для записи служили камень, дерево, кожа, холст. Текст вписывался в строки преимущественно справа налево и столбцами сверху вниз.

    Начальные понятия математики, зародившиеся в Древнем Китае, послужили развитию математической культуры соседних народов, которые занимали территорию современной Кореи Индокитая и с особенности Японии.

    В Китае рано начали накапливаться сведения математического характера и появилась запись чисел. При этом китайские иероглифические цифры были по записи еще сложнее египетских. (рис. в прил.).

    Но, помимо этих иероглифических цифр, в Китае имели распространение и более простые цифровые знаки, употреблявшиеся при торговых операциях.

    Выглядели они следующим образом: |=1; ||=2; |||=3; ||||=4; |||||=5; | =6; ||=7; |||=8;||||=9; 0=0. Запись чисел производилась столбцами сверху вниз. Большим преимуществом китайской записи чисел было введение в употребление нуля для выражения отсутствующих разрядов. Предполагают, что нуль заимствован из Индии в XII в.

    Уже с давних времен в Китае вошел в употребление счетный прибор саун-пан, по конструкции напоминающий современные русские счеты (рис. в прил.). Главное его отличие от русских счетов в том, что наши счеты основаны на десятичной системе счисления, а в саун-пан смешанная пятеричная и двоичная система. В саун-пан каждая проволока делится на две части: в нижней её части нанизано 5 косточек, а в верхней - 2. Когда нижней части проволоки отсчитаны все пять косточек, то они заменяются одной в верхней части; где косточки в верхней части заменяются одной косточкой высшего разряда. счисление нумерация дробный рациональный

    На заре человеческой культуры в развитии математики Китай шёл далеко впереди Вавилона и Египта.

    Метод записи чисел у римлян, заимствован у древних этрусков - однго из племен Древней Италии. В этой записи сохранились следы пятеричной системы счисления, и числа выражались при помощи букв, а именно числа 1, 5, 10, 50, 100, 500 и 1000 обозначались собственно буквами I, V, X, L, C, D и M. Для более крупных чисел (10000, 100000, 1000000) существовали особые знаки. Для обозначения нуля знака не было. В записях они придерживались принципа сложения и вычитания: числа, написанные справа, прибавлялись, а числа написанные слева, вычитались от числа, написанного рядом с ним. Так, IX, XII, XC и CXXX означали соответственно 9, 12, 90 и 130. Римская запись чисел используется в наше время в тех случаях, когда надо записать какое-либо строго зафиксированное число, над которым не придется производить ни каких арифметических операций, например, дата постройки памятника или здания, век, глава в книге и т.п.

    Вследствие затруднительности вычислений, римляне прибегали к помощи пальцевого счета или абака. (рис).

    Этот абак представляет собой металлическую доску с желобками, вдоль которых могут передаваться жетоны. Продольных желобков девять, причем семь из них дают возможность отсчитывать единицы, десятки, сотни, тысячи, десятки тысяч, сотни тысяч и миллионы. Разряды единиц укрупняются при переходе от правых желобков к левым (как это возможно видеть на рисунке). Два же самых правых желобка дают возможность вести отсчет дробных долей. желобки для целых чисел разделяются на две части: в верхней помещен один жетон, а в нижней - четыре. Верхний жетон заменяет пять нижних. Второй желобок справа тоже разделен на две части и дает возможность отсчитывать двенадцатые доли, причем верхняя его часть содержит один жетон, а нижняя - пять. Самый правый желобок разделен на три части, из которых верхняя даёт отчет 24-х долей, средняя 48-х и нижняя - 72-х. На правом чертеже представлен отчет, равный 84 071+2|12+1|72.

    Числа в Индии.

    Особенно ценный вклад в арифметику внесен индийцами. В этом отношении математика обязана индийцам упорядочением числовой записи при помощи введения цифр для десятичной системы счисления и установления принципа поместного значения цифр. Кроме того, в Индии получило распространение употребление нуля для указания соответствующих разрядных единиц, что тоже сыграло большую роль в усовершенствовании числовых записей и облегчении операций над числами.

