domvpavlino.ru

Как рассчитывается среднее арифметическое. Как найти среднее арифметическое число в Excel

По дисциплине: Статистика

Вариант № 2

Средние величины, применяемые в статистике

Введение………………………………………………………………………….3

Теоретическое задание

Средняя величина в статистике, ее сущность и условия применения.

1.1. Сущность средней величины и условия применения………….4

1.2. Виды средних величин……………………………………………8

Практическое задание

Задача 1,2,3………………………………………………………………………14

Заключение……………………………………………………………………….21

Список используемой литературы……………………………………………...23

Введение

Данная контрольная работа состоит из двух частей – теоретической и практической. В теоретической части будет подробно рассмотрена такая важная статистическая категория как средняя величина с целью выявления её сущности и условий применения, а также выделения видов средних и способов их расчёта.

Статистика, как известно, изучает массовые социально-экономические явления. Каждое из этих явлений может иметь различное количественное выражение одного и того же признака. Например, заработная плата одной и той же профессии рабочих или цены на рынке на один и тот же товар и т.д. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Для изучения какой-либо совокупности по варьирующим (количественно изменяющимся) признакам статистика использует средние величины.

Сущность средней величины

Средняя величина - это обобщающая количественная характеристика совокупности однотипных явлений по одному варьирующему признаку. В экономической практике используется широкий круг показателей, вычисленных в виде средних величин.

Важнейшее свойство средней величины заключается в том, что она представляет значение определенного признака во всей совокупности одним числом, несмотря на количественные различия его у отдельных единиц совокупности, и выражает то общее, что присуще всем единицам изучаемой совокупности. Таким образом, через характеристику единицы совокупности она характеризует всю совокупность в целом.

Средние величины связаны с законом больших чисел. Суть этой связи заключается в том, что при осреднении случайные отклонения индивидуальных величин в силу действия закона больших чисел взаимопогашаются и в средней выявляется основная тенденция развития, необходимость, закономерность. Средние величины позволяют сравнивать показатели, относящиеся к совокупностям с различной численностью единиц.

В современных условиях развития рыночных отношений в экономике средние служат инструментом изучения объективных закономерностей социально-экономических явлений. Однако в экономическом анализе нельзя ограничиваться лишь средними показателями, так как за общими благоприятными средними могут скрываться и крупные серьезные недостатки в деятельности отдельных хозяйствующих субъектов, и ростки нового, прогрессивного. Например, распределение населения по доходу позволяет выявлять формирование новых социальных групп. Поэтому наряду со средними статистическими данными необходимо учитывать особенности отдельных единиц совокупности.

Средняя величина являются равнодействующей всех факторов, оказывающих влияние на изучаемое явление. То есть, при расчете средних величин взаимопогашаются влияние случайных (пертурбационных, индивидуальных) факторов и, таким образом, возможно определение закономерности, присущей исследуемому явлению. Адольф Кетле подчеркивал, что значение метода средних величин состоит в возможности перехода от единичного к общему, от случайного к закономерному, и существование средних величин является категорией объективной действительности.

Статистика изучает массовые явления и процессы. Каждое из таких явлений обладает как общими для всей совокупности, так и особенными, индивидуальными свойствами. Различие между индивидуальными явлениями называют вариацией. Другое свойство массовых явлений - присущая им близость характеристик отдельных явлений. Итак, взаимодействие элементов совокупности приводит к ограничению вариации хотя бы части их свойств. Эта тенденция существует объективно. Именно в её объективности заключается причина широчайшего применения средних величин на практике и в теории.

Средней величиной в статистике называется обобщающий показатель, характеризующий типичный уровень явления в конкретных условиях места и времени, отражающий величину варьирующего признака в расчёте на единицу качественно однородной совокупности.

В экономической практике используется широкий круг показателей, вычисленный в виде средних величин.

С помощью метода средних величин статистика решает много задач.

Главное значение средних состоит в их обобщающей функции, то есть замене множества различных индивидуальных значений признака средней величиной, характеризующей всю совокупность явлений.

Если средняя величина обобщает качественно однородные значения признака, то она является типической характеристикой признака в данной совокупности.

Однако неправильно сводить роль средних величин только к характеристике типичных значений признаков в однородных по данному признаку совокупностях. На практике значительно чаще современная статистика использует средние величины, обобщающие явно однородные явления.

Средняя величина национального дохода на душу населения, средняя урожайность зерновых культур по всей стране, среднее потребление разных продуктов питания – это характеристики государства как единой народнохозяйственной системы, это так называемые системные средние.

Системные средние могут характеризовать как пространственные или объектные системы, существующие одномоментно (государство, отрасль, регион, планета Земля и т.д.), так и динамические системы, протяжённые во времени (год, десятилетие, сезон и т.д.).

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности. Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть как основные, так и случайные. Например, курс акций корпорации в целом определяется ее финансовым положением. В то же время, в отдельные дни и на отдельных биржах эти акции в силу сложившихся обстоятельств могут продаваться по более высокому или заниженному курсу. Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенностей, присущих отдельным единицам.

