domvpavlino.ru

История возникновения цифры 5. Возникновение чисел

Числа преследуют человека везде. Даже наше тело созвучно их миру - мы имеем определенное количество органов, зубов, волос и кожных клеток. Счет стал привычным, автоматическим действием, поэтому сложно представить, что когда-то люди не знали цифр. На самом деле история возникновения чисел прослеживается с самых древних времен.

Числа и первобытные люди

В какой-то момент человек ощутил большую потребность в счете. На это его

подтолкнула сама жизнь. Необходимо было каким-то образом организовывать племя, отправляя на охоту или собирательство только определенное количество человек. Поэтому для счета пользовались пальцами на руках. До сих пор есть племена, которые вместо цифры «5» показывают одну руку, а вместо десяти - две. С такого простого алгоритма счета и начала развиваться история возникновения чисел.

Простые числа

История возникновения чисел позволяет заметить, что люди довольно давно обнаружили разницу между нечетной и четной цифрой, а также различные взаимосвязи внутри самих числовых выражений. Немалый вклад в подобные
исследования внесли древние греки. Например, греческий ученый Эратосфен создал довольно легкий способ поиска простых чисел. Для этого он записывал нужное количество цифр по порядку, а потом начинал вычеркивать - сначала все числа, которые можно делить на два, потом - на три. В результате получался список цифр, которые ни на что не делятся, кроме единицы и себя самого. Этот метод был назван «решето Эратосфена» из-за того, что греки не вычеркивали, а выкалывали ненужные числа на табличках, покрытых воском.

Таким образом, история возникновения чисел - явление древнее и глубинное. По оценкам ученых, оно началось еще около 30 тысяч лет назад. За это время в жизни человека успело поменяться многое. Но и по сей день руководит нашим бытием.

Всматриваясь в причудливые знаки, не сразу поймешь, что символизируют древние числа и цифры. Мешки с крупами, орудия труда. В хвостатых, изогнутых знаках читается менталитет древнего народа, уровень его развития, навыки, экономическая обстановка. Обозначения цифр сотканы из глубоких абстракций и художественных представлений о мире. Рождение цифр неразрывно связано с возникновением письменности, но узелковое письмо шумерских народов появилось даже раньше. Оно было создано для счета. О чем это говорит? Уметь считать было важно во II в. до н.э., и в высокотехнологичном ХХI столетии.

Числа и бизнес пребывают в прочном тандеме. Числа нужны для основания и раскрутки бизнеса (для вычисления рентабельности, расчета конверсии, КПД), а бизнес нужен для хороших цифр на счету в банке . Счет стал неотъемлемой частью человеческого мышления и настолько влился в повседневную жизнь, что мы даже не замечаем его. Предприниматель должен числа не просто видеть, считать и предполагать, а читать. Созерцать не глазами, а разумом.

Цифры и числа – это разные понятия. В обиходе мы их путаем, но существенная разница в сути слов от этого не исчезла. Цифра служит для условного обозначения числа. Число выражает количественную характеристику в цифрах, и представляет собой более обобщенное понятие.

Если проанализировать, какими были первые цифры, можно увидеть обширную историю культуры отдельного народа. Составление обозначений для чисел потребовало более высокого интеллектуального уровня. Поэтому наши предки оставляли тысячи зарубок на твердых материалах. Столько, сколько требовалось. Так, наивно, но достоверно, заполнялись древние отчетные документы, «чеки» и т.п. Первые цифры представляли собой примитивные засечки и значки.

Пример древних чисел и цифр

Генезис цифр останется для ученых неизведанной Марианской впадиной. Витиеватая история возникновения вызывает замешательство. Точно известно, что первые попытки письменной фиксации цифр были в Египте и Месопотамии: найденные древние математические записи тому свидетельство . Эти государства располагались далеко друг от друга, письменность и культура в каждом из них уникальна.

В Древнем Египте сформировалось скорописное иероглифическое письмо, месопотамские писцы использовали клинопись. Поэтому египетские первые цифры своей формой передавали природу всех окружающих предметов: животные, растения, предметы быта и т.д. Папирус Ринда (1650 г. до н.э.) и папирус Голенищева (1850 г. до н.э.) – числовые древнеегипетские документы - свидетельствуют о высоком культурном развитии народа. Месопотамская клинопись запечатлена на глиняных табличках, на которых цифры представлены небольшими клиньями, повернутыми в разные стороны соответственно своему значению.

И в египетских, и в месопотамских системах счисления есть цифры от 1 до 10, особые метки для обозначения десятков, сотен и тысяч, и ноль, который обозначали выделенным пустым местом.

Числа древнего Египта построены грамотно и логично. Рационализм и четкость отличают эти системы счисления от аналогичных попыток других народов. Цифры значением меньше десяти обозначались ׀. Например, цифра 6 выглядела как ׀׀׀׀׀׀. Число 10 обозначалось перевернутой подковой в иероглифической системе и особым символом – в иератической. Сколько десятков в числе, столько и «подков». Иератическая система письменности предполагала для каждого числа, на десяток выше предыдущего, отдельный символ. Начиная от 100, это была стилизованная клюшка, над которой с каждой новой сотней ставили крохотную пометку.

Читайте также

Жизнь денег

В иероглифах все проще. Число 100 выглядело почти как арабская цифра 9, но египтяне назвали ее лотосом. Далее все аналогично - 200 – 2 «лотоса», 300 – 3 и т.д.

Египетские числа и цифры

Вы заметили, что в древнем Египте с самого начала сформировалась десятичная система? Однако Месопотамия все же превзошла Египет, когда на ее территории обрел независимость и возвысился Вавилон. Там вырастала отдельная культура, вскормленная достижениями соседних завоеванных государств.

Достижение Вавилона

Числа древнего Вавилона мало отличались от месопотамских: те же клиновидные знаки служили для обозначения единиц — ˅, и десятков — ˃. Комбинация этих знаков применялась для обозначения чисел 11-59. Число 60 в письме выглядело как зеркальное отражение буквы «Г». 70 – Г˃, 80 — Г˃˃ и так далее, принцип ясен, клинопись не отличается гениальностью.

Вавилонская система счисления

Основная ценность заключается в том, что один и тот же знак – обратите внимание – в зависимости от того, где он расположен в записи числа, имеет разное значение. Речь идет о поместном размещении знаков в системе счисления. Те же клиновидные знаки, указанные в разных разрядах, обладают разной значимостью. Поэтому Вавилонскую систему счисления с нулем принято называть позиционной. Математики могут с этим поспорить, потому что не найдено ни одного источника, в которой ноль располагался бы в конце числовой записи, что говорит об относительной позиционности.

Вавилонская система стала своеобразным трамплином, с которого человечество совершило прыжок на новый этап своего развития. Идея со временем попала в руки индусов. Они внесли свои коррективы, усовершенствовав систему счисления. Переняли идею итальянские торговцы, которые привезли ее в Европу вместе с товаром. Позиционная система счисления облетела весь мир, обогатив своим появлением не только математические науки, но и современный счет.