    Цифровые знаки Индии не совпадают по очертаниям с современными цифрами, но все же имеют с ними в некоторых случаях большое сходство. Так, например, очень походили на современные цифры индийские знаки, изображавшие единицу, семерку и нуль. Остальные знаки в течение многих веков, отделяющих нас от времени их происхождения, сильно видоизменялись.

    Введение нуля, цифр и принципа поместного их значения облегчило вычислительные операции над числами, а потому арифметические вычисления и получили в Индии значительное развитие. Главное преимущество введения индийцами методов записи чисел заключатся в том, что они значительно уменьшили количество цифр, применяли позиционную систему к десятичному счету и ввели в употребление знак нуля. В то время как у греков, евреев, сирийцев и т.д. для записи чисел употреблялось до 27 различных цифровых знаков, у индийцев число таких цифровых знаков снизилось до 10, включая и обозначение нуля. Что касается позиционной системы, её зачатки были еще у вавилонян, но там эта система применялась для шестидесятеричного счета, а индийцы ввели её для десятичного. Наконец, применение знака для нуля при позиционной системе дало большое преимущество перед записью чисел у вавилонян. Так, например, у вавилонян значок Ў мог обозначать и единицу и 1/60, и вообще любое число вида 60 n , а в записи у индийцев знак 1 мог обозначать только единицу, так как для обозначения десятка, сотни и так далее после единицы записывалось соответствующее число нулей.

    Процесс записи чисел и проведение арифметических операций над ними делались индийцами на белой доске, засыпанной красным песком. Орудием для записи служила палочка. Таким образом, при записи на красной поверхности появлялись белые знаки, прочерченные палочкой.

    Числа народов Средней Азии.

    Начиная с VII в. в истории народов, входящих в состав государств Средней Азии и Ближнего Востока значительную роль начинает играть арабское государство. Из мелких арабских государств, целиком умещавшихся на Аравийском полуострове в VII-VIII вв., был создан арабский халифат - государство, занимающее огромную территорию. В его состав вошли, кроме основной территории арабов, Палестина, Сирия, Месопотамия, Персия, Закавказье, Средняя Азия, Северная Индия, Египет, Северная Африка и Пиренейский полуостров. Столицей халифата сначала был Дамаск, а затем в VIII в. вблизи бывшего Вавилона был построен новый город - Багдад, куда и была перенесена столица.

    Так многие из представителей народов, вошедших в халифат, писали на арабском языке, то буржуазные историки неправильно включают работы ученых этих народов в число работ арабов.

    Первым по времени крупным математиком был у народов входивших в состав халифата, мы назовем великого узбекского (хорезмийского) математика и астролога IX в. Мухаммеда бен Мусса аль-Хорезми (2-я половина VIII в. - между 830-840).

    Сочинение аль-Хорезми по арифметике дошло до нашего времени только в переводе на латинский язык. Оно сыграло значительную роль в развитии европейской математики, так как именно в нем европейцы познакомились с индийскими методами записи чисел, то есть с системой индийских цифр, с употреблением нуля и с помесным значением цифр. Вследствие того, что сведения эти были получены европейцами из книги, автор которой жил в арабском государстве и писал на арабском языке, индийские цифры десятичной системы стали неправильно именоваться «арабскими цифрами».

    Нумерация на Руси.

    Восточно-славянские племена, древние предки русской, украинской и белоруской народностей начали формироваться около 2-3 т. лет до н.э. В VII и VIII вв. у славян появились первые города. Первыми большими городами Руси были Киев и Новгород.

    В X в., в княжение Владимира Святославовича (?-1015), древнерусское государство (Киевская Русь) достигло наибольшего расцвета и могущества. По развитию культуры оно занимало одно из видных мест среди государств Европы. На Руси в эту эпоху параллельно с общим развитием культуры шло сравнительно быстрое распространение сведений из математики.

    Правда, до нашего времени не сохранилось никаких памятников математической литературы, которые давали бы нам возможность судить о развитии математики на Руси в IX-X вв., но документы другого характера позволяют делать некоторые выводы в этом отношении. Первым русским памятником математического содержания до настоящего времени считается рукописное сочинение новгородского монаха Кирика, написанное им в 1136 г. и носящее заголовок «Критика диакона и доместика Новгородского Антониева монастыря учение имже ведати человеку числа всех лет».