Вычисление среднего - один из распространённых приёмов обобщения; средний показатель отражает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости.

Средняя – это сводная характеристика закономерностей процесса в тех условиях, в которых он протекает.

Каждая средняя характеризует изучаемую совокупность по какому-либо одному признаку, но для характеристики любой совокупности, описания её типических черт и качественных особенностей нужна система средних показателей. Поэтому в практике отечественной статистики для изучения социально-экономических явлений, как правило, исчисляется система средних показателей. Так, например, показатель средней заработной платы оцениваются совместно с показателями средней выработки, фондовооружённости и энерговооружённости труда, степенью механизации и автоматизации работ и др.

Средняя должна вычисляться с учётом экономического содержания исследуемого показателя. Поэтому для конкретного показателя, используемого в социально экономическом анализе, можно исчислить только одно истинное значение средней на базе научного способа расчёта.

Средняя величина это один из важнейших обобщающих статистических показателей, характеризующий совокупность однотипных явлений по какому-либо количественно варьирующему признаку. Средние в статистике это обобщающие показатели, числа, выражающие типичные характерные размеры общественных явлений по одному количественно варьирующему признаку.

Виды средних величин

Виды средних величин различаются прежде всего тем, какое свойство, какой параметр исходной варьирующей массы индивидуальных значений признака должен быть сохранен неизменным.

Средняя арифметическая

Средней арифметической величиной называется такое среднее значение признака, при вычислении которого общий объём признака в совокупности остаётся неизменным. Иначе можно сказать, что средняя арифметическая величина – среднее слагаемое. При её вычислении общий объём признака мысленно распределяется поровну между всеми единицами совокупности.

Средняя арифметическая применяется, если известны значения осредняемого признака (х) и количество единиц совокупности с определённым значением признака (f).

Средняя арифметическая бывает простой и взвешенной.

Средняя арифметическая простая

Простая используется, если каждое значение признака х встречается один раз, т.е. для каждого х значение признака f=1, или если исходные данные не упорядочены и неизвестно, сколько единиц имеют определённые значения признака.

Формула средней арифметической простой имеет вид.

,

Метод средних величин

3.1 Сущность и значение средних величин в статистике. Виды средних величин

Средней величиной в статистике называется обобщенная характеристика качественно однородных явлений и процессов по какому-либо варьирующему признаку, которая показывает уровень признака, отнесенный к единице совокупности. Средняя величина абстрактна, т.к. характеризует значение признака у некоторой обезличенной единицы совокупности. Сущность средней величины состоит в том, что через единичное и случайное выявляется общее и необходимое, т. е. тенденция и закономерность в развитии массовых явлений. Признаки, которые обобщают в средних величинах, присущи всем единицам совокупности . Благодаря этому средняя величина имеет большое значение для выявления закономерностей, присущих массовым явлениям и не заметных в отдельных единицах совокупности

Общие принципы применения средних величин :

    необходим обоснованный выбор единицы совокупности, для которой рассчитывается средняя величина;

    при определении средней величины нужно исходить из качественного содержания осредняемого признака, учитывать взаимосвязь исследуемых признаков, а также имеющиеся для расчета данные;

    средние величины должны рассчитываться по качественно однородным совокупностям, которые получают методом группировок, предполагающим расчёт системы обобщающих показателей;

    общие средние должны подкрепляться групповыми средними.

В зависимости от характера первичных данных, области применения и способа расчета в статистике различают следующие основные виды средних :

1) степенные средние (средняя арифметическая, гармоническая, геометрическая, средняя квадратическая и кубическая);

2) структурные (непараметрические) средние (мода и медиана).

В статистике правильную характеристику изучаемой совокупности по варьирующему признаку в каждом отдельном случае дает только вполне определенный вид средней. Вопрос о том, какой вид средней необходимо применить в отдельном случае, разрешается путем конкретного анализа изучаемой совокупности, а также исходя из принципа осмысленности результатов при суммировании или при взвешивании. Эти и другие принципы в статистике выражаютсятеорией средних .

Например, средняя арифметическая и средняя гармоническая используются для характеристики среднего значения варьирующего признака у изучаемой совокупности. Средняя геометрическая применяется только при исчислении средних темпов динамики, а средняя квадратическая только при исчислении показателей вариации.

Формулы расчёта средних величин представлены в таблице 3.1.

Таблица 3.1 – Формулы расчёта средних величин

Виды средних величин

Формулы расчёта

простая

взвешенная

1. Средняя арифметическая

2. Средняя гармоническая

3. Средняя геометрическая

4. Средняя квадратическая

Обозначения: - величины, для которых исчисляется средняя; - средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений; - частота (повторяемость индивидуальных значений признака).

Очевидно, что различные средние выводятся из общей формулы степенной средней (3.1) :

, (3.1)

при k = + 1 - средняя арифметическая; k = -1 - средняя гармоническая; k = 0 - средняя геометрическая; k = +2 - средняя квадратическая.

