domvpavlino.ru

Как написать уравнение касательной к графику функции. Уравнение касательной и уравнение нормали к графику функции

Рассмотрим следующий рисунок:

На нем изображена некоторая функция y = f(x), которая дифференцируема в точке a. Отмечена точка М с координатами (а; f(a)). Через произвольную точку Р(a + ∆x; f(a + ∆x)) графика проведена секущая МР.

Если теперь точку Р сдвигать по графику к точке М, то прямая МР будет поворачиваться вокруг точки М. При этом ∆х будет стремиться к нулю. Отсюда можно сформулировать определение касательной к графику функции.

Касательная к графику функции

Касательная к графику функции есть предельное положение секущей при стремлении приращения аргумента к нулю. Следует понимать, что существование производной функции f в точке х0, означает, что в этой точке графика существует касательная к нему.

При этом угловой коэффициент касательной будет равен производной этой функции в этой точке f’(x0). В этом заключается геометрический смысл производной. Касательная к графику дифференцируемой в точке х0 функции f - это некоторая прямая, проходящая через точку (x0;f(x0)) и имеющая угловой коэффициент f’(x0).

Уравнение касательной

Попытаемся получить уравнение касательной к графику некоторой функции f в точке А(x0; f(x0)). Уравнение прямой с угловым коэффициентом k имеет следующий вид:

Так как у нас угловой коэффициент равен производной f’(x0) , то уравнение примет следующий вид: y = f’(x0) *x + b.

Теперь вычислим значение b. Для этого используем тот факт, что функция проходит через точку А.

f(x0) = f’(x0)*x0 + b, отсюда выражаем b и получим b = f(x0) - f’(x0)*x0.

Подставляем полученное значение в уравнение касательной:

y = f’(x0)*x + b = f’(x0)*x + f(x0) - f’(x0)*x0 = f(x0) + f’(x0)*(x - x0).

y = f(x0) + f’(x0)*(x - x0).

Рассмотрим следующий пример: найти уравнение касательной к графику функции f(x) = x 3 - 2*x 2 + 1 в точке х = 2.

2. f(x0) = f(2) = 2 2 - 2*2 2 + 1 = 1.

3. f’(x) = 3*x 2 - 4*x.

4. f’(x0) = f’(2) = 3*2 2 - 4*2 = 4.

5. Подставим полученные значения в формулу касательной, получим: y = 1 + 4*(x - 2). Раскрыв скобки и приведя подобные слагаемые получим: y = 4*x - 7.

Ответ: y = 4*x - 7.

Общая схема составления уравнения касательной к графику функции y = f(x):

1. Определить х0.

2. Вычислить f(x0).

3. Вычислить f’(x)

Пусть дана функция f , которая в некоторой точке x 0 имеет конечную производную f (x 0). Тогда прямая, проходящая через точку (x 0 ; f (x 0)), имеющая угловой коэффициент f ’(x 0), называется касательной.

А что будет, если производная в точке x 0 не существует? Возможны два варианта:

  1. Касательная к графику тоже не существует. Классический пример - функция y = |x | в точке (0; 0).
  2. Касательная становится вертикальной. Это верно, к примеру, для функции y = arcsin x в точке (1; π /2).

Уравнение касательной

Всякая невертикальная прямая задается уравнением вида y = kx + b , где k - угловой коэффициент. Касательная - не исключение, и чтобы составить ее уравнение в некоторой точке x 0 , достаточно знать значение функции и производной в этой точке.

Итак, пусть дана функция y = f (x ), которая имеет производную y = f ’(x ) на отрезке . Тогда в любой точке x 0 ∈ (a ; b ) к графику этой функции можно провести касательную, которая задается уравнением:

y = f ’(x 0) · (x − x 0) + f (x 0)

Здесь f ’(x 0) - значение производной в точке x 0 , а f (x 0) - значение самой функции.

Задача. Дана функция y = x 3 . Составить уравнение касательной к графику этой функции в точке x 0 = 2.

Уравнение касательной: y = f ’(x 0) · (x − x 0) + f (x 0). Точка x 0 = 2 нам дана, а вот значения f (x 0) и f ’(x 0) придется вычислять.

Для начала найдем значение функции. Тут все легко: f (x 0) = f (2) = 2 3 = 8;
Теперь найдем производную: f ’(x ) = (x 3)’ = 3x 2 ;
Подставляем в производную x 0 = 2: f ’(x 0) = f ’(2) = 3 · 2 2 = 12;
Итого получаем: y = 12 · (x − 2) + 8 = 12x − 24 + 8 = 12x − 16.
Это и есть уравнение касательной.

Задача. Составить уравнение касательной к графику функции f (x ) = 2sin x + 5 в точке x 0 = π /2.