Знаете, откуда взялось деление часа на 60 минут, а минут – на 60 секунд? Из рассмотренной выше шестидесятеричной системы чисел. Взгляните, как обозначали числа древние вавилоняне, и в клиновидных значках увидите сакральный смысл современного, привычного для всех счисления.

История цифр разных народов

Цифры древней Греции

Под плеядой легендарных античных математиков и философов сформировалось две системы счисления. Каждая из них приносила свои преимущества, но они не были открыты или доработаны в связи с политико-культурными переменами.

Аттическую систему можно было бы назвать десятичной, если бы в ней не была выделена цифра 5. Аттическая запись чисел использовала повторы коллективных символов, что напоминало месопотамский метод. Единицу обозначала черта, написанная нужное количество раз. Таким образом записывались числа до 4. Цифра 5 была под первой буквой слова «пента», 10 – под первой буквой слова «дека» («десять») и т.д.

История чисел и цифр:

Алфавитная (или ионическая) система достигла своего расцвета в преддверии Александрийской эпохи. По сути, объединила десятеричную систему счисления и древневавилонский способ позиционности. Цифры записывались буквами и черточками. Система счисления довольно перспективна, но греки с их фанатичным стремлением к совершенству так и не довели ее до ума. Пытаясь достигнуть максимальной строгости и четкости в числовых записях, математики внесли существенные трудности в работу с ней.

Читайте также

Денежная система в прошлом

Легкоузнаваемые, четкие, строгие и ясные обозначения стали весьма удачным изобретением римлян. Пройдя сквозь века, символы остались практически неизменными еще и потому, что Рим пользовался влиянием на древней государственной арене. А также перенимал некоторые культурные особенности у завоеванных народов. Бросается в глаза алфавитное обозначение цифр – главная «изюминка» аттической системы. Цифра V (5) – прототип ладони с раскрытыми пятью пальцами. Стало быть, Х (10) – две ладони. Палочками указывали единицы, а для сотен и тысяч предназначены прописные буквы алфавита.

Числа и цифры древнего Рима

Цифры древнего Китая

Система сложных, абстрактных иероглифов, в которую превратились невинные зарубки на гадальных костях, мало где применяется. Впрочем, иероглифы используются для формальных записей, а упрощенный набор символов применяется в повседневной жизни.

Числа в древней Руси

Как ни странно, Русь повторила алфавитную систему счисления. Каждая цифра была названа соответствующей ее рангу буквой алфавита. Цифра 1 выглядела как «А», 2 – «Б», 3 – «В» и т.д. Десятки и сотни также были подписаны соответствующими буквами славянского алфавита. Чтобы не путать в тексте слова с цифрами, над числовыми записями рисовали титло – горизонтальную волнистую линию.

числа и цифры Древней Руси

Древнеиндийские цифры

Сколько бы ни спорили ученые, сколько бы изменений ни претерпевала форма цифр, но возникновение арабских, «наших» цифр приписывают древней Индии. Возможно, арабы позаимствовали древнеиндийскую систему счисления или изобрели ее сами. Причиной научных мытарств стал фундаментальный математический труд Аль-Хорезми «Об индийском счете». Книга стала своеобразной «рекламой» десятичной позиционной системы. Иначе как объяснить внедрение индийской системы счисления на территории всего Халифата?

Полноценность позиционной системы укрепилась возникновением «нуля». В целом запись чисел не ушла далеко от аттической: для цифр 5, 10, 20… использовались коллективные символы, повторяющиеся нужное количество раз.

При таком подходе из древнеиндийских цифр не могли «вырасти» арабские. Это утверждение кажется логичным на первый взгляд, но история цифр загадочна, и демонстрирует непричастность древней Индии к возникновению знакомых нам символов.

Самые распространенные системы счисления

Арабские цифры значительно экономили время и материалы для письма. Один арабский ученый предложил обозначать цифру символом с определенным количеством углов. Количество углов должно равняться значению цифры. Например, «0» — «ничто», углов нет; 1 – 1 угол; 2 – 2 угла и т.д. Слово «цифра» также позаимствовано из арабских языков, где оно звучало как «сыфр», и обозначало «ничто», «пустота». У «сыфр» был синоним – «шунья». На протяжении веков «0» называли именно так. До тех пор, пока не появилось латинское «нуллум» («ничто»), как мы и называем «ноль».

Современный вариант символьного обозначения цифр выражен плавными, округлыми линиями. Это результат эволюции. В первозданном виде обозначения угловаты. Время действительно способно сглаживать углы – в прямом и переносном значениях. Неважно, откуда берет истоки история возникновения чисел, главное, они стали достоянием всего мира. Цифры легко пишутся и запоминаются, что облегчает и смысловое восприятие. Ведь перед вами не длинная вереница закорючек и букв.

Несмотря на то, что латынь называют «мертвым» языком, ее значимость в научной сфере подтверждена изучением в ВУЗах. Латинские цифры также нашли применение в документоведении, деловодстве, оформлении научных работ. Доступность, понятность и четкость сделали их завсегдатаями учебников и рефератов.

Возникновение чисел в нашей жизни не случайность. Невозможно представить себе общение без использования чисел. История чисел увлекательна и загадочна. Человечеству удалось установить целый ряд законов и закономерностей мира чисел, разгадать кое-какие тайны и использовать свои открытия в повседневной жизни. Без замечательной науки о числах – математики – немыслимо сегодня ни прошлое, ни будущее. А сколько ещё неразгаданного!

Древние люди не умели считать. Да и считать им было нечего, потому что предметов, которыми они пользовались – орудий труда, – было совсем немного: один топор, одно копье Постепенно количество вещей увеличивалось, обмен ими усложнялся и возникала потребность в счете. Издавна числа казались людям чем-то таинственным. Любой предмет можно было увидеть и потрогать. Число потрогать нельзя, и вместе с тем числа реально существуют, поскольку все предметы можно посчитать. Эта странность заставила людей приписывать числам сверхъестественные свойства

В наш скоростной быстролётный век – век большого изобилия информации, различных печатных изданий и виртуального мира трудно чем - либо удивить людей. Написать, создать что-либо, да так, чтобы интересно было читать! Итак

С самого раннего детства мы знакомимся с числами. А какие же бывают числа? На этот вопрос я попыталась ответить в своей работе. Моя работа можно - это мини-пособие для ознакомления с таким интересным понятием как «Числа». Возможно, не все подробно, но в своей работе я старалась затронуть все аспекты, связанные с выбранной темой. Этой работой могут воспользоваться те, кто хочет знать о математике больше, чем рядовой школьник.

История развития числа

На первых этапах существования человеческого общества числа служили для примитивного счета предметов, дней, шагов. В первобытном обществе человек нуждался лишь в нескольких первых числа. С развитием цивилизации ему потребовалось изобретать все больше числа, этот процесс продолжался на протяженности многих столетий и требовал напряженного интеллектуального труда. При обмене продуктами появилась необходимость сравнивать числа, возникли понятия больше, меньше, равно. На этом же этапе люди стали складывать числа, затем научились вычитать, делить, умножать. При делении двух натуральных чисел появились дроби, при вычитании – отрицательные числа.