Средние величины бывают простые и взвешенные. Взвешенными средними называются величины, которые учитывают, что некоторые варианты значений признака могут иметь различную численность; в связи с этим каждый вариант приходится умножать на эту численность. «Весами» при этом выступают числа единиц совокупности в разных группах, т.е. каждый вариант «взвешивают» по своей частоте. Частоту f называют статистическим весом или весом средней .

В итоге правильный выбор средней величины предполагает такую последовательность:

а) установление обобщающего показателя совокупности;

б) определение для данного обобщающего показателя математического соотношения величин;

в) замена индивидуальных значений средними величинами;

г) расчет средней с помощью соответствующего уравнения.

3.2 Средняя арифметическая и её свойства и техника исчисления. Средняя гармоническая

Средняя арифметическая – самый распространенный вид средней величины; она исчисляется в тех случаях, когда объем усредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

Важнейшие свойства средней арифметической :

1. Произведение средней на сумму частот всегда равно сумме произведений вариант (отдельных значений) на частоты.

2. Если от каждой варианты отнять (прибавить) какое-либо произвольное число, то новая средняя уменьшится (увеличится) на то же число.

3. Если каждую варианту умножить (разделить) на какое-то произвольное число, то новая средняя увеличится (уменьшится) во столько же раз

4. Если все частоты (веса) разделить или умножить на какое-либо число, то средняя арифметическая от этого не изменится.

5. Сумма отклонений отдельных вариантов от средней арифметической всегда равняется нулю.

Можно из всех значений признака вычесть произвольную постоянную величину (лучше значение серединной варианты или варианты с наибольшей частотой), полученные разности сократить на общий множитель (лучше на величину интервала), а частоты выразить частностями (в процентах) и исчисленную среднюю умножить на общий множитель и прибавить произвольную постоянную величину. Этот способ расчета средней арифметической называется способом расчета от условного нуля .

Средняя геометрическая находит свое применение при определении средних темпов роста (средних коэффициентов роста), когда индивидуальные значения признака представлены в виде относительных величин. Она используется также, если необходимо найти среднюю между минимальным и максимальным значениями признака (например, между 100 и 1000000).

Средняя квадратическая применяется для измерения вариации признака в совокупности (расчета среднего квадратического отклонения).

В статистике действует правило мажорантности средних:

Х гарм. < Х геом. < Х арифм. < Х квадр. < Х куб.

3.3 Структурные средние величины (мода и медиана)

Для определения структуры совокупности используют особые средние показатели, к которым относятся медиана и мода или так называемые структурные средние. Если средняя арифметическая рассчитывается на основе использования всех вариантов значений признака, то медиана и мода характеризуют величину того варианта, который занимает определенное среднее положение в ранжированном вариационном ряду

Мода - наиболее типичное, чаще всего встречаемое значение признака. Для дискретного ряда модой будет являться вариант с наибольшей частотой. Для определения моды интервального ряда сначала определяют модальный интервал (интервал, имеющий наибольшую частоту). Затем в пределах этого интервала находят то значение признака, которое может являться модой.

Чтобы найти конкретное значение моды интервального ряда, необходимо использовать формулу (3.2)

(3.2)

где Х Мо - нижняя граница модального интервала; i Мо - величина модального интервала; f Мо - частота модального интервала; f Мо-1 - частота интервала, предшествующего модальному; f Мо+1 - частота интервала, следующего за модальным.

Мода имеет широкое распространение в маркетинговой деятельности при изучении покупательского спроса, особенно при определении пользующихся наибольшим спросом размеров одежды и обуви, при регулировании ценовой политики.

Медиана - значение варьирующего признака, приходящееся на середину ранжированной совокупности. Дляранжированного ряда с нечетным числом индивидуальных величин (например, 1, 2, 3, 6, 7, 9, 10) медианой будет величина, которая расположена в центре ряда, т.е. четвёртая величина - 6. Дляранжированного ряда с четным числом индивидуальных величин (например, 1, 5, 7, 10, 11, 14) медианой будет средняя арифметическая величина, которая рассчитывается из двух смежных величин. Для нашего случая медиана равна (7+10)/2= 8,5.

Т. о., для нахождения медианы сначала необходимо определить ее порядковый номер (ее положение в ранжированном ряду) по формулам (3.3):

(если частот нет)

N Me =
(если частоты есть) (3.3)

где n - число единиц в совокупности.

Численное значение медианы интервального ряда определяют по накопленным частотам в дискретном вариационном ряду. Для этого сначала следует указать интервал нахождения медианы в интервальном ряду распределения. Медианным называют первый интервал, где сумма накопленных частот превышает половину наблюдений от общего числа всех наблюдений.

Численное значение медианы обычно определяют по формуле (3.4)

(3.4)

где x Ме - нижняя граница медианного интервала; iМе - величина интервала; SМе -1 - накопленная частота интервала, которая предшествует медианному; fМе - частота медианного интервала.