В этот раз не будем подробно расписывать каждое действие - укажем лишь ключевые шаги. Имеем:

f (x 0) = f (π /2) = 2sin (π /2) + 5 = 2 + 5 = 7;
f ’(x ) = (2sin x + 5)’ = 2cos x ;
f ’(x 0) = f ’(π /2) = 2cos (π /2) = 0;

Уравнение касательной:

y = 0 · (x − π /2) + 7 ⇒ y = 7

В последнем случае прямая оказалась горизонтальной, т.к. ее угловой коэффициент k = 0. Ничего страшного в этом нет - просто мы наткнулись на точку экстремума.

Тип задания: 7

Условие

Прямая y=3x+2 является касательной к графику функции y=-12x^2+bx-10. Найдите b , учитывая, что абсцисса точки касания меньше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=-12x^2+bx-10, через которую проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=-24x_0+b=3. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2. Получаем систему уравнений \begin{cases} -24x_0+b=3,\\-12x_0^2+bx_0-10=3x_0+2. \end{cases}

Решая эту систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1, тогда b=3+24x_0=-21.

Ответ

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=-3x+4 параллельна касательной к графику функции y=-x^2+5x-7. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент прямой к графику функции y=-x^2+5x-7 в произвольной точке x_0 равен y"(x_0). Но y"=-2x+5, значит, y"(x_0)=-2x_0+5. Угловой коэффициент прямой y=-3x+4, указанной в условии, равен -3. Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что =-2x_0 +5=-3.

Получаем: x_0 = 4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Показать решение

Решение

По рисунку определяем, что касательная проходит через точки A(-6; 2) и B(-1; 1). Обозначим через C(-6; 1) точку пересечения прямых x=-6 и y=1, а через \alpha угол ABC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \pi -\alpha, который является тупым.

Как известно, tg(\pi -\alpha) и будет значением производной функции f(x) в точке x_0. Заметим, что tg \alpha =\frac{AC}{CB}=\frac{2-1}{-1-(-6)}=\frac15. Отсюда по формулам приведения получаем: tg(\pi -\alpha) =-tg \alpha =-\frac15=-0,2.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=-2x-4 является касательной к графику функции y=16x^2+bx+12. Найдите b , учитывая, что абсцисса точки касания больше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=16x^2+bx+12, через которую

проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=32x_0+b=-2. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть 16x_0^2+bx_0+12=-2x_0-4. Получаем систему уравнений \begin{cases} 32x_0+b=-2,\\16x_0^2+bx_0+12=-2x_0-4. \end{cases}

Решая систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания больше нуля, поэтому x_0=1, тогда b=-2-32x_0=-34.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

На рисунке изображён график функции y=f(x), определённой на интервале (-2; 8). Определите количество точек, в которых касательная к графику функции параллельна прямой y=6.

Показать решение

Решение

Прямая y=6 параллельна оси Ox . Поэтому находим такие точки, в которых касательная к графику функции параллельна оси Ox. На данном графике такими точками являются точки экстремума (точки максимума или минимума). Как видим, точек экстремума 4 .

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=4x-6 параллельна касательной к графику функции y=x^2-4x+9. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент касательной к графику функции y=x^2-4x+9 в произвольной точке x_0 равен y"(x_0). Но y"=2x-4, значит, y"(x_0)=2x_0-4. Угловой коэффициент касательной y=4x-7, указанной в условии, равен 4 . Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что 2x_0-4=4. Получаем: x_0=4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x) в точке x_0.

Показать решение

Решение

По рисунку определяем, что касательная проходит через точки A(1; 1) и B(5; 4). Обозначим через C(5; 1) точку пересечения прямых x=5 и y=1, а через \alpha угол BAC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \alpha.

Статья дает подробное разъяснение определений, геометрического смысла производной с графическими обозначениями. Будет рассмотрено уравнение касательной прямой с приведением примеров, найдено уравнения касательной к кривым 2 порядка.

Yandex.RTB R-A-339285-1 Определение 1

Угол наклона прямой y = k x + b называется угол α , который отсчитывается от положительного направления оси о х к прямой y = k x + b в положительном направлении.

На рисунке направление о х обозначается при помощи зеленой стрелки и в виде зеленой дуги, а угол наклона при помощи красной дуги. Синяя линия относится к прямой.

Определение 2

Угловой коэффициент прямой y = k x + b называют числовым коэффициентом k .

Угловой коэффициент равняется тангенсу наклона прямой, иначе говоря k = t g α .