    В этом сочинении Кирик выявил себя весьма искусным счетчиком и великим числолюбцем. Основные задачи, которые разрешаются Кириком, хронологического порядка: вычисление времени, протекшего между каким-либо событием. При вычислениях Кирик пользовался той системой нумерации, которая называлась малым перечнем и выражалась следующими наименованиями: 10000 - тьма, 100 000 - легион, или неведий, 1 000 000 - леодр.

    Кроме малого перечня, в Древней Руси существовал еще больший перечень, который давал возможность оперировать с очень большими числами. В системе перечня основные разрядные единицы имели те же наименования, что и в малом, но соотношения между этими единицами были иные, а именно:

    Тысяча тысяч - тьма;

    Тьма тем - легион, или певедий;

    Легион легионов - леодр;

    Леодр леодров - ворон;

    10 воронов - колода.

    В последнем из этих чисел, т.е. о колоде, говорилось: «И более сего несть человеческому уму разумевати».

    Единицы, десятки и сотни изображались славянскими буквами с поставленным над ними знаком, называемым титло, для отличия цифр от букв. Тысячи изображались теми же буквами, но перед ними ставился знак Так, изображала единицу, - двадцать два, - шесть тысяч и т.д.

    Тьма, легион и леодр изображались теми же буквами, но для отличия от единиц, десятков, сотен и тысяч они обводились кружками. Так, изображало три тьмы; - три легиона, а - три леодра.

    К XVI в. относится изобретение замечательного счетного прибора, получившего впоследствии название «русские счеты» (рис). Как полагают, идея создания этого прибора принадлежит русским купцам Строгоновым. Дроби в Древней Руси назывались долями, позднее «ломанными числами». В старых руководствах находим следующие названия дробей на Руси:

    - половина, полтина, - треть, - четь, - полтреть, - полчеть, - полполтреть, - полполчеть, - полполполтреть (малая треть), - полполполчеть, - пятина, - седьмина, - десятина.

    Славянские нумерации употреблялись в России до XVI в., лишь в этом веке в нашу страну постепенно стала проникать десятичная позиционная система счисления. Она окончательно вытеснила славянскую нумерацию при Петре I.

    2. От натуральных чисел к комплексным

    2.1 Натуральные числа

    Понятие натурального числа, вызванное потребностью счёта предметов, возникло ещё в доисторические времена. Процесс формирования понятия натурального числа протекал следующим образом. На низшей ступени первобытного общества понятие отвлеченного числа отсутствовало. Это не значит, что первобытный человек не мог отдавать себе отчёта о количестве предметов конкретно данной совокупности, например о количестве людей, участвующих в охоте, о количестве озёр, в которых можно ловить рыбу, и т.д. Но в сознании первобытного человека ещё не сформировалось то общее, что есть в объектах такого рода, как например, «три человека», «три озера» и т.д. Анализ языков первобытных народностей показывает, что для счёта предметов различного рода употреблялись словесные обороты. Слово «три» в контекстах «три человека», «три лодки» передавались различно. Конечно, такие именованные числовые ряды были очень короткими и завершались индивидуализированным понятием («много») о большом количестве тех или других предметов, которое тоже являлось именованным, то есть выражалось разными словами для предметов разного рода, такими, как «толпа», «стадо», «куча» и т.д.

    Источником возникновения понятия возникновения отвлечённого числа является примитивный счёт предметов, заключающийся в сопоставлении предметов данной конкретной совокупности с предметами некоторой определённой совокупности, играющей как бы роль эталона.

    У большинства народов первым таким эталоном являются пальцы («счёт на пальцах»), что с несомненностью подтверждается языковедческим анализом названий первых чисел. На этой ступени число становится отличенным, не зависящим от качества считаемых предметов, но вместе с тем выступающим во вполне конкретном осуществлении, связанном с природой эталонной совокупности. Расширяющиеся потребности счёта заставили людей употреблять другие счётные эталоны, такие, как, например, зарубки на палочке. Для фиксации сравнительно больших чисел стала использоваться новая идея - обозначения некоторого определенного числа (у большинства народов - десять) новым знаком, например зарубкой на другой палочке.