Внутри найденного интервала расчет медианы производится также по формуле Ме = xl е, где второй множитель в правой части равенства показывает расположение медианы внутри медианного интервала, а х - длина этого интервала. Медиана делит вариационный ряд пополам по частотам. Определяют ещеквартили , которые делят вариационный ряд на 4 равновеликие по вероятности части, идецили , делящие ряд на 10 равновеликих частей.

Средняя величина - это обобщающий показатель, который характеризует качественно однородную совокупность по определенному количественному признаку. Например, средний возраст лиц, осужденных за кражу.

В судебной статистике средние величины используют для характеристики:

Средних сроков рассмотрения дел данной категории;

Среднего размера иска;

Среднего числа ответчиков, приходящихся на одно дело;

Среднего размера ущерба;

Средней нагрузки судей, и др.

Средняя всегда величина именованная и имеет ту же размерность, что и признак у отдельной единицы совокупности. Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному варьирующему признаку, поэтому за всякой средней скрывается ряд распределения единиц этой совокупности по изучаемому признаку. Выбор вида средней определяется содержанием показателя и исходных данных для расчета средней величины.

Все виды средних величин, используемые в статистических исследованиях, подразделяются на две категории:

1) степенные средние;

2) структурные средние.

Первая категория средних величин включает: среднюю арифметическую, среднюю гармоническую, среднюю геометрическую и среднюю квадратическую . Вторая категория - это мода и медиана . При этом каждый из перечисленных видов степенных средних величин может иметь две формы: простую и взвешенную . Простая форма средней величины используется для получения среднего значения изучаемого признака, когда расчет осуществляется по несгруппированным статистическим данным, либо когда каждая варианта в совокупности встречается только один раз. Взвешенными средними называют величины, которые учитывают, что варианты значений признака могут иметь различную численность, в связи, с чем каждый вариант приходится умножать на соответствующую частоту. Иными словами, каждый вариант «взвешивают» по своей частоте. Частоту называют статистическим весом.

Средняя арифметическая простая - самый распространенный вид средней. Она равна сумме отдельных значений признака, деленной на общее число этих значений:

где x 1 ,x 2 , … ,x N - индивидуальные значения варьирующего признака (варианты), а N - число единиц совокупности.

Средняя арифметическая взвешенная применяется в тех случаях, когда данные представлены в виде рядов распределения или группировок. Она вычисляется как сумма произведений вариантов на соответствующие им частоты, деленная на сумму частот всех вариантов:

где x i - значение i -й варианты признака; f i - частота i -й варианты.

Таким образом, каждое значение варианты взвешивается по своей частоте, поэтому частоты иногда называют статистическими весами.


Замечание. Когда речь идет о средней арифметической величине без указания ее вида, подразумевается средняя арифметическая простая.

Таблица 12.

Решение. Для расчета используем формулу средней арифметической взвешенной:

Таким образом, в среднем на одно уголовное дело приходится два обвиняемых.

Если вычисление средней величины производят по данным, сгруппированным в виде интервальных рядов распределения, то сначала надо определить серединные значения каждого интервала х" i , после чего рассчитать среднюю величину по формуле средней арифметической взвешенной, в которую вместо x i подставляют х" i .

Пример. Данные о возрасте преступников, осужденных за совершение кражи, представлены в таблице:

Таблица 13.

Определить средний возраст преступников, осужденных за совершение кражи.

Решение. Для того, чтобы определить средний возраст преступников на основе интервального вариационного ряда необходимо сначала найти серединные значения интервалов. Так как дан интервальный ряд с открытыми первым и последним интервалами, то величины этих интервалов принимаются равными величинам смежных закрытых интервалов. В нашем случае величина первого и последнего интервалов равны 10.

Теперь находим средний возраст преступников по формуле средней арифметической взвешенной:

Таким образом, средний возраст преступников, осужденных за совершение кражи, приближенно равен 27 лет.

Средняя гармоническая простая представляет собой величину, обратную средней арифметической из обратных значений признака:

где 1/x i - обратные значения вариантов, а N - число единиц совокупности.

Пример. Для определения средней годовой нагрузки на судей районного суда при рассмотрении уголовных дел провели обследование нагрузки 5 судей этого суда. Средние затраты времени на одно уголовное дело для каждого из обследованных судей оказались равными (в днях): 6, 0, 5, 6, 6, 3, 4, 9, 5, 4. Найти средние затраты на одно уголовное дело и среднюю годовую нагрузку на судей данного районного суда при рассмотрении уголовных дел.

Решение. Для определения средних затрат времени на одно уголовное дело, воспользуемся формулой средней гармонической простой:

Для упрощения расчетов в примере возьмем число дней в году равным 365, включая выходные (это не влияет на методику расчета, а при вычислении аналогичного показателя на практике необходимо вместо 365 дней подставить количество рабочих дней в конкретном году). Тогда средняя годовая нагрузка на судей данного районного суда при рассмотрении уголовных дел составит: 365(дней) : 5,56 ≈ 65,6 (дел).

Если бы мы для определения средних затрат времени на одно уголовное дело, воспользовались формулой средней арифметической простой, то получили бы:

365 (дней) : 5,64 ≈ 64,7 (дела), т.е. средняя нагрузка на судей оказалась меньше.