  • Угол наклона прямой равняется 0 только при параллельности о х и угловом коэффициенте, равному нулю, потому как тангенс нуля равен 0 . Значит, вид уравнения будет y = b .
  • Если угол наклона прямой y = k x + b острый, тогда выполняются условия 0 < α < π 2 или 0 ° < α < 90 ° . Отсюда имеем, что значение углового коэффициента k считается положительным числом, потому как значение тангенс удовлетворяет условию t g α > 0 , причем имеется возрастание графика.
  • Если α = π 2 , тогда расположение прямой перпендикулярно о х. Равенство задается при помощи равенства x = c со значением с, являющимся действительным числом.
  • Если угол наклона прямой y = k x + b тупой, то соответствует условиям π 2 < α < π или 90 ° < α < 180 ° , значение углового коэффициента k принимает отрицательное значение, а график убывает.
Определение 3

Секущей называют прямую, которая проходит через 2 точки функции f (x) . Иначе говоря, секущая – это прямая, которая проводится через любые две точки графика заданной функции.

По рисунку видно, что А В является секущей, а f (x) – черная кривая, α - красная дуга, означающая угол наклона секущей.

Когда угловой коэффициент прямой равняется тангенсу угла наклона, то видно, что тангенс из прямоугольного треугольника А В С можно найти по отношению противолежащего катета к прилежащему.

Определение 4

Получаем формулу для нахождения секущей вида:

k = t g α = B C A C = f (x B) - f x A x B - x A , где абсциссами точек А и В являются значения x A , x B , а f (x A) , f (x B) - это значения функции в этих точках.

Очевидно, что угловой коэффициент секущей определен при помощи равенства k = f (x B) - f (x A) x B - x A или k = f (x A) - f (x B) x A - x B , причем уравнение необходимо записать как y = f (x B) - f (x A) x B - x A · x - x A + f (x A) или
y = f (x A) - f (x B) x A - x B · x - x B + f (x B) .

Секущая делит график визуально на 3 части: слева от точки А, от А до В, справа от В. На располагаемом ниже рисунке видно, что имеются три секущие, которые считаются совпадающими, то есть задаются при помощи аналогичного уравнения.

По определению видно, что прямая и ее секущая в данном случае совпадают.

Секущая может множественно раз пересекать график заданной функции. Если имеется уравнение вида у = 0 для секущей, тогда количество точек пересечения с синусоидой бесконечно.

Определение 5

Касательная к графику функции f (x) в точке x 0 ; f (x 0) называется прямая, проходящая через заданную точку x 0 ; f (x 0) , с наличием отрезка, который имеет множество значений х, близких к x 0 .

Пример 1

Рассмотрим подробно на ниже приведенном примере. Тогда видно, что прямая, заданная функцией y = x + 1 , считается касательной к y = 2 x в точке с координатами (1 ; 2) . Для наглядности, необходимо рассмотреть графики с приближенными к (1 ; 2) значениями. Функция y = 2 x обозначена черным цветом, синяя линия – касательная, красная точка – точка пересечения.

Очевидно, что y = 2 x сливается с прямой у = х + 1 .

Для определения касательной следует рассмотреть поведение касательной А В при бесконечном приближении точки В к точке А. Для наглядности приведем рисунок.

Секущая А В, обозначенная при помощи синей линии, стремится к положению самой касательной, а угол наклона секущей α начнет стремиться к углу наклона самой касательной α x .

Определение 6

Касательной к графику функции y = f (x) в точке А считается предельное положение секущей А В при В стремящейся к А, то есть B → A .

Теперь перейдем к рассмотрению геометрического смысла производной функции в точке.

Перейдем к рассмотрению секущей А В для функции f (x) , где А и В с координатами x 0 , f (x 0) и x 0 + ∆ x , f (x 0 + ∆ x) , а ∆ x обозначаем как приращение аргумента. Теперь функция примет вид ∆ y = ∆ f (x) = f (x 0 + ∆ x) - f (∆ x) . Для наглядности приведем в пример рисунок.

Рассмотрим полученный прямоугольный треугольник А В С. Используем определение тангенса для решения, то есть получим отношение ∆ y ∆ x = t g α . Из определения касательной следует, что lim ∆ x → 0 ∆ y ∆ x = t g α x . По правилу производной в точке имеем, что производную f (x) в точке x 0 называют пределом отношений приращения функции к приращению аргумента, где ∆ x → 0 , тогда обозначим как f (x 0) = lim ∆ x → 0 ∆ y ∆ x .

Отсюда следует, что f " (x 0) = lim ∆ x → 0 ∆ y ∆ x = t g α x = k x , где k x обозначают в качестве углового коэффициента касательной.

То есть получаем, что f ’ (x) может существовать в точке x 0 причем как и касательная к заданному графику функции в точке касания равной x 0 , f 0 (x 0) , где значение углового коэффициента касательной в точке равняется производной в точке x 0 . Тогда получаем, что k x = f " (x 0) .

Геометрический смысл производной функции в точке в том, что дается понятие существования касательной к графику в этой же точке.