Необходимость выполнять арифметические действия привела к понятию рациональных чисел. В IV в. до н. э. греческие математики открыли несоизмеримые отрезки, длины которых не выражались ни целым, ни дробным числом (например, длина диагонали квадрата со стороной, равной 1). Потребовалась не одна сотня лет, чтобы математики смогли выработать способ записи таких чисел в виде бесконечной непериодической десятичной дроби. Так появились иррациональные числа, которые вместе с рациональными назвали действительными числами.

Но затем выяснилось, что во множестве действительных чисел не имеют решения простейшие квадратные уравнения, например, х2 + 1 = 0. Математики пришли к необходимости расширить понятия числа, чтобы в новом множестве можно было всегда извлечь квадратный корень. Новое множество назвали множеством комплексных чисел, введя понятие мнимой единицы: i2 = – 1.

Выражение вида а + вi назвали комплексным числом. Долгое время многие ученые не признавали их за числа. Только после того, как нашли возможность представить мнимое число геометрически, так называемые мнимые числа получили свое место во множестве чисел.

N – натуральные числа.

Q – рациональные числа.

R – действительные числа.

Комплексными называются числа вида а + вi, где а и в – действительные числа, i – мнимая единица: i2 = – 1. а называется действительной частью, вi – мнимой частью комплексного числа.

Определение. Два комплексных числа называются равными, если равны их действительные части и коэффициенты при мнимых частях, т. е. а + вi = с + di a = c, b = d.

Для комплексных чисел не существует соотношений «больше», «меньше».

Учёные математики, которые внесли

Вклад в развитие теории чисел

Мы живем в мире больших чисел

Задумывались ли вы когда-нибудь о том, сколько километров проходит человек за свою жизнь, сколько товаров производится и приходит в негодность ежечасно в пределах города, страны? Во сколько раз скорость пассажирского реактивного самолета превосходит скорость тренированного спортсмена-пешехода? Ответы на эти и тысячи подобных вопросов выражаются числами, занимающими зачастую по числу своих десятичных разрядов целую строку и даже больше.

Для сокращения записи больших чисел давно используется система величин, в которой каждая из последующих в тысячу раз больше предыдущей:

1000 единиц – просто тысяча (1000 или 1 тыс.)

1000 тысяч – 1 миллион

1000 миллионов – 1 биллион (или 1 миллиард)

1000 биллионов – 1 триллион

1000 триллионов – 1 квадриллион

1000 квадриллионов – 1 квинтиллион

1000 квинтиллионов – 1 секстиллион

1000 секстиллионов – 1 септиллион

1000 нониллионов – 1 дециллион и т. д.

Таким образом, 1 дециллион запишется в десятичной системе единицей с 3 * 11= 33 нулями. 1. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000.

«Напрасно думают, что ноль играет маленькую роль»

Самуил Яковлевич Маршак

Степень числа – произведение его самого на себя требуемое число раз, которое называется показателем степени (а само число – ее основанием). Например, 3 * 3= 32 (здесь 3 – основание, 2- показатель степени), 2 * 2 * 2= 23, 10 * 10= 102=100, 105= 10 * 10 * 10 * 10 * 10= 100000.

Заметьте, что число нулей степени 10 всегда равно ее показателю:

101=10, 102 =100, 103 =1000 и т. д.

И еще одно: математики во всем мире давно приняли, что любое число в нулевой степени равно единице (а0 =1). При записи больших чисел часто используют степень числа 10.

Единица – 100=1

Тысяча – 103= 1000

Миллион – 106= 1000 000

Биллион – 109= 1000 000 000

Триллион – 1012=1000 000 000 000

Квадриллион – 1015 =1000 000 000 000 000

Квинтиллион – 1018 =1000 000 000 000 000 000

Секстиллион – 1021 = 1000 000 000 000 000 000 000

Септиллион – 1024 = 1000 000 000 000 000 000 000 000

Октиллион - 1027 = 1000 000 000 000 000 000 000 000 000

Теперь приведем несколько интересных сведений:

Радиус Земли – 6400 км.

Длина Земного экватора – около 40 тыс. км.

Площадь Земного шара 510 млн. км.

Среднее расстояние от Земли до Солнца – 150 млн. км.

Диаметр нашей Галактики – 85 тыс. световых лет.

С начала нашей эры прошло немногим более миллиарда секунд.

Число Шахерезады

Существуют числа, носящие имена великих математиков: число Архимеда - , Неперово число – основание натуральных логарифмов е=2, 718281 [Непер Джон (150-1617), шотландский математик, изобретатель логарифмов].

Число, о котором пойдет речь, не менее популярно. Это 1001. Его иногда называют числом Шехерезады, известно каждому, кто читал сказки «Тысяча и одна ночь». Число 1001 обладает рядом интересных свойств:

1. Это самое маленькое натуральное четырехзначное число, которое можно представить в виде суммы кубов двух натуральных чисел: 1001=103+13.

2. Состоит из 77 «злополучных чертовых дюжин». (1001=77*13), из 91 одиннадцатки или 143 семерок (вспомним, что число «7» считалось магическим числом); далее, если будем считать, что год равен 52 неделям, то 1001=143*7=(104+26+13)*7=2 года + ½ года+ ¼ года

3. На свойствах числа 1001 базируется метод определения делимости числа на 7, на 11 и на 13.

Рассмотрим этот метод на примерах:

Делится ли на 7 число 348285?

348285=348*1000+285=348*1000+348-348+285=348*1001-(348-285)

Так как 1001 делится на 7, то чтобы 348285 делилось на 7, достаточно, чтобы на 7 делилась разность 348-285. Так как 348-285=63, то 348285 делится на 7.

Таким образом, чтобы узнать, делится ли число на 7 (на 11 или 13), необходимо от этого числа без последних трех цифр отнять число из трех последних цифр; если эта разность делится на 7 (11 или 13), то и заданное число также делится на 7 (11 или 13).

Задумайтесь, может и вы найдёте сказочное число. Внесите свой вклад в царицу наук - МАТЕМАТИКУ!!!

Взаимно- обратные числа

Обратное число́ (обратное значение, обратная величина) - это число, на которое надо умножить данное число, чтобы получить единицу. Два таких числа называются взаимно обратными.

Примеры: 5 и 1/5, −6/7 и −7/6, π и 1 / π

Для всякого числа а, не равного нулю, существует обратное 1/a.

На земном шаре обитают птицы – безошибочные составители прогноза погоды на лето. Название этих птиц зашифровано примерами, записанными на доске. Последовательно решив примеры и заменив ответы буквами, вы прочтёте название птиц – метеорологов.

1. 17/8 5/6 6/5;

2. 3,4 7/3 3/7;

3. 11/12 5,6 12/11;

4. 2,5 0,4 3;

5. 2/3 0,1 3/2;

6. 41/2 1/2 2;

8. 11/12 31/3 12/11.