Проверим обоснованность такого подхода. Для этого воспользуемся данными о затратах времени на одно уголовное дело для каждого судьи и рассчитаем число уголовных, рассмотренных каждым из них за год.

Получим соответственно :

365(дней) : 6 ≈ 61 (дело), 365(дней) : 5,6 ≈ 65,2 (дел), 365(дней) : 6,3 ≈ 58 (дел),

365(дней) : 4,9 ≈ 74,5 (дела), 365(дней) : 5,4 ≈ 68 (дел).

Теперь вычислим среднюю годовую нагрузку на судей данного районного суда при рассмотрении уголовных дел:

Т.е. средняя годовая нагрузка такая же, как и при использовании средней гармонической.

Таким образом, использование средней арифметической в данном случае неправомерно.

В тех случаях, когда известны варианты признака, их объемные значения (произведение варианты на частоту), но неизвестны сами частоты, применяется формула средней гармонической взвешенной:

,

где x i - значения вариантов признака, а w i - объемные значения вариантов (w i = x i · f i ).

Пример. Данные о цене единицы однотипного товара, произведенного различными учреждениями уголовно-исполнительной системы, и об объемах его реализации приведены в таблице 14.

Таблица 14

Найти среднюю цену реализации товара.

Решение. При расчете средней цены мы должны пользоваться отношением суммы реализации к количеству реализованных единиц. Нам неизвестно количество реализованных единиц, но известны суммы реализаций товаров. Поэтому для нахождения средней цены реализованных товаров воспользуемся формулой средней гармонической взвешенной. Получаем

Если здесь использовать формулу средней арифметической, то можно получить среднюю цену, которая будет нереальна:

Средняя геометрическая вычисляется извлечением корня степени N из произведения всех значений вариантов признака:

,

где x 1 ,x 2 , … ,x N - индивидуальные значения варьирующего признака (варианты), а

N - число единиц совокупности.

Этот вид средней используется для вычисления средних показателей роста рядов динамики.

Средняя квадратическая применяется для расчета среднеквадратического отклонения, являющегося показателем вариации, и будет рассмотрена ниже.

Для определения структуры совокупности используют особые средние показатели, к которым относятся медиана и мода , или так называемые структурные средние. Если средняя арифметическая рассчитывается на основе использования всех вариантов значений признака, то медиана и мода характеризуют величину того варианта, который занимает определенное среднее положение в ранжированном (упорядоченном) ряду. Упорядочение единиц статистической совокупности может быть проведено по возрастанию или убыванию вариантов изучаемого признака.

Медиана (Ме) - это величина, которая соответствует варианту, находящемуся в середине ранжированного ряда. Таким образом, медиана - это тот вариант ранжированного ряда, по обе стороны от которого в данном ряду должно находиться равное число единиц совокупности.

Для нахождения медианы сначала необходимо определить ее порядковый номер в ранжированном ряду по формуле:

где N - объем ряда (число единиц совокупности).

Если ряд состоит из нечетного числа членов, то медиана равна варианте с номером N Me . Если же ряд состоит из четного числа членов, то медиана определяется как среднее арифметическое двух смежных вариант, расположенных в середине.

Пример. Дан ранжированный ряд 1, 2, 3, 3, 6, 7, 9, 9, 10. Объем ряда N = 9, значит N Me = (9 + 1) / 2 = 5. Следовательно, Ме = 6, т.е. пятой варианте. Если дан ряд 1, 5, 7, 9, 11, 14, 15, 16, т.е. ряд с четным числом членов (N = 8), то N Me = (8 + 1) / 2 = 4,5. Значит медиана равна полусумме четвертой и пятой вариант, т.е. Ме = (9 + 11) / 2 = 10.

В дискретном вариационном ряду медиану определяют по накопленным частотам. Частоты вариант, начиная с первой, суммируются до тех пор, пока не будет превзойден номер медианы. Значение последней просуммированной варианты и будет медианой.

Пример. Найти медиану числа обвиняемых, приходящихся на одно уголовное дело, используя данные таблицы 12.

Решение. В данном случае объем вариационного ряда N = 154, следовательно, N Me = (154 + 1) / 2 = 77,5. Просуммировав частоты первой и второй варианты, получим: 75 + 43 = 118, т.е. мы превзошли номер медианы. Значит Ме = 2.

В интервальном вариационном ряду распределения сначала указывают интервал, в котором будет находиться медиана. Его называют медианным . Это первый интервал, накопленная частота которого превышает половину объема интервального вариационного ряда. Затем численное значение медианы определяется по формуле:

где x Ме - нижняя граница медианного интервала; i - величина медианного интервала; S Ме-1 - накопленная частота интервала, который предшествует медианному; f Ме - частота медианного интервала.

Пример. Найти медиану возраста преступников, осужденных за совершение кражи, на основе статистических данных, представленных в таблице 13.