    С развитием письменности возможности воспроизведения числа значительно расширились. Сначала числа стали обозначаться чёрточками на материале, служащем для записи (папирус, глиняные таблички и т.д.). Затем были введены другие знаки для больших чисел. Вавилонские клинописные обозначения числа, так же, как и сохранившиеся до наших дней «римские цифры», ясно свидетельствуют именно об этом пути формирования обозначения для числа. Шагом вперёд была индийская позиционная система счисления, позволяющая записать любое натуральное число при помощи десяти знаков - цифр. Таким образом, параллельно с развитием письменности понятие натурального числа закрепляется в форме слов в устной речи и в форме обозначения специальными знаками в письменной.

    Важным шагом в развитии понятия натурального числа является осознание бесконечности натурального ряда чисел, т.е. потенциальной возможности его безграничного продолжения.

    Натуральные числа, кроме основной функции - характеристики количества предметов, несут ещё другую функцию - характеристику порядка предметов, расположенных в ряд. Возникающее в связи с этой функцией понятие порядкового числа (первый, второй и т.д.). В частности, расположения в ряд считаемых предметов и последующий их пересчёт с применением порядковых чисел является наиболее употребляемым с незапамятных времён способом счёта предметов (так, если последний из пересчитываемых предметов окажется седьмым, то это и означает, что имеется семь предметов.).

    Вопрос об обосновании понятия натурального числа долгое время в науке не ставился. Понятие натурального числа столь привычное, что не возникло потребности в его определении в терминах каких- либо более простых понятий. Лишь в середине 19 в. под влиянием развития аксиоматического метода в математике, с одной стороны, и критического пересмотра основ математического анализа - с другой, назрела необходимость обоснования понятия количественного натурального числа. Отчётливое определение понятия натурального числа на основе понятия множества (совокупности предметов) было дано в 70-х гг.19в. в работах Г. Кантора. Сначала он определяет понятие равномощности совокупностей. Именно, две совокупности называются равномощности , если составляющие их предметы могут быть сопоставлены по одному. Затем число предметов, составляющих данную совокупность, определяется что-то общее, что имеет данная совокупность и всякая другая, равномощная ей совокупность предметов, независимо от всяких качественных особенностей этих предметов. Такое определение отражает сущность натурального числа как результата счёта предметов, составляющих данную совокупность. Действительно, на всех исторических уровнях счёт заключается в сопоставлении по одному из считаемых предметов и предметов, составляющих данную совокупность. Действительно, на эталонную совокупность на ранних ступенях - пальцы рук и зарубки на палочке и т.д. на современном этапе - слова и знаки, обозначающие число. Определение данное Кантором, было отправным пунктом для обобщения понятия количественного числа в направлении количественной характеристики бесконечных множеств.

    2.2 Дробные числа

    Наряду с необходимостью считать предметы у людей с древних времён появилась потребность измерять длину, площадь. Объём, время и другие величины. Приходится учитывать и части употребляемой меры. Так возникли дроби.

    В истории развития дробного числа мы встречаем дроби трёх видов:

    1) доли или единичные дроби, у которых числитель единица, знаменателем же может быть любое целое число;

    2) дроби систематические, у которых числителями могут быть любые числа, знаменателями же - только числа некоторого частного вида, например степени десяти или шестидесяти;

    3) дроби общего вида, у которых числители и знаменатели могут быть любыми числами.

    Изобретение этих трёх различных видов дробей представляло для человечества разные степени трудности, поэтому разные виды дробей появлялись в разные эпохи.

    Знакомство человека с дробными числами началось с единичных дробей с малыми знаменателями.

    Понятия «половина», «треть», «четверть», «осьмушка» употребляются часто людьми, которые арифметике дробных чисел никогда не обучались. Эти простейшие дроби изобрёл каждый народ самостоятельно в ходе своего развития.