17/8 31/3 0,1 3,4 3 41/2 5,6 1

ф о и л м н а г

Простые числа

«Простые числа остаются всегда готовыми ускользнуть от исследования»

Если записать натуральные числа в ряд, и в тех местах, где стоят простые числа, зажечь фонарики, то не нашлось в этом ряду места, где была бы сплошная темнота. Фонарики расположились бы очень причудливо. Между ними есть только одно число - четное, это 2, а остальные нечетные. 2 и 3 последовательные натуральные числа, наименьшие простые -такая пара единственная, где одно число четное, а другое нечетное.

1, 2, 3,4 ,5 ,6, 7,8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Два последовательных нечетных числа, каждое из которых является простым – называются числами – близнецами.

Первые простые числа-близнецы:

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61),

(71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193),

(197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349),

(419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619),

(641, 643), (659, 661), (809, 811), (821, 823), (827, 829), (857, 859), (881, 883)

Греческий ученый Евклид в своей книге «Начала» утверждал следующее: «Самого большого числа не существует». До сих пор неизвестно, есть ли самые большие числа-близнецы. И до сих пор нет ответа на вопрос: существует ли бесконечно много пар простых чисел-близнецов.

Первым глубокие исследования о том, как разбросаны простые числа среди натуральных, получил русский математик Пафнутий Львович Чебышев. Но до сих пор математики не знают формулы, с помощью которой можно получить простые числа одно за другим, нет даже формулы, дающей только простые числа.

Над тем, как составить список простых чисел, задумался живущей в 3 веке до нашей эры александрийский ученый Эратосфен. Его имя вошло в науку в связи с методом отыскания простых чисел. В древности писали на восковых табличках острой палочкой-стилем, поэтому Эратосфен «выкалывал» составные числа острым концом стиля. После выкалывания всех составных чисел таблица напоминала решето. Отсюда и название «решето Эратосфена». Древнегреческих ученых заинтересовало: сколько может быть всех простых чисел в натуральном ряду.

В 1750 году Леонард Эймер установил, что число 231 – 1 является простым. Оно оставалось самым большим из известных простых чисел более ста лет. В 1876 году французский математик Лукас установил, что огромное число

2127 – 1 = 170. 141. 183. 460. 469. 231. 731. 678. 303. 715. 884. 105. 727 также простое. Оно содержит 39 цифр. Для его вычисления были использованы механические настольные счетные машины. В 1957 году было найдено следующее простое число: 23217- 1. А простое число 244497-1 состоит из 13000 цифр.

Рациональные числа

Рациональное число (лат. ratio - отношение, деление, дробь) - число, представляемое обыкновенной дробью, где m - целое число, а n - натуральное число. При этом число m называется числителем, а число n - знаменателем дроби. Такую дробь следует интуитивно понимать, как результат деления m на n, даже если нацело разделить не удаётся. В реальной жизни можно использовать рациональные числа для счёта частей некоторых целых, но делимых объектов, например, тортов или других продуктов, разрезаемых на несколько частей перед употреблением, или для грубой оценки пространственных отношений протяжённых объектов.

Совершенные числа

Совершенное число́ (др. греч. ἀριθμὸς τέλειος) - натуральное число, равное сумме всех своих собственных делителей (т. е. всех положительных делителей, отличных от самого́ числа).

Первое совершенное число - 6 (1 + 2 + 3 = 6), следующее - 28 (1 + 2 + 4 + 7 + 14 = 28). По мере того как натуральные числа возрастают, совершенные числа встречаются всё реже. Третье совершенное число - 496, четвёртое - 8128, пятое - 33 550 336, шестое - 8 589 869 056 (последовательность A000396 в OEIS).

«Перестаньте отыскивать интересные числа!

Оставьте для интереса хотя бы одно неинтересное число!»

Из письма читателя Мартину Гарднеру

Среди всех интересных натуральных чисел, издавна изучаемых математиками, особое место занимают совершенные и близко связанные с ними дружественные числа.

Совершенным называется число, равное сумме всех своих делителей (включая 1, но исключая само число). Наименьшее из совершенных чисел 6 равно сумме трех своих делителей 1, 2 и 3. Следующее совершенное число 28=1+2+4+7+14. Ранние комментаторы Ветхого завета, пишет в своей книге «Математические новеллы» Мартин Гарднер, усматривали в совершенстве чисел 6 и 28 особый смысл. Разве не за 6 дней был сотворен мир, восклицали они, и разве Луна обновляется не за 28 суток?

Первым крупным достижением теории совершенных чисел была теорема Евклида о том, что число 2n-1(2n-1) - четное и совершенное, если число 2n-1 - простое 1. Лишь две тысячи лет спустя Эйлер доказал, что формула Евклида содержит все четные совершенные числа. Поскольку не известно ни одного нечетного совершенного числа (у читателей есть шанс найти его и прославить свое имя), то обычно, говоря о совершенных числах, имеют в виду четное совершенное число.

Приглядевшись к формуле Евклида, мы увидим связь совершенных чисел с членами геометрической прогрессии 1, 2, 4, 8, 16, Эту связь лучше проследить на примере древней легенды, согласно которой Раджа обещал изобретателю шахмат любую награду. Изобретатель попросил положить на первую клетку шахматной доски одно зерно пшеницы, на вторую клетку - два зерна, на третью - четыре, на четвертую - восемь и так далее. На последнюю, 64-ю клетку, должно быть насыпано 263 зерен, а всего на шахматной доске окажется «кучка» из 264-1 зерен пшеницы. Это больше, чем собрано во всех урожаях за историю человечества.

Если на каждой клетке шахматной доски мы напишем, сколько зерен пшеницы причиталось бы за нее изобретателю шахмат, а затем снимем с каждой клетки по одному зерну, то число оставшихся зерен будет точно соответствовать выражению, стоящему в скобках в формуле Евклида. Если это число простое, то, умножив его на число зерен на предыдущей клетке (то есть на 2n-1), мы получим совершенное число! Простые числа вида 2n-1 называются числами Мерсенна в честь французского математика XVII века. На шахматной доске со снятыми по одному зерну с каждой клетки есть девять чисел Мерсенна, соответствующих девяти простым числам, меньших 64, а именно: 2, 3, 5, 7, 13, 17, 19, 31 и 61. Умножив их на число зерен на предыдущих клетках, мы получим девять первых совершенных чисел. (Числа n=29, 37, 41, 43, 47, 53, и 59 не дают числа Мерсенна, т. е. соответствующие им числа 2n-1 составные.)

Формула Евклида позволяет без труда доказывать многочисленные свойства совершенных чисел. Например, все совершенные числа треугольные. Это значит, что, взяв совершенное число шаров, мы всегда сможем сложить из них равносторонний треугольник. Из той же формулы Евклида следует другое любопытное свойство совершенных чисел: все совершенные числа, кроме 6, можно представить в виде частичных сумм ряда кубов последовательных нечетных чисел 13+33+53+ Еще более удивительно, что сумма величин, обратных всем делителям совершенного числа, включая его самого, всегда равна 2. Например, взяв делители совершенного числа 28, получим:

Кроме того, интересны представление совершенных чисел в двоичной форме, чередование последних цифр совершенных чисел и другие любопытные вопросы, которые можно найти в литературе по занимательной математике. Главные из них - наличие нечетного совершенного числа и существование наибольшего совершенного числа - до сих пор не решены.