Решение. Статистические данные представлены интервальным вариационным рядом, значит сначала определим медианный интервал. Объем совокупности N = 162, следовательно, медианным интервалом является интервал 18-28, т.к. это первый интервал, накопленная частота которого (15 + 90 = 105) превышает половину объема (162: 2 = 81) интервального вариационного ряда. Теперь численное значение медианы определяем по приведенной выше формуле:

Таким образом, половина осужденных за совершение кражи младше 25 лет.

Модой (Мо) называют значение признака, которое наиболее часто встречается у единиц совокупности. К моде прибегают для выявления величины признака, имеющей наибольшее распространение. Для дискретного ряда модой будет являться вариант с наибольшей частотой. Например, для дискретного ряда, представленного в таблице 3 Мо = 1, так как этому значению варианты соответствует наибольшая частота - 75. Для определения моды интервального ряда сначала определяют модальный интервал (интервал, имеющий наибольшую частоту). Затем в пределах этого интервала находят то значение признака, которое может являться модой.

Его значение находят по формуле:

где x Mo - нижняя граница модального интервала; i - величина модального интервала; f Мо - частота модального интервала; f Мо-1 - частота интервала, предшествующего модальному; f Мо+1 - частота интервала, следующего за модальным.

Пример. Найтимодувозраста преступников, осужденных за совершение кражи, данные о которых представлены в таблице 13.

Решение. Наибольшая частота соответствует интервалу 18-28, следовательно, мода должна находиться в этом иртервале. Ее величину определяем по приведенной выше формуле:

Таким образом, наибольшее число преступников, осужденных за совершение кражи, имеет возраст 24 года.

Средняя величина дает обобщающую характеристику всей совокупности изучаемого явления. Однако две совокупности, имеющие одинаковые средние значения, могут значительно отличаться друг от друга по степени колеблемости (вариации) величины изучаемого признака. Например, в одном суде были назначены следующие сроки лишения свободы: 3, 3, 3, 4, 5, 5, 5, 12, 12, 15 лет, а в другом - 5, 5, 6, 6, 7, 7, 7, 8, 8, 8 лет. В обоих случаях средняя арифметическая равна 6,7 лет. Однако эти совокупности существенно различаются между собой разбросом индивидуальных значений назначенного срока лишения свободы относительно среднего значения.

И для первого суда, где этот разброс достаточно большой, средняя величина срока лишения свободы плохо отражает всю совокупность. Таким образом, если индивидуальные значения признака мало отличаются друг от друга, то средняя арифметическая будет достаточно показательной характеристикой свойств данной совокупности. В противном случае средняя арифметическая будет ненадежной характеристикой этой совокупности и применение ее на практике малоэффективно. Поэтому необходимо учитывать вариацию значений изучаемого признака.

Вариация - это различия в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени. Термин «вариация» имеет латинское происхождение - variatio, что означает различие, изменение, колеблемость. Она возникает в результате того, что индивидуальные значения признака складываются под совокупным влиянием разнообразных факторов (условий), которые по-разному сочетаются в каждом отдельном случае. Для измерения вариации признака применяются различные абсолютные и относительные показатели.

К основным показателям вариации относятся следующие:

1) размах вариации;

2) среднее линейное отклонение;

3) дисперсия;

4) среднее квадратическое отклонение;

5) коэффициент вариации.

Кратко остановимся на каждом из них.

Размах вариации R самый доступный по простоте расчета абсолютный показатель, который определяется как разность между самым большим и самым малым значениями признака у единиц данной совокупности:

Размах вариации (размах колебаний) - важный показатель колеблемости признака, но он дает возможность увидеть только крайние отклонения, что ограничивает область его применения. Для более точной характеристики вариации признака на основе учета его колеблемости используются другие показатели.

Среднее линейное отклонение представляет собой среднее арифметическое из абсолютных значений отклонений индивидуальных значений признака от средней и определяется по формулам:

1) для несгруппированных данных

2) для вариационного ряда

Однако наиболее широко применяемым показателем вариации является дисперсия . Она характеризует меру разброса значений изучаемого признака относительно его среднего значения. Дисперсия определяется как средняя из отклонений, возведенных в квадрат.

Простая дисперсия для не сгруппированных данных:

.

Взвешенная дисперсия для вариационного ряда:

Замечание. На практике для вычисления дисперсии лучше использовать следующие формулы:

Для простой дисперсии

.

Для взвешенной дисперсии

Среднее квадратическое отклонение - это корень квадратный из дисперсии:

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем, однороднее совокупность и тем лучше средняя арифметическая отражает собой всю совокупность.

Рассмотренные выше меры рессеяния (размах вариации, дисперсия, среднее квадратическое отклонение) являются абсолютными показателями, судить по которым о степени колеблемости признака не всегда возможно. В некоторых задачах необходимо использовать относительные показатели рассеяния, одним из которых является коэффициент вариации.

Коэффициент вариации - выраженное в процентах отношение среднего квадратического отклонения к средней арифметической:

Коэффициент вариации используют не только для сравнительной оценки вариации разных признаков или одного и того же признака в различных совокупностях, но и для характеристики однородности совокупности. Статистическая совокупность считается количественно однородной, если коэффициент вариации не превышает 33 % (для распределений, близких к нормальному распределению).