Чтобы записать уравнение любой прямой на плоскости, необходимо иметь угловой коэффициент с точкой, через которую она проходит. Его обозначение принимается как x 0 при пересечении.

Уравнение касательной к графику функции y = f (x) в точке x 0 , f 0 (x 0) принимает вид y = f " (x 0) · x - x 0 + f (x 0) .

Имеется в виду, что конечным значением производной f " (x 0) можно определить положение касательной, то есть вертикально при условии lim x → x 0 + 0 f " (x) = ∞ и lim x → x 0 - 0 f " (x) = ∞ или отсутствие вовсе при условии lim x → x 0 + 0 f " (x) ≠ lim x → x 0 - 0 f " (x) .

Расположение касательной зависит от значения ее углового коэффициента k x = f " (x 0) . При параллельности к оси о х получаем, что k k = 0 , при параллельности к о у - k x = ∞ , причем вид уравнения касательной x = x 0 возрастает при k x > 0 , убывает при k x < 0 .

Пример 2

Произвести составление уравнения касательной к графику функции y = e x + 1 + x 3 3 - 6 - 3 3 x - 17 - 3 3 в точке с координатами (1 ; 3) с определением угла наклона.

Решение

По условию имеем, что функция определяется для всех действительных чисел. Получаем, что точка с координатами, заданными по условию, (1 ; 3) является точкой касания, тогда x 0 = - 1 , f (x 0) = - 3 .

Необходимо найти производную в точке со значением - 1 . Получаем, что

y " = e x + 1 + x 3 3 - 6 - 3 3 x - 17 - 3 3 " = = e x + 1 " + x 3 3 " - 6 - 3 3 x " - 17 - 3 3 " = e x + 1 + x 2 - 6 - 3 3 y " (x 0) = y " (- 1) = e - 1 + 1 + - 1 2 - 6 - 3 3 = 3 3

Значение f ’ (x) в точке касания является угловым коэффициентом касательной, который равняется тангенсу наклона.

Тогда k x = t g α x = y " (x 0) = 3 3

Отсюда следует, что α x = a r c t g 3 3 = π 6

Ответ: уравнение касательной приобретает вид

y = f " (x 0) · x - x 0 + f (x 0) y = 3 3 (x + 1) - 3 y = 3 3 x - 9 - 3 3

Для наглядности приведем пример в графической иллюстрации.

Черный цвет используется для графика исходной функции, синий цвет – изображение касательной, красная точка – точка касания. Рисунок, располагаемый справа, показывает в увеличенном виде.

Пример 3

Выяснить наличие существования касательной к графику заданной функции
y = 3 · x - 1 5 + 1 в точке с координатами (1 ; 1) . Составить уравнение и определить угол наклона.

Решение

По условию имеем, что областью определения заданной функции считается множество всех действительных чисел.

Перейдем к нахождению производной

y " = 3 · x - 1 5 + 1 " = 3 · 1 5 · (x - 1) 1 5 - 1 = 3 5 · 1 (x - 1) 4 5

Если x 0 = 1 , тогда f ’ (x) не определена, но пределы записываются как lim x → 1 + 0 3 5 · 1 (x - 1) 4 5 = 3 5 · 1 (+ 0) 4 5 = 3 5 · 1 + 0 = + ∞ и lim x → 1 - 0 3 5 · 1 (x - 1) 4 5 = 3 5 · 1 (- 0) 4 5 = 3 5 · 1 + 0 = + ∞ , что означает существование вертикальной касательной в точке (1 ; 1) .

Ответ: уравнение примет вид х = 1 , где угол наклона будет равен π 2 .

Для наглядности изобразим графически.

Пример 4

Найти точки графика функции y = 1 15 x + 2 3 - 4 5 x 2 - 16 5 x - 26 5 + 3 x + 2 , где

  1. Касательная не существует;
  2. Касательная располагается параллельно о х;
  3. Касательная параллельна прямой y = 8 5 x + 4 .

Решение

Необходимо обратить внимание на область определения. По условию имеем, что функция определена на множестве всех действительных чисел. Раскрываем модуль и решаем систему с промежутками x ∈ - ∞ ; 2 и [ - 2 ; + ∞) . Получаем, что

y = - 1 15 x 3 + 18 x 2 + 105 x + 176 , x ∈ - ∞ ; - 2 1 15 x 3 - 6 x 2 + 9 x + 12 , x ∈ [ - 2 ; + ∞)

Необходимо продифференцировать функцию. Имеем, что

y " = - 1 15 x 3 + 18 x 2 + 105 x + 176 " , x ∈ - ∞ ; - 2 1 15 x 3 - 6 x 2 + 9 x + 12 " , x ∈ [ - 2 ; + ∞) ⇔ y " = - 1 5 (x 2 + 12 x + 35) , x ∈ - ∞ ; - 2 1 5 x 2 - 4 x + 3 , x ∈ [ - 2 ; + ∞)