От совершенных чисел повествование непременно перетекает к дружественным числам. Это такие два числа, каждое из которых равно сумме делителей второго дружественного числа. Наименьшие из дружественных чисел 220 и 284 были известны еще пифагорейцам, которые считали их символом дружбы. Следующая пара дружественных чисел 17296 и 18416 была открыта французским юристом и математиком Пьером Ферма лишь в 1636 году, а последующие числа находили Декарт, Эйлер и Лежандр. Шестнадцатилетний итальянец Никколо Паганини (тезка знаменитого скрипача) в 1867 году потряс математический мир сообщением о том, что числа 1184 и 1210 дружественные! Эту пару, ближайшую к 220 и 284, проглядели все знаменитые математики, изучавшие дружественные числа.

Дружественные числа

Дружественные числа - два натуральных числа́, для которых сумма всех собственных делителей первого числа́ равна второму числу и сумма всех собственных делителей второго числа́ равна первому числу. Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе.

Ниже приведены пары дружественных чисел, меньших 130 000.

6. 10744 и 10856

7. 12285 и 14595

8. 17296 и 18416

9. 63020 и 76084

10. 66928 и 66992

11. 67095 и 71145

12. 69615 и 87633

13. 79750 и 88730

14. 100485 и 124155

15. 122265 и 139815

16. 122368 и 123152

Прах Диофанта гробница покоит: дивись ей - и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругой он обручился;

С нею пять лет проведя, сына дождался мудрец.

Только полжизни отцовской возлюбленный сын его прожил,

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

Сколько лет прожил Диофант?

Фигурные числа

Давным-давно, помогая себе при счете камушками, люди обращали внимание на правильные фигуры, которые можно выложить из камушков. Можно просто класть камушки в ряд: один, два, три. Если класть их в два ряда, чтобы получались прямоугольники, мы обнаружим, что получаются все четные числа. Можно выкладывать камни в три ряда: получатся числа, делящиеся на три. Всякое число, которое на что-нибудь делится, можно представить таким прямоугольником, и только простые числа не могут быть "прямоугольными". А что если складывать треугольник? Треугольник получается из трех камушков: два в нижнем ряду, один в верхнем, в ложбинке, образованной двумя нижними камнями. Если добавить камень в нижний ряд, появится еще одна ложбинка; заполнив ее, мы получим ложбинку, образованную двумя камушками второго ряда; положив в нее камень, мы наконец получим треугольник. Итак, нам пришлось добавить три камушка. Следующий треугольник получится, если добавить четыре камушка. Выходит, что на каждом шаге мы добавляем столько камней, сколько их становится в нижнем ряду. Если теперь считать, что один камень - это тоже треугольник, самый маленький, у нас получится такая последовательность чисел: 1, 1+2=3, 1+2+3=6, 1+2+3+4=10, 1+2+3+4+5=15 и т. д. Итак, фигурные числа - это общее название чисел, геометрическое представление которых связано с той или иной геометрической фигурой. Числа древними греками, а вместе с ними Пифагором и пифагорейцами мыслились зримо, в виде камешков, разложенных на песке или на счетной доске - абаке.

По этой причине греки не знали нуля, т. к. его невозможно было "увидеть". Но и единица еще не была полноправным числом, а представлялась как некий "числовой атом", из которого образовывались все числа Пифагорейцы называли единицу "границей между числом и частями", т. е. между целыми числами и дробями, но в то же время видели в ней "семя и вечный корень". Число же определялось как множество, составленное из единиц. Особое положение единицы как "числового атома", роднило ее с точкой, считавшейся "геометрическим атомом". Вот почему Аристотель писал: "Точка есть единица, имеющая положение, единица есть точка без положения". Т. о. пифагорейские числа в современной терминологии - это натуральные числа. Числа камешки раскладывались в виде правильных геометрических фигур, эти фигуры классифицировались. Так возникли числа, сегодня именуемые фигурными. Древние греки, когда им приходилось умножать числа, рисовали прямоугольники; результатом умножения трех на пять был прямоугольник со сторонами три и пять. Это - развитие счета на камушках. Множество закономерностей, возникающих при действиях с числами, были обнаружены древнегреческими учеными при изучений чертежей. И долгие века лучшим подтверждением справедливости таких соотношений считался способ геометрический, с прямоугольниками, квадратами, пирамидами и кубами. В V - IV веках до нашей эры ученые, комбинируя натуральные числа, составляли из них затейливые ряды, придавая элементам этих рядов то или иное геометрическое истолкование. С их помощью можно выложить правильные геометрические фигуры: треугольники, квадраты, пирамиды и т. д. Увлеклись, причем независимо друг от друга, нахождением таких чисел Б. Паскаль и П. Ферма.

Даже в XVII века, когда была уже хорошо развита алгебра с обозначениями величин буквами, со знаками действий, многие считали ее варварской наукой, пригодной для низменных целей- бытовых расчетов, вспомогательных вычислений, - но никак не для благородных научных трудов. Один из крупнейших математиков того времени, Бонавентура Кавальери, пользовался алгеброй, ибо вычислять с ее помощью проще, но для обоснования своих научных результатов все алгебраические выкладки заменял рассуждениями с геометрическими фигурами.

Среди фигурных чисел различают: Линейные числа (т. е. простые числа) - числа, которые делятся только на единицу и на самих себя и, следовательно, представимы в виде последовательности точек, выстроенных в линию: (линейное число 5)

Плоские числа - числа, представимые в виде произведения двух сомножителей: (плоское число 6)

Телесные числа, выражаемые произведением трех сомножителей: (телесное число 8)

Треугольные числа: (треугольные числа 3,6,10)

Квадратные числа: (квадратные числа 4,9,16)

Пятиугольные числа:(пятиугольные числа 5,12)

Именно от фигурных числе пошло выражение "Возвести число в квадрат или куб".

Представление чисел в виде правильных геометрических фигур помогало пифагорейцам находить различные числовые закономерности. Например, чтобы получить общее выражение для n-угольного числа, которое есть не что иное, как сумма n натуральных чисел 1+2+3+. +n, достаточно дополнить это число до прямоугольного числа n(n+1) и увидеть (именно глазами!) равенство

Написав последовательность квадратных чисел, опять-таки легко увидеть глазами выражение для суммы n нечетных чисел:

Наконец, разбивая n-е пятиугольное число на три (n-1) треугольных (после чего остается ещё n "камешков"), легко найти его общее выражение

Разбиением на треугольные числа получается и общая формула для n-го k-угольного числа:

При k=3 мы получаем треугольные числа, а k=4 - квадратные числа и т. д.

Аналогично можно представить число в виде прямоугольника. Для числа 12 это можно сделать многими способами (рис.), а для числа 13 - лишь расположив все предметы в одну линию. Такое древние не считали прямоугольным.