Пример. Имеются следующие данныео сроках лишения свободы 50 осужденных, доставленных для отбывания назначенного судом наказания в исправительное учреждение уголовно-исполнительной системы: 5, 4, 2, 1, 6, 3, 4, 3, 2, 2, 5, 6, 4, 3, 10, 5, 4, 1, 2, 3, 3, 4, 1, 6, 5, 3, 4, 3, 5, 12, 4, 3, 2, 4, 6, 4, 4, 3, 1, 5, 4, 3, 12, 6, 7, 3, 4, 5, 5, 3.

1. Построить ряд распределения по срокам лишения свободы.

2. Найти среднее значение, дисперсию и среднее квадратическое отклонение.

3. Вычислить коэффициент вариации и сделать заключение об однородности или неоднородности изучаемой совокупности.

Решение. Для построения дискретного ряда распределения необходимо определить варианты и частоты. Варианта в данной задаче - это срок лишения свободы, а частоты - численность отдельных вариант. Рассчитав частоты, получим следующий дискретный ряд распределения:

Найдем среднее значение и дисперсию. Поскольку статистические данные представлены дискретным вариационным рядом, то для их вычисления будем использовать формулы среднего арифметического взвешенного и дисперсии. Получим:

= = 4,1;

= 5,21.

Теперь вычисляем среднее квадратическое отклонение:

Находим коэффициент вариации:

Следовательно, статистическая совокупность количественно неоднородна.

Наиболее распространенной формой статистических показателей, используемых в социально-экономических исследованиях, является средняя величина, представляющая собой обобщенную количественную характеристику признака статистической совокупности. Средние величины являются как бы «представителями» всего ряда наблюдений. Определить среднюю можно во многих случаях через исходное соотношение средней (ИСС) или ее логическую формулу: . Так, например, для расчета средней заработной платы работников предприятия необходимо общий фонд заработной платы разделить на число работников: Числитель исходного соотношения средней представляет собой ее определяющий показатель. Для средней заработной платы таким определяющим показателем является фонд заработной платы. Для каждого показателя, используемого в социально-экономическом анализе, можно составить только одно истинное исходное соотношение для расчета средней. Следует еще добавить, что для того, чтобы более точно оценить стандартное отклонение для малых выборок (с числом элементов менее 30), в знаменателе выражения под корнем надо использовать не n , а n- 1.

Понятие и виды средних величин

Средняя величина - это обобщающий показатель статистической совокупности, который погашает индивидуальные различия значений статистических величин, позволяя сравнивать разные совокупности между собой. Существует 2 класса средних величин: степенные и структурные. К структурным средним относятсямода имедиана , но наиболее часто применяютсястепенные средние различных видов.

Степенные средние величины

Степенные средние могут быть простыми и взвешенными .

Простая средняя величина рассчитывается при наличии двух и более несгруппированных статистических величин, расположенных в произвольном порядке по следующей общей формуле средней степенной (при различной величине k (m)):

Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием следующей общей формулы:

Где x - средняя величина исследуемого явления; x i – i -й вариант усредняемого признака ;

f i – вес i -го варианта.

Где X – значения отдельных статистических величин или середин группировочных интервалов;
m - показатель степени, от значения которого зависят следующие виды степенных средних величин:
при m = -1 средняя гармоническая;
при m = 0 средняя геометрическая;
при m = 1 средняя арифметическая;
при m = 2 средняя квадратическая;
при m = 3 средняя кубическая.

Используя общие формулы простой и взвешенной средних при разных показателях степени m, получаем частные формулы каждого вида, которые будут далее подробно рассмотрены.

Средняя арифметическая

Средняя арифметическая – начальный момент первого порядка, математическое ожидание значений случайной величины при большом числе испытаний;

Средняя арифметическая - это самая часто используемая средняя величина, которая получается, если подставить в общую формулу m=1. Средняя арифметическая простая имеет следующий вид:

или

Где X - значения величин, для которых необходимо рассчитать среднее значение; N - общее количество значений X (число единиц в изучаемой совокупности).

Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Рассчитаем средний балл по формуле средней арифметической простой: (3+4+4+5)/4 = 16/4 = 4. Средняя арифметическая взвешенная имеет следующий вид:

Где f - количество величин с одинаковым значением X (частота). >Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Рассчитаем средний балл по формуле средней арифметической взвешенной: (3*1 + 4*2 + 5*1)/4 = 16/4 = 4. Если значения X заданы в виде интервалов, то для расчетов используют середины интервалов X, которые определяются как полусумма верхней и нижней границ интервала. А если у интервала X отсутствует нижняя или верхняя граница (открытый интервал), то для ее нахождения применяют размах (разность между верхней и нижней границей) соседнего интервала X. Например, на предприятии 10 работников со стажем работы до 3 лет, 20 - со стажем от 3 до 5 лет, 5 работников - со стажем более 5 лет. Тогда рассчитаем средний стаж работников по формуле средней арифметической взвешенной, приняв в качестве X середины интервалов стажа (2, 4 и 6 лет): (2*10+4*20+6*5)/(10+20+5) = 3,71 года.