Когда х = - 2 , тогда производная не существует, потому что односторонние пределы не равны в этой точке:

lim x → - 2 - 0 y " (x) = lim x → - 2 - 0 - 1 5 (x 2 + 12 x + 35 = - 1 5 (- 2) 2 + 12 (- 2) + 35 = - 3 lim x → - 2 + 0 y " (x) = lim x → - 2 + 0 1 5 (x 2 - 4 x + 3) = 1 5 - 2 2 - 4 - 2 + 3 = 3

Вычисляем значение функции в точке х = - 2 , где получаем, что

  1. y (- 2) = 1 15 - 2 + 2 3 - 4 5 (- 2) 2 - 16 5 (- 2) - 26 5 + 3 - 2 + 2 = - 2 , то есть касательная в точке (- 2 ; - 2) не будет существовать.
  2. Касательная параллельна о х, когда угловой коэффициент равняется нулю. Тогда k x = t g α x = f " (x 0) . То есть необходимо найти значения таких х, когда производная функции обращает ее в ноль. То есть значения f ’ (x) и будут являться точками касания, где касательная является параллельной о х.

Когда x ∈ - ∞ ; - 2 , тогда - 1 5 (x 2 + 12 x + 35) = 0 , а при x ∈ (- 2 ; + ∞) получаем 1 5 (x 2 - 4 x + 3) = 0 .

1 5 (x 2 + 12 x + 35) = 0 D = 12 2 - 4 · 35 = 144 - 140 = 4 x 1 = - 12 + 4 2 = - 5 ∈ - ∞ ; - 2 x 2 = - 12 - 4 2 = - 7 ∈ - ∞ ; - 2 1 5 (x 2 - 4 x + 3) = 0 D = 4 2 - 4 · 3 = 4 x 3 = 4 - 4 2 = 1 ∈ - 2 ; + ∞ x 4 = 4 + 4 2 = 3 ∈ - 2 ; + ∞

Вычисляем соответствующие значения функции

y 1 = y - 5 = 1 15 - 5 + 2 3 - 4 5 - 5 2 - 16 5 - 5 - 26 5 + 3 - 5 + 2 = 8 5 y 2 = y (- 7) = 1 15 - 7 + 2 3 - 4 5 (- 7) 2 - 16 5 - 7 - 26 5 + 3 - 7 + 2 = 4 3 y 3 = y (1) = 1 15 1 + 2 3 - 4 5 · 1 2 - 16 5 · 1 - 26 5 + 3 1 + 2 = 8 5 y 4 = y (3) = 1 15 3 + 2 3 - 4 5 · 3 2 - 16 5 · 3 - 26 5 + 3 3 + 2 = 4 3

Отсюда - 5 ; 8 5 , - 4 ; 4 3 , 1 ; 8 5 , 3 ; 4 3 считаются искомыми точками графика функции.

Рассмотрим графическое изображение решения.

Черная линия – график функции, красные точки – точки касания.

  1. Когда прямые располагаются параллельно, то угловые коэффициенты равны. Тогда необходимо заняться поиском точек графика функции, где угловой коэффициент будет равняться значению 8 5 . Для этого нужно решить уравнение вида y " (x) = 8 5 . Тогда, если x ∈ - ∞ ; - 2 , получаем, что - 1 5 (x 2 + 12 x + 35) = 8 5 , а если x ∈ (- 2 ; + ∞) , тогда 1 5 (x 2 - 4 x + 3) = 8 5 .

Первое уравнение не имеет корней, так как дискриминант меньше нуля. Запишем, что

1 5 x 2 + 12 x + 35 = 8 5 x 2 + 12 x + 43 = 0 D = 12 2 - 4 · 43 = - 28 < 0

Другое уравнение имеет два действительных корня, тогда

1 5 (x 2 - 4 x + 3) = 8 5 x 2 - 4 x - 5 = 0 D = 4 2 - 4 · (- 5) = 36 x 1 = 4 - 36 2 = - 1 ∈ - 2 ; + ∞ x 2 = 4 + 36 2 = 5 ∈ - 2 ; + ∞

Перейдем к нахождению значений функции. Получаем, что

y 1 = y (- 1) = 1 15 - 1 + 2 3 - 4 5 (- 1) 2 - 16 5 (- 1) - 26 5 + 3 - 1 + 2 = 4 15 y 2 = y (5) = 1 15 5 + 2 3 - 4 5 · 5 2 - 16 5 · 5 - 26 5 + 3 5 + 2 = 8 3

Точки со значениями - 1 ; 4 15 , 5 ; 8 3 являются точками, в которых касательные параллельны прямой y = 8 5 x + 4 .