    Единичные дроби. Древние египтяне, несмотря на то, что в течение нескольких тысячелетий своей истории развили высокую культуру, оставили после себя прекрасные памятники искусства, владели многими отраслями техники, однако в арифметике дробных чисел не пошли далее изобретения единичных дробей (и дроби). Если задача приводила к ответу, который мы выражаем дробным числом, египтяне его представляли в виде суммы единичных дробей или долей. Если, например, ответ по нашему был, египтяне представляли его в виде суммы ++ и писали без знаков сложения: . Без знака сложения обходились и многие позднейшие народы, понимая писание дробей рядом, как сложение. Этот египетский способ письма частично сохранился и у нас. Мы пишем смешанные числа, ставя рядом, без какого-либо соединяющего знака, число целых единиц и дробей, и понимаем запись, как сумму: пишем вместо.

    Может показаться, что египетский способ пользования одними лишь единичными дробями делал решение задач сложным. Не всегда это так. Например, египетский автор решает задачу: нужно разделить 7 хлебов поровну между восемью лицами. Мы сказали бы, что каждый получает хлеба.

    Для египтянина не было числа, но он знал, что от деления 7 на 8 получается ++. Этот факт подсказывает ему, что для делёжа семи хлебов между восемью лицами нужно иметь 8 половинок, 8 четвертей и 8 осьмушек. Он режет 4 хлеба пополам, 2 хлеба - на четвертинки и 1 хлеб - на осьмушки и распределяет доли между получающими. Для делёжа пришлось сделать всего 4+6+7=17 разрезов.

    Кладовщик, работающий в наши дни, которому предстоит такая же задача деления хлебов, сообразив, что каждому получателю надо дать семь восьмушек, быть может, сочтет нужным разрезать все 7 хлебов предварительно на восьмушки, для чего ему требуется сделать 7х7=49 размеров. Как видим, в этой задаче египетский способ решения является более практичным.

    Решение задач практической жизни при помощи одних лишь долей (египетский способ) имело место почти у всех европейских народов, начиная с греков.

    Систематические дроби. Одновременно с единичными дробями появились и систематические дроби. Самый ранний по времени вид таких дробей есть шестидесятеричные дроби, употреблявшиеся в древнем Вавилоне. В этих дробях знаменателем служат числа 60; 60 2 = 3600, 60 3 = 261 000, 60 4 , 60 5 и т.д., и они сходны с нашими десятеричными дробями.

    Шестидесятеричными дробями пользовались все культурные народы до XVII века, особенно в научных работах, поэтому они и назывались физическими или астрономическими дробями, а дроби общего вида, в отличие от них - обыкновенными или народными. Следы пользования этими дробями остались у нас до сих пор: минута есть 1/60, секунда 1/60 2 = 1/3600, терция 1/60 3 = 1/216 000 часть числа.

    Десятичные дроби. Десятичные дроби представляют также вид систематических дробей.

    К десятичным дробям математики пришли в разные времена в Азии и в Европе.

    Зарождение и развитие десятичных дробей в некоторых странах Азии было тесно связано с метрологией (учением о мерах). Уже во II в. до н.э. там существовала десятичная система мер длины.

    Примерно в III в н.э. десятичный счет распространился на меры массы и объёма. Тогда и было создано понятие о десятичной дроби, сохранившей метрологическую форму.

    Вот, например, какие меры массы существовали в Китае в X веке: 1 лан = 10 цянь = 10 2 фэнь = 10 3 ли = 10 4 хао = 10 5 сы = 10 6 хо.

    Если вначале десятичные дроби выступали в качестве метрологических, конкретных дробей, десятых, сотых и т.д. частей более крупных мер, то позже они по существу стали все более приобретать характер отвлеченных десятичных дробей.

    Целую часть от дробной стали отделять особым иероглифом «дянь» (точка). Однако в Китае, как и в древние, так и в средние века десятичные дроби не имели полной самостоятельности, оставаясь в той или иной мере связанными с метрологией.

    Более полную и систематическую трактовку получают десятичные дроби в трудах среднеазиатского ученного ал-Каши в 20-х годах XV в. Независимо от него, в 80-х годах XVI в. десятичные дроби были «открыты» заново в Европе нидерландским математиком Симоном Стевином.

    В Средней Азии и в Европе ученые пришли к десятичным дробям по аналогии с шестидесятеричными и разработали теорию десятичных дробей.

    В середине века ученые пользовались десятичной нумерацией для вычислений с целыми числами, а шестидесятеричной - для вычислений с дробями в астрономии и других отраслях науки. Это породило трудности, связанные с переходом от одного основания к другому.