Таким образом, прямоугольными числами являются все составные числа, а не прямоугольными - простые числа. Фигурное представление чисел помогало пифагорейцам открывать законы арифметических операций, а также легко переходить к числовой характеристике геометрических объектов - измерению площадей и объемов.

Так, представляя число 10 в двух формах: 5*2=2*5, легко "увидеть" переместительный закон умножения: a*b=b*a. В том же числе 10: (2+3)*2=2*2+3*2=10 можно "разглядеть" и распределительный закон сложения относительно умножения: (a+b)c=ac+bc.

Наконец, если "камешки", образующие фигурные числа, мыслить в виде равных по площади квадратиков, то, укладывая их в прямоугольное число ab:. автоматически получаем формулу для вычисления площади прямоугольника: S=ab. К фигурным числам также относятся пирамидальные числа, которые получаются, если шарики складывать пирамидой, как раньше складывали ядра около пушки.

Нетрудно заметить, что пирамидальное число равно сумме всех треугольных чисел - от первого до n-го. Формула для вычисления n-го пирамидального числа имеет вид:

«Числовые забавы »

Это число, прежде всего, замечательно тем, что определяет число дней в не високосном году. При делении на 7 оно даёт в остатке 1, эта особенность числа 365 имеет большое значение для нашего семидневного календаря.

Существует ещё одна особенность числа 365:

365=10×10×11×11×12×12, то есть 365 равно в сумме квадратов трёх последовательных чисел, начиная с 10:

10²+11²+12²=100+121+144=365.

Но и это ещё не всё. Число 365 равно сумме квадратов двух следующих чисел, 13 и 14:

13²+14²=169+196=365.

Если человек не знает выше изложенных свойств числа 365, то он при решении примера:

10²+11²+12²+13²+14²

365 начнёт выполнять громоздкие вычисления.

Например:

10²+11²+12²+13²+14² ‗ 100+121+144+169+196 ‗ 221+313+196 ‗ 730

Человек же знающий решит этот пример в уме моментально и получит в ответе 2.

10²+11²+12²+13²+14² ‗ 365+365 ‗ 730

Следующее число, которое я буду описывать – это 999.

Оно намного удивительнее, чем его перевёрнутое изображение – 666 –«звериное число»

Апокалипсиса, вселяющее страх в суеверных людей, но оно по своим арифметическим свойствам ничем не выделяется среди других чисел.

Особенность числа 999 в том, что его можно легко умножить на трёхзначные числа. Тогда получится шестизначное произведение: первые три цифры его есть умножаемое число, уменьшенное на единицу, а остальные три цифры являются дополнениями первых трех до 9. Например,

Стоит лишь взглянуть на следующую строку, чтобы понять происхождение этой особенности:

573×999=573×(1000-1)= 573

Зная эту особенность, мы можем мгновенно умножить любое трёхзначное число на 999.

Например:

947×999=946053, 509×999=508491, 981×999=980019,

543×999=542457, 167×999=166833, 952×999=951048 и т. п.

А так как 999=9×111=3×3×3×37,то вы можете описать целые столбцы шестизначных чисел, кратных 37. Не знакомый же со свойствами числа 999, этого сделать не сможет.

1. Число 1001

Сначала рассмотрим число 1001. Это число сказок, которое царица Шехерезада рассказывала царю Шахрияру.

Число 1001 с первого взгляда кажется самым обыкновенным. Его можно разложить на три последовательных простых множителя 7, 11 и 13. Следовательно, оно является их произведением.

Но в том, что 1001=7×11×13 нет ничего интересного. Замечательно то, что если его умножить на любое трехзначное число, то в результате получится тоже самое число, записанное дважды. Нужно применить распределительный закон умножения.

Разложим 1001 на сумму 1000+1.

Например:

247×1001=247×(1000+1)=247×1000+247×1=247000+247=247247

Число 111111

Следующее число, о котором я хочу рассказать – это 111 111.

Благодаря знакомству со свойствами числа 1001 мы сразу видим, что

111 111=111×1001

Но мы знаем, что

111=3×37, 1001=7×11×13.

Отсюда следует, что наша новая числовая диковинка, состоящая из одних единиц, представляет собой произведение пяти простых множителей. Соединяя же эти 5 множителей в две группы на всевозможные лады, мы получаем 15 пар множителей, дающих в произведении одно и то же число, 111 111.

3×(7×11×13×37)=3×37037=111 111

7×(3×11×13×37)=7×15873=111 111

11×(3×7×13×37)=11×10101=111 111

13×(3×7×11×37)=13×8547=111 111

37×(3×7×11×13)=37×3003=111 111

(3×7)×(11×13×37)=21×5291=111 111

(3×11)×(7×13×37)=33×3367=111 111

(3×13)×(7×11×37)=39×2849=111 111

(3×37)×(7×13×11)=111×1001=111 111

(7×3)×(11×13×37)=21×5291=111 111

(7×11)×(3×13×37)=77×1443=111 111

(7×13)×(11×3×37)=91×1221=111 111

(7×37)×(11×3×13)=259×429=111 111

(11×13)×(7×37×3)=143×777=111 111

(37×11)×(13×7×3)=407×273=111 111

«Фокус с числом»

Арифметические фокусы – честные, добросовестные фокусы. Здесь никто никого не стремится обмануть, ввести транс или усыпить внимание зрителя. Чтобы выполнить такой фокус, не нужны, ни чудодейственная ловкость рук, ни изумительное проворство движений, ни какие – либо другие артистические способности, требующие иногда многолетних упражнений. Кружок товарищей, не посвящённых в математические тайны можно поразить следующими фокусами.

Фокус № 1.

Запишите число 365 два раза: 365 365.

Разделите полученное число на 5: 365 365÷5=73 0 73.

Разделите полученное частное на 73: 73 0 73÷73=1001.

У вас получится число Шехерезады, то есть 1001.

Разгадка фокуса, очень проста: число 365=5×73. То есть число 365365 мы делим на 365 и получаем в ответе 1001.

Фокус № 2.

Пусть кто-нибудь напишет любое трехзначное число, и затем к нему припишет еще раз это же самое число. Получится шестизначное число, состоящее из повторяющихся цифр.

Предложите своему товарищу разделить это число в тайне от вас на 7. Результат нужно передать соседу, который должен разделить его на 11. Полученный результат передается следующему ученику, которого вы просите разделить это число на 13.

Результат третьего деления вы, не глядя, вручаете первому товарищу. Это и есть задуманное число.

Этот фокус объясняется очень просто. Если приписать к трехзначному числу его само – значит умножить его на 1001, или на произведение 7×11×13=1001. Шестизначное число, которое ваш товарищ получит после того, как припишет к заданному числу его само, должно будет делиться без остатка и на 7, и на 11, и на 13.

Фокус № 3.

Запишите любую цифру три раза подряд. Полученное число разделите на 37 и на 3. И у вас получится в ответе ваша цифра.

Разгадка: когда мы делим трехзначное число, записанное тремя одинаковыми цифрами вначале на 37, а затем на 3,то мы, не замечая, делим на 111.

Фокус № 4.