Ответ: черная линия – график функции, красная линия – график y = 8 5 x + 4 , синяя линия – касательные в точках - 1 ; 4 15 , 5 ; 8 3 .

Возможно существование бесконечного количества касательных для заданных функций.

Пример 5

Написать уравнения всех имеющихся касательных функции y = 3 cos 3 2 x - π 4 - 1 3 , которые располагаются перпендикулярно прямой y = - 2 x + 1 2 .

Решение

Для составления уравнения касательной необходимо найти коэффициент и координаты точки касания, исходя из условия перпендикулярности прямых. Определение звучит так: произведение угловых коэффициентов, которые перпендикулярны прямым, равняется - 1 , то есть записывается как k x · k ⊥ = - 1 . Из условия имеем, что угловой коэффициент располагается перпендикулярно прямой и равняется k ⊥ = - 2 , тогда k x = - 1 k ⊥ = - 1 - 2 = 1 2 .

Теперь необходимо найти координаты точек касания. Нужно найти х, после чего его значение для заданной функции. Отметим, что из геометрического смысла производной в точке
x 0 получаем, что k x = y " (x 0) . Из данного равенства найдем значения х для точек касания.

Получаем, что

y " (x 0) = 3 cos 3 2 x 0 - π 4 - 1 3 " = 3 · - sin 3 2 x 0 - π 4 · 3 2 x 0 - π 4 " = = - 3 · sin 3 2 x 0 - π 4 · 3 2 = - 9 2 · sin 3 2 x 0 - π 4 ⇒ k x = y " (x 0) ⇔ - 9 2 · sin 3 2 x 0 - π 4 = 1 2 ⇒ sin 3 2 x 0 - π 4 = - 1 9

Это тригонометрическое уравнение будет использовано для вычисления ординат точек касания.

3 2 x 0 - π 4 = a r c sin - 1 9 + 2 πk или 3 2 x 0 - π 4 = π - a r c sin - 1 9 + 2 πk

3 2 x 0 - π 4 = - a r c sin 1 9 + 2 πk или 3 2 x 0 - π 4 = π + a r c sin 1 9 + 2 πk

x 0 = 2 3 π 4 - a r c sin 1 9 + 2 πk или x 0 = 2 3 5 π 4 + a r c sin 1 9 + 2 πk , k ∈ Z

Z - множество целых чисел.

Найдены х точек касания. Теперь необходимо перейти к поиску значений у:

y 0 = 3 cos 3 2 x 0 - π 4 - 1 3

y 0 = 3 · 1 - sin 2 3 2 x 0 - π 4 - 1 3 или y 0 = 3 · - 1 - sin 2 3 2 x 0 - π 4 - 1 3

y 0 = 3 · 1 - - 1 9 2 - 1 3 или y 0 = 3 · - 1 - - 1 9 2 - 1 3

y 0 = 4 5 - 1 3 или y 0 = - 4 5 + 1 3

Отсюда получаем, что 2 3 π 4 - a r c sin 1 9 + 2 πk ; 4 5 - 1 3 , 2 3 5 π 4 + a r c sin 1 9 + 2 πk ; - 4 5 + 1 3 являются точками касания.

Ответ: необходимы уравнения запишутся как

y = 1 2 x - 2 3 π 4 - a r c sin 1 9 + 2 πk + 4 5 - 1 3 , y = 1 2 x - 2 3 5 π 4 + a r c sin 1 9 + 2 πk - 4 5 + 1 3 , k ∈ Z

Для наглядного изображения рассмотрим функцию и касательную на координатной прямой.

Рисунок показывает, что расположение функции идет на промежутке [ - 10 ; 10 ] , где черная прямя – график функции, синие линии – касательные, которые располагаются перпендикулярно заданной прямой вида y = - 2 x + 1 2 . Красные точки – это точки касания.

Канонические уравнения кривых 2 порядка не являются однозначными функциями. Уравнения касательных для них составляются по известным схемам.

Касательная к окружности

Для задания окружности с центром в точке x c e n t e r ; y c e n t e r и радиусом R применяется формула x - x c e n t e r 2 + y - y c e n t e r 2 = R 2 .

Данное равенство может быть записано как объединение двух функций:

y = R 2 - x - x c e n t e r 2 + y c e n t e r y = - R 2 - x - x c e n t e r 2 + y c e n t e r

Первая функция располагается вверху, а вторая внизу, как показано на рисунке.

Для составления уравнения окружности в точке x 0 ; y 0 , которая располагается в верхней или нижней полуокружности, следует найти уравнение графика функции вида y = R 2 - x - x c e n t e r 2 + y c e n t e r или y = - R 2 - x - x c e n t e r 2 + y c e n t e r в указанной точке.