    Нелегко усваивались обыкновенные дроби. Вообще считались самым трудным разделом арифметики. Поныне у немцев осталась поговорка «Попал в дроби», т.е. попал в трудное положение.

    Идея шестидесятеричных дробей, идея одинакового систематического подразделения целого на одни и те же доли, с одной стороны, привели к мысли о десятичных дробях.

    Среднеазиатский город Самарканд был в XV в. большим культурным центром. Там в знаменитой обсерватории, созданной видным астрономом Улугбеком, внуком Тамерлана, работал в 20-х годах XV в. крупный ученый того времени - Джемшид Гиясэддин ал-Каши. Это он впервые изложил учение о десятичных дробях.

    В своей книге «Ключ арифметики», написанной в 1427 г., ал-Каши пишет: «Астрономы применяют дроби, последовательными знаменателями которых являются 60 и его последовательные степени… По аналогии мы ввели дроби, в которых последовательными знаменателями являются 10 и его последовательные степени…».

    Ал-Каши называет сотые доли «десятичными секундами», тысячные - «десятичными терциями» и т.д. Термины эти заимствованы из шестидесятеричной нумерации. Вводя десятичные дроби, ал-Каши поставил себе задачу создать простую и удобную систему дробей, основанную на десятичной нумерации и имеющую те же преимущества, которые имели для вавилонян шестидесятеричные дроби.

    Ал-Каши излагает правила и приводит примеры действий с десятичными дробями. Оно вводит специфическую для десятичных дробей запись: целая и дробная часть пишутся в одной строке. Для отделения первой части от дробной он не применяет запятую Запятая вообще, как знак препинания, была введена на рубеже XV и XVI вв. венецианским типографом Альф Мануцци. Он же стал прилагать к книгам оглавление, а пишет целую часть черными чернилами, дробную же - красными или отделяет целую часть от дробной вертикальной чертой.

    Открытие десятичных дробей ал-Каши стало известно в Европе лишь спустя 300 лет после того, как эти дроби были в конце XVI в. заново открыты С. Стевиным До Симона Стевина десятичные дроби употребляли Рудольфом, Ризе и Виет. Виет явно рекомендовал применять десятичные дроби вместо шестидесятеричных. Число 314, 1592636, например, Виет записывал так: 314, 159, 263,6. .

    Фламандский инженер и ученый Симон Стевин (1548-1620), около 150 лет после ал-Каши, изложил учение о десятичных дробях в Европе. В 1585 г. он написал небольшую книгу под названием «Десятая».

    Эта книга состояла всего лишь из 7 страниц, однако содержала всю теорию десятичных дробей.

    Запись десятинных дробей у Стевина была отличной от нашей. Вот,например, как он записывал число 35,912: 35 0 9 1 1 2 2 3.

    Итак, вместо запятой нуль в кружке. В других кружках или над цифрами указывается десятичный разряд: 1 - десятые, 2 - сотые и т.д.

    Стевик указывал на большое практическое значение десятичных дробей и настойчиво пропагандировал их. Он был первым ученым, потребовавшим введения десятичной системы мер и весов. Эта мечта ученого была осуществлена лишь спустя свыше 200 лет, когда была создана метрическая система мер.

    Дробь общего вида. Дроби общего вида, в которых и m, и n могут быть произвольными целыми числами, появляются уже в некоторых сочинениях Архимеда. Простейшие из таких дробей (2/3, 3/4) постепенно входят в употребление в житейской практике. Индусы уже в первые века нашего летосчисления установили современные правила действий над обыкновенными дробями. Эти правила через руководство среднеазиатских математиков - ал-Хорезми и других - вошли в европейские учебники арифметики. Это случилось ранее распространения десятичных дробей.

    В «Арифметики» (1703) первого русского педагога-математика Леонтия Филипповича Магницкого (1669-1739) обыкновенные дроби излагаются подробно, десятичные же дроби - в специальной главе, как некоторый новый вид счисления, не имевшего при тогдашней системе мер большого практического значения. Только с введением метрической (десятичной) системы мер десятыми дроби заняли подобающее место в нашем обиходе.