Число 111 111 так же можно использовать для проделывания фокусов, как и число 1001. В данном случае надо предлагать товарищу число однозначное, и попросить записать его уже шесть раз подряд. Делителями здесь могут служить пять простых чисел: 3, 7, 11, 13, 37 и получающиеся из них составные: 21, 33, 39 и т. п. Это дает возможность очень разнообразить выполнение фокуса.

Например: предложите своим товарищам задумать любую цифру, кроме нуля. Нужно умножить ее на 37. Затем умножить на 3. Результат приписать еще раз справа. Полученное число разделить на первоначально задуманную цифру.

Получилось число 111 111.

Разгадка фокуса основана на свойстве числа 111 111. Когда мы умножаем его на 1001 (со свойствами числа 1001 мы познакомились в предыдущей главе) и получилось задуманное число, записанное в начале. Далее при делении на задуманное число явно получается шесть единиц.

Фокус № 5.

Пусть ваш товарищ запишет любое трехзначное число. Справа к нему нужно приписать три нуля. От шестизначного числа предложите отнять первоначальное трехзначное. Затем попросите товарища разделить на задуманное, полученный результат. Частное нужно разделить на 37.

Получилось число 27.

Секрет фокуса понять просто. Он основан на свойствах числа 999.

Число 999 является произведением четырех простых множителей:

3×3×3×37=999, а, следовательно, 999÷37=27

Когда умножают на него трехзначное число, получается результат, состоящий из двух половин: первая – это умножаемое число, уменьшенное на единицу, а вторая – результат вычитания первой половины из множителя.

Фокус № 6.

Число 111 111 111: можно также использовать для наших числовых фокусов:

Спросим у одноклассника его любимую цифру (от 1 до 9).

Попросим эту цифру умножить на 9, а затем полученное произведение умножить на число 123456789. В результате получится число, состоящее из любимых цифр одноклассника.

Например:

5 – это любимая цифра ученика, тогда

45×123456789=555 555 555 т. е. 9×123456789=111 111 111

Заключение

Я думаю, что моя работа является мини-пособием для изучения числового разнообразия. Интересные способы вычисления чисел очень могут помочь в школе, в вузе, на работе, и вообще в жизни. Так в кругу товарищей можно загадывать интересные арифметические фокусы без обманов и волшебства. Исходя из всего вышесказанного, я делаю вывод, что эти и многие другие числовые диковинки желательно знать каждому. Эти знания обязательно понадобятся в жизни!

Белоусова Арина

Выступление на Школьной научно-практической конференции об истории возникновения арабских цифр.

Скачать:

Предварительный просмотр:

Муниципальное автономное образовательное учреждение лицей №42

Октябрьского района городского округа город Уфа

Республики Башкортостан

Номинация: математика

Секция: математика

Тема работы:

История возникновения цифр

Работу выполнила:

Белоусова Арина Михайловна

Класс 2 Д

Руководитель

Нуруллина Татьяна Петровна Классный руководитель

Уфа 2013

Введение.

2. Как считали древние люди

3. Цифры у разных народов

4. Цифры нашего времени

5. Заключение

6. Приложения

7. Литература

Введение

С самого раннего возраста человек сталкивается с необходимостью считать. Однако, научившись считать, люди мало знают о том, откуда появились числа, кто придумал использовать ту или иную форму записи числа. Проведенный мною опрос показал, что некоторые обучающиеся нашего класса, а также наши родители не смогли дать ответ на вопрос: « Как и где возникли первые числа?». Встречаясь с цифрами на каждом шагу, мы настолько привыкли к их существованию, что вряд ли задумываемся, а откуда же они взялись. А, между прочим, история их возникновения чрезвычайно увлекательна. Поэтому я решила изучить историю возникновения чисел и представить полученный материал другим обучающимся, который можно так же использовать на уроках математики.

Цель: Узнать историю возникновения цифр

Задачи:

1.Изучить имеющуюся литературу по теме.

2.Определить, как появились цифры

3.Выяснить, как считали древние люди, которые не знали цифр.

4.Собрать информацию о цифрах других народов

В современных условиях очень важно каждому человеку правильно понимать законы чисел. Числа – являются необходимой частью математики. Отсюда-актуальность темы.

1. Из истории возникновения чисел

Учится считать, люди начали в незапамятные времена, а учителем у них была сама жизнь. Древние люди добывали себе пищу главным образом охотой. На крупного зверя – бизона или лося – приходилось охотиться всем племенем: в одиночку ведь с ним не справишься. Командовал облавой обычно самый старый и опытный охотник. Что бы добыча не ушла, ее надо было окружить, ну вот хотя бы так: пять человек справа, семь сзади, четыре слева. Тут уж без счета никак не обойдешься! И вождь первобытного племени справлялся с этой задачей. Даже в те времена, когда человек не знал таких слов, как «пять» или «семь». Он мог показать числа на пальцах рук.

2. Как считали древние люди

Сначала были…пальцы. Весьма универсальное, удобное и сподручное средство для счёта. Его используют и до сих пор, правда, лишь в том случае, если нужно показать небольшое, ограниченное одним десятком число (здесь учитываем лишь возможности рук, пальцы ног не в счёт).

Пальцы сыграли немаловажную роль в истории счета. Особенно когда люди начали обмениваться друг с другом предметами своего труда. Так, например, желая поменять, сделанное им копье с каменным наконечником на пять шкурок для одежды, человек клал на землю свою руку и показывал, что против каждого вальца его руки нужно положить шкуру. Одна пятерня означала 5, две – 10. Не удивительно, что очень быстро назрела потребность в других, более совершенных символах счёта. Когда рук не хватало, вход шли и ноги. Две руки и одна нога – 15, две руки и две ноги – 20.

3. Цифры у разных народов

На протяжении истории каждый народ писал числа, считал и вычислял с их помощью. У разных народов было свое, определенное написание чисел (см. приложение 1).

Первое подобие цифр возникло около пяти тысяч лет назад в Египте и Месопотамии и представляло собой засечки на дереве или камнях. Египетские жрецы использовали для письма папирус, а в Месопотамии для этих целей служила мягкая глина. Единица изображалась колом, десяток - как бы парой рук, сотня - свернутым пальмовым листом, тысяча - цветком лотоса, символом обилия, сто тысяч - лягушкой, так как лягушек было очень много во время разлива Нила (см. приложение 2).

Не всем для записи чисел понадобилось столько символов. Например, майя в первом тысячелетии нашей эры писали любое число, используя лишь три знака: точку, линию и эллипс (см. приложение 3). Точка означала единицу, линия имела значение пяти, а эллипс, находясь под любым из этих знаков, увеличивал его значение в двадцать раз. Подобная минимизация отнюдь не приводила к упрощению записи: для обозначения того или иного числа приходилось использовать длинные ряды символов.

Следующий этап в истории цифр принадлежит древним римлянам. Изобретенная ими система исчисления основана на использовании букв для отображения чисел (римские цифры). Но это было очень не удобно - записи длинные, умножение и деление в письменном виде производить было невозможно. Все действия надо производить в уме. Даже чтобы прочитать число, нужно устно складывать или вычитать потому, что каждая римския цифра означает всюду, где бы она ни стояла, одно и то же число (см. приложение 4).