Когда в точках x c e n t e r ; y c e n t e r + R и x c e n t e r ; y c e n t e r - R касательные могут быть заданы уравнениями y = y c e n t e r + R и y = y c e n t e r - R , а в точках x c e n t e r + R ; y c e n t e r и
x c e n t e r - R ; y c e n t e r будут являться параллельными о у, тогда получим уравнения вида x = x c e n t e r + R и x = x c e n t e r - R .

Касательная к эллипсу

Когда эллипс имеет центр в точке x c e n t e r ; y c e n t e r с полуосями a и b , тогда он может быть задан при помощи уравнения x - x c e n t e r 2 a 2 + y - y c e n t e r 2 b 2 = 1 .

Эллипс и окружность могут быть обозначаться при помощи объединения двух функций, а именно: верхнего и нижнего полуэллипса. Тогда получаем, что

y = b a · a 2 - (x - x c e n t e r) 2 + y c e n t e r y = - b a · a 2 - (x - x c e n t e r) 2 + y c e n t e r

Если касательные располагаются на вершинах эллипса, тогда они параллельны о х или о у. Ниже для наглядности рассмотрим рисунок.

Пример 6

Написать уравнение касательной к эллипсу x - 3 2 4 + y - 5 2 25 = 1 в точках со значениями x равного х = 2 .

Решение

Необходимо найти точки касания, которые соответствуют значению х = 2 . Производим подстановку в имеющееся уравнение эллипса и получаем, что

x - 3 2 4 x = 2 + y - 5 2 25 = 1 1 4 + y - 5 2 25 = 1 ⇒ y - 5 2 = 3 4 · 25 ⇒ y = ± 5 3 2 + 5

Тогда 2 ; 5 3 2 + 5 и 2 ; - 5 3 2 + 5 являются точками касания, которые принадлежат верхнему и нижнему полуэллипсу.

Перейдем к нахождению и разрешению уравнения эллипса относительно y . Получим, что

x - 3 2 4 + y - 5 2 25 = 1 y - 5 2 25 = 1 - x - 3 2 4 (y - 5) 2 = 25 · 1 - x - 3 2 4 y - 5 = ± 5 · 1 - x - 3 2 4 y = 5 ± 5 2 4 - x - 3 2

Очевидно, что верхний полуэллипс задается с помощью функции вида y = 5 + 5 2 4 - x - 3 2 , а нижний y = 5 - 5 2 4 - x - 3 2 .

Применим стандартный алгоритм для того, чтобы составить уравнение касательной к графику функции в точке. Запишем, что уравнение для первой касательной в точке 2 ; 5 3 2 + 5 будет иметь вид

y " = 5 + 5 2 4 - x - 3 2 " = 5 2 · 1 2 4 - (x - 3) 2 · 4 - (x - 3) 2 " = = - 5 2 · x - 3 4 - (x - 3) 2 ⇒ y " (x 0) = y " (2) = - 5 2 · 2 - 3 4 - (2 - 3) 2 = 5 2 3 ⇒ y = y " (x 0) · x - x 0 + y 0 ⇔ y = 5 2 3 (x - 2) + 5 3 2 + 5

Получаем, что уравнение второй касательной со значением в точке
2 ; - 5 3 2 + 5 принимает вид

y " = 5 - 5 2 4 - (x - 3) 2 " = - 5 2 · 1 2 4 - (x - 3) 2 · 4 - (x - 3) 2 " = = 5 2 · x - 3 4 - (x - 3) 2 ⇒ y " (x 0) = y " (2) = 5 2 · 2 - 3 4 - (2 - 3) 2 = - 5 2 3 ⇒ y = y " (x 0) · x - x 0 + y 0 ⇔ y = - 5 2 3 (x - 2) - 5 3 2 + 5

Графически касательные обозначаются так:

Касательная к гиперболе

Когда гипербола имеет центр в точке x c e n t e r ; y c e n t e r и вершины x c e n t e r + α ; y c e n t e r и x c e n t e r - α ; y c e n t e r , имеет место задание неравенства x - x c e n t e r 2 α 2 - y - y c e n t e r 2 b 2 = 1 , если с вершинами x c e n t e r ; y c e n t e r + b и x c e n t e r ; y c e n t e r - b , тогда задается при помощи неравенства x - x c e n t e r 2 α 2 - y - y c e n t e r 2 b 2 = - 1 .

Гипербола может быть представлена в виде двух объединенных функций вида

y = b a · (x - x c e n t e r) 2 - a 2 + y c e n t e r y = - b a · (x - x c e n t e r) 2 - a 2 + y c e n t e r или y = b a · (x - x c e n t e r) 2 + a 2 + y c e n t e r y = - b a · (x - x c e n t e r) 2 + a 2 + y c e n t e r

В первом случае имеем, что касательные параллельны о у, а во втором параллельны о х.