    2.3 Рациональные числа

    Числа целые, дробны (положительные и отрицательные) и нуль получили общее название рациональных чисел. Совокупность рациональных чисел обладает свойством замкнутости по отношению к четырем арифметическим действиям. Это значит, что сумма, разность, произведение и частное (кроме частного при делении на нуль, к-ое не имеет смысла) любых двух рациональных чисел является снова рациональным числом. Совокупность рациональных чисел упорядочена в отношении понятий «больше» и «меньше». Далее, совокупность рациональных чисел обладает свойством плотности: между любыми двумя различными рациональными числами находится бесконечно много рациональных чисел. Это даёт возможность при помощи рациональных чисел осуществлять измерение (например, длины отрезка в выбранной единице масштаба) с любой степенью точности. Таком образом, совокупность рациональных чисел оказывается достаточной для удовлетворения многих практических потребностей. Формальное обоснование понятий дробного и отрицательного числа было осуществлено в 19 в. и не представило, в отличие от обоснования натурального числа, принципиальных затруднений.

    Совокупность рациональных чисел оказалась недостаточной для изучения непрерывно изменяющихся переменных величин. Здесь оказалось необходимым новое расширение понятий числа, заключающееся в переходе от множества рациональных чисел к множеству действительных (вещественных) чисел . Этот переход состоит в присоединении к рациональным числам т.н. иррациональных чисел.

    Размещено на Allbest.ru

    ...

    Подобные документы

      Понятие системы счисления. История развития систем счисления. Понятие натурального числа, порядковые отношения. Особенности десятичной системы счисления. Общие вопросы изучения нумерации целых неотрицательных чисел в начальном курсе математики.

      курсовая работа , добавлен 29.04.2017

      Как люди научились считать, возникновение цифр, чисел и систем счисления. Таблица умножения на "пальцах": методика умножения для чисел 9 и 8. Примеры быстрого счета. Способы умножения двузначного числа на 11, 111, 1111 и т.д. и трехзначного числа на 999.

      курсовая работа , добавлен 22.10.2011

      Исследование истории систем счисления. Описание единичной и двоичной систем счисления, древнегреческой, славянской, римской и вавилонской поместной нумерации. Анализ двоичного кодирования в компьютере. Перевод чисел из одной системы счисления в другую.

      контрольная работа , добавлен 04.11.2013

      Система счисления, применяемая в современной математике, используемые в ЭВМ. Запись чисел с помощью римских цифр. Перевод десятичных чисел в другие системы счисления. Перевод дробных и смешанных двоичных чисел. Арифметика в позиционных системах счисления.

      реферат , добавлен 09.07.2009

      Понятие множества, его обозначения. Операции объединения, пересечения и дополнения множеств. Свойства счетных множеств. История развития представлений о числе, появление множества натуральных, рациональных и действительных чисел, операции с ними.

      курсовая работа , добавлен 07.12.2012

      Математика как одна из самых древних и консервативных наук. Понятие числа, построение их множеств, особенности натуральных чисел, представление иррациональных чисел. Смысл категории "пространство", последствия применения некорректных методов познания.

      статья , добавлен 28.07.2010

      Понятие и математическое содержание систем счисления, их разновидности и сферы применения. Отличительные признаки и особенности позиционных и непозиционных, двоичных и десятичных систем счисления. Порядок перевода чисел из одной системы в другую.

      презентация , добавлен 10.11.2010

      Ознакомление с записью чисел в алфавитной системе счисления. Особенности установления числовых значений букв у славянских народов. Рассмотрение записи больших чисел в славянской системе счисления. Обозначение "тем", "легионов", "леордов" и "колод".

      презентация , добавлен 30.09.2012

      Сумма n первых чисел натурального ряда. Вычисление площади параболического сегмента. Доказательство формулы Штерна. Выражение суммы k-х степеней натуральных чисел через детерминант и с помощью бернуллиевых чисел. Сумма степеней и нечетных чисел.

      курсовая работа , добавлен 14.09.2015

      История возникновения и развития арабских цифр, особенности их написания, удобство по сравнению с другими системами. Знакомство с цифрами разных народов: системой счисления Древнего Рима, китайскими, деванагари и их развитием от древности, до наших дней.

Загрузка...