4. Цифры нашего времени

Современные привычные для нас цифры имеют арабское происхождение. Хотя арабы в свою очередь заимствовали их у индусов, видоизменив их и приспособив к своему письму. Характер написания каждой из девяти арабских цифр хорошо прослеживается, если записать их в «угловатой» форме (см. приложение 5). Количество углов каждой цифры соответствует количеству, которое эта цифра обозначает. Привычные, нам формы цифр, более округлые. Это влияние скорописи: так цифры записывать быстрее и удобнее (см. приложение 6).

Десятичная система, которой широко пользуется в настоящее время во всем мире, более совершенна. Вместо палочек, взятых от одной до девяти, используют цифры 1, 2, 3, 4, 5, 6, 7, 8, 9. Для обозначения десятков, сотен и т.д. не нужны новые значки, так как те же цифры используют и для записи десятков, сотен и т.д. Одна и та же цифра имеет различные значения в зависимости от места (позиции), где она записана. Благодаря этому свойству современную систему счисления называют позиционной. Десятичная позиционная система счисления позволяет записывать сколь угодно большие натуральные числа.

Народы пришли к этой системе постепенно. Она зародилась в Индии в V веке. В IХ веке ею уже владели арабы, в Х она дошла до Испании, а в ХII веке появилась в других странах Европы, но широкое распространение получила в ХVI веке. Долгое время развитие позиционной системы счисления тормозилось отсутствием в ней числа и цифры нуль. Только после введения нуля система стала совершенной.

Сейчас мы постоянно пользуемся числами. Используем их, чтобы измерять время, покупать и продавать, звонить по телефону, смотреть телевизор, водить автомобиль. К тому же у каждого человека есть различные числа, идентифицирующие лично его. Например, в удостоверении личности, в банковском счете, в кредитной карточке и т.д. Более того, в компьютерном мире вся информация, и этот текст в том числе, передается посредством числовых кодов.

Мы встречаемся с числами на каждом шагу и настолько к ним привыкли, что почти не отдаем себе отчета, насколько важную роль они играют в нашей жизни. Числа составляют часть человеческого мышления.

5. Заключение

В ходе выполнения данной работы, мною были прочитаны, рассмотрены книги и сайты об истории чисел и цифр. Я узнала как люди научились считать, как появились цифры которые мы используем в нашей жизни.

Изученный материал я обобщила и предоставила своим одноклассникам.

6. Приложения

Все мы знаем, что используем при счете арабские цифры. Однако как они появились и дошли до нас? Процесс возникновения арабских чисел очень интересен и занимателен.

Как впервые возникли цифры и числа?

Как они зародились?

Десятичная система арабского счета включает в себя 10 основных чисел от 0 до 9. С их помощью можно записать цифру любой величины.

До происхождения цифр люди пользовались пальцами для счета, но однажды им понадобилось посчитать такое большое количество предметов, что пальцев уже не хватало. Так возникла запись чисел.

История цифр началась 5 тысячелетий назад в Египте и Месопотамии. И хотя эти два культурных пласта мало пересекались друг с другом, их системы исчисления очень похожи. Первоначально для записей использовали камень или выполняли засечки на дереве. Впоследствии в Месопотамии стали пользоваться глиняными табличками, а в Египте писали на папирусе. Внешний вид цифр в этих культурах отличается, однако одно можно сказать точно: найденные археологами артефакты подтверждают, что это были не просто записи чисел, а именно математические действия.


Основные методы исчисления в древности.

История происхождения арабских цифр в том виде, в каком мы их знаем сегодня, довольно запутана. Точное время их возникновения неизвестно, однако ученые знают наверняка, что впервые числами стали пользоваться астрономы. Между 2 и 6 веками н.э. астрономы Индии узнали о греческой шестидесятеричной системе исчисления и переняли у греков ноль. Затем основы греческого исчисления были совмещены в Индии с десятичной системой, заимствованной из Китая.

Именно в Индии стали обозначать цифры одним символом. Популяризатором индийской записи стал ученый по имени Аль-Хорезми, который написал труд под названием «Об индийском счете». Впоследствии книга об исчислении была переведена на латинский язык, что привело к распространению десятичной системы в Европе.

Именно Индии мы сегодня обязаны возникновению арабских чисел, что произошло около 5 века н. э. Уже в 10-12 веках арабские цифры стали известны Европе. Это произошло благодаря захвату Испании маврами, принесшими с собой мусульманскую культуру и арабские книги. Ученый по имени Сильвестр, прибывая в мусульманской Кордове, мог получить доступ к такой литературе, которую Европа еще не знала. Поскольку часть Испании по-прежнему оставалась христианской, перевод индийской книги на латынь позволил популяризировать ее в христианской Европе.

На Руси почти до времен Петра для обозначения чисел использовали старославянские буквы. С приходом европейской культуры стала внедряться арабская система записи. Поскольку старославянская азбука с древних времен существенно изменилась, арабские цифры глубоко вошли в нашу жизнь.

Арабские цифры были намного удобнее римских и быстро завоевали популярность. Сегодня мы пользуемся ими во всех областях нашей деятельности. Присмотритесь внимательно: мы используем числами, чтобы просматривать телевизионные передачи, разговаривать по телефону, получать деньги с банковского счета, измерять время, покупать продукты и многое другое. Без чисел наша современная жизнь просто невозможна.

Так почему же цифры, придуманные в Индии, стали называть арабскими?

В 7 веке нашей эры образовалось новое государство – Арабский халифат, который захватил в свое господство северо-запад Индии. Арабы насаждали на этих землях свою культуру, но в результате именно достижения индийских астрономов дали миру десятичное исчисление, а арабский ученый Аль-Хорезми только популяризировал ее . Так что получилось, что европейцы знали о цифрах уже от арабов.

История чисел (слайды презентации)

Как они выглядят?

У детей часто возникает вопрос: почему цифры выглядят именно так, какими мы их знаем? Какова история появления цифр именно в таком виде, как мы знаем их сейчас?

Письмо на бумаге существенно изменило первоначальный облик арабских цифр. Поскольку древние люди вынуждены были писать числа на глине, дереве или папирусе, движения руки были затруднены. Легче было рисовать не скругленные формы, а линии и углы. Именно поэтому первоначальные цифры составлялись из черт. Их комбинации не случайны: каждая цифра содержала столько углов в написании, сколько обозначало само число. Например, в единице мы видим один угол, в двойке – два угла и т. д. Частично восстановить древнее начертание арабских цифр помогут электронные часы, где обозначения существенно отличаются от прописных и тоже состоят из линий и углов.

Видео-материал по теме

Итак, история цифр очень интересна и насчитывает сотни лет. Обойти стороной эту информацию в детских садах и начальных классах школы просто невозможно. История появления арабских чисел может стать плодотворной почвой для организации тематического утренника или КВН. Подготовьте викторину, попросите детей самим подобрать интересную информацию об истории чисел. Они наверняка с увлечением отнесутся к подготовке и участию в мероприятии.

Загрузка...