Отсюда следует, что для того, чтобы найти уравнение касательной к гиперболе, необходимо выяснить, какой функции принадлежит точка касания. Чтобы определить это, необходимо произвести подстановку в уравнения и проверить их на тождественность.

Пример 7

Составить уравнение касательной к гиперболе x - 3 2 4 - y + 3 2 9 = 1 в точке 7 ; - 3 3 - 3 .

Решение

Необходимо преобразовать запись решения нахождения гиперболы при помощи 2 функций. Получим, что

x - 3 2 4 - y + 3 2 9 = 1 ⇒ y + 3 2 9 = x - 3 2 4 - 1 ⇒ y + 3 2 = 9 · x - 3 2 4 - 1 ⇒ y + 3 = 3 2 · x - 3 2 - 4 и л и y + 3 = - 3 2 · x - 3 2 - 4 ⇒ y = 3 2 · x - 3 2 - 4 - 3 y = - 3 2 · x - 3 2 - 4 - 3

Необходимо выявить, к какой функции принадлежит заданная точка с координатами 7 ; - 3 3 - 3 .

Очевидно, что для проверки первой функции необходимо y (7) = 3 2 · (7 - 3) 2 - 4 - 3 = 3 3 - 3 ≠ - 3 3 - 3 , тогда точка графику не принадлежит, так как равенство не выполняется.

Для второй функции имеем, что y (7) = - 3 2 · (7 - 3) 2 - 4 - 3 = - 3 3 - 3 ≠ - 3 3 - 3 , значит, точка принадлежит заданному графику. Отсюда следует найти угловой коэффициент.

Получаем, что

y " = - 3 2 · (x - 3) 2 - 4 - 3 " = - 3 2 · x - 3 (x - 3) 2 - 4 ⇒ k x = y " (x 0) = - 3 2 · x 0 - 3 x 0 - 3 2 - 4 x 0 = 7 = - 3 2 · 7 - 3 7 - 3 2 - 4 = - 3

Ответ: уравнение касательной можно представить как

y = - 3 · x - 7 - 3 3 - 3 = - 3 · x + 4 3 - 3

Наглядно изображается так:

Касательная к параболе

Чтобы составить уравнение касательной к параболе y = a x 2 + b x + c в точке x 0 , y (x 0) , необходимо использовать стандартный алгоритм, тогда уравнение примет вид y = y " (x 0) · x - x 0 + y (x 0) . Такая касательная в вершине параллельна о х.

Следует задать параболу x = a y 2 + b y + c как объединение двух функций. Поэтому нужно разрешить уравнение относительно у. Получаем, что

x = a y 2 + b y + c ⇔ a y 2 + b y + c - x = 0 D = b 2 - 4 a (c - x) y = - b + b 2 - 4 a (c - x) 2 a y = - b - b 2 - 4 a (c - x) 2 a

Графически изобразим как:

Для выяснения принадлежности точки x 0 , y (x 0) функции, нежно действовать по стандартному алгоритму. Такая касательная будет параллельна о у относительно параболы.

Пример 8

Написать уравнение касательной к графику x - 2 y 2 - 5 y + 3 , когда имеем угол наклона касательной 150 ° .

Решение

Начинаем решение с представления параболы в качестве двух функций. Получим, что

2 y 2 - 5 y + 3 - x = 0 D = (- 5) 2 - 4 · (- 2) · (3 - x) = 49 - 8 x y = 5 + 49 - 8 x - 4 y = 5 - 49 - 8 x - 4

Значение углового коэффициента равняется значению производной в точке x 0 этой функции и равняется тангенсу угла наклона.

Получаем:

k x = y " (x 0) = t g α x = t g 150 ° = - 1 3

Отсюда определим значение х для точек касания.

Первая функция запишется как

y " = 5 + 49 - 8 x - 4 " = 1 49 - 8 x ⇒ y " (x 0) = 1 49 - 8 x 0 = - 1 3 ⇔ 49 - 8 x 0 = - 3

Очевидно, что действительных корней нет, так как получили отрицательное значение. Делаем вывод, что касательной с углом 150 ° для такой функции не существует.

Вторая функция запишется как

y " = 5 - 49 - 8 x - 4 " = - 1 49 - 8 x ⇒ y " (x 0) = - 1 49 - 8 x 0 = - 1 3 ⇔ 49 - 8 x 0 = - 3 x 0 = 23 4 ⇒ y (x 0) = 5 - 49 - 8 · 23 4 - 4 = - 5 + 3 4

Имеем, что точки касания - 23 4 ; - 5 + 3 4 .

Ответ: уравнение касательной принимает вид

y = - 1 3 · x - 23 4 + - 5 + 3 4

Графически изобразим это таким образом:

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Загрузка...