Функция СРЗНАЧ

Эта функция вычисляет среднее (арифметическое) своих аргументов.

СРЗНАЧ(число1; число2; ...)

Число1, число2, ... - это от 1 до 30 аргументов, для которых вычисляется среднее.

Аргументы должны быть числами или именами, массивами или ссылками, содержащими числа. Если аргумент, который является массивом или ссылкой, содержит тексты, логические значения или пустые ячейки, то такие значения игнорируются; однако, ячейки, которые содержат нулевые значения, учитываются.

Функция СРЗНАЧА

Вычисляет среднее арифметическое значений, заданных в списке аргументов. Помимо чисел в расчете могут участвовать текст и логические значения, такие как ИСТИНА и ЛОЖЬ.

СРЗНАЧА(значение1,значение2,...)

Значение1, значение2,... - это от 1 до 30 ячеек, интервалов ячеек или значений, для которых вычисляется среднее.

Аргументы должны быть числами, именами, массивами или ссылками. Массивы и ссылки, содержащие текст, интерпретируются как 0 (ноль). Пустой текст ("") интерпретируется как 0 (ноль). Аргументы, содержащие значение ИСТИНА, интерпретируются как 1, Аргументы, содержащие значение ЛОЖЬ, интерпретируются как 0 (ноль).

Средняя арифметическая применяется чаще всего, но бывают случаи, когда необходимо применение других видов средних величин. Рассмотрим такие случаи далее.

Средняя гармоническая

Средняя гармоническая для определения средней суммы обратных величин;

Средняя гармоническая применяется, когда исходные данные не содержат частот f по отдельным значениям X, а представлены как их произведение Xf. Обозначив Xf=w, выразим f=w/X, и, подставив эти обозначения в формулу средней арифметической взвешенной, получим формулу средней гармонической взвешенной:

Таким образом, средняя гармоническая взвешенная применяется тогда, когда неизвестны частоты f, а известно w=Xf. В тех случаях, когда все w=1, то есть индивидуальные значения X встречаются по 1 разу, применяется формула средней гармонической простой: или Например, автомобиль ехал из пункта А в пункт Б со скоростью 90 км/ч, а обратно - со скоростью 110 км/ч. Для определения средней скорости применим формулу средней гармонической простой, так как в примере дано расстояние w 1 =w 2 (расстояние из пункта А в пункт Б такое, же как и из Б в А), которое равно произведению скорости (X) на время (f). Средняя скорость = (1+1)/(1/90+1/110) = 99 км/ч.

Функция СРГАРМ

Возвращает среднее гармоническое множества данных. Среднее гармоническое - это величина, обратная к среднему арифметическому обратных величин.

СРГАРМ(число1;число2; ...)

Число1, число2, ... - это от 1 до 30 аргументов, для которых вычисляется среднее. Можно использовать массив или ссылку на массив вместо аргументов, разделяемых точкой с запятой.

Среднее гармоническое всегда меньше среднего геометрического, которое всегда меньше среднего арифметического.

Средняя геометрическая

Средняя геометрическая для оценки средних темпов роста случайной величин, нахождения значения признака, равноудаленного от минимального и максимального значения;

Средняя геометрическая применяется при определении средних относительных изменений. Геометрическая средняя величина дает наиболее точный результат осреднения, если задача стоит в нахождении такого значения X, который был бы равноудален как от максимального, так и от минимального значения X. Например, в период с 2005 по 2008 годы индекс инфляции в России составлял: в 2005 году - 1,109; в 2006 - 1,090; в 2007 - 1,119; в 2008 - 1,133. Так как индекс инфляции - это относительное изменение (индекс динамики), то рассчитывать среднее значение нужно по средней геометрической: (1,109*1,090*1,119*1,133)^(1/4) = 1,1126, то есть за период с 2005 по 2008 ежегодно цены росли в среднем на 11,26%. Ошибочный расчет по средней арифметической дал бы неверный результат 11,28%.

Функция СРГЕОМ

Возвращает среднее геометрическое значений массива или интервала положительных чисел. Например, функцию СРГЕОМ можно использовать для вычисления средних темпов роста, если задан составной доход с переменными ставками.

СРГЕОМ (число1; число2; ...)

Число1, число2, ... - это от 1 до 30 аргументов, для которых вычисляется среднее геометрическое. Можно использовать массив или ссылку на массив вместо аргументов, разделяемых точкой с запятой.

Средняя квадратическая

Средняя квадратическая – начальный момент второго порядка.

Средняя квадратическая применяется в тех случая, когда исходные значения X могут быть как положительными, так и отрицательными, например при расчете средних отклонений. Главной сферой применения квадратической средней является измерение вариации значений X.

Средняя кубическая

Средняя кубическая – начальный момент третьего порядка.

Средняя кубическая применяется крайне редко, например, при расчете индексов нищеты населения для развивающихся стран (ИНН-1) и для развитых (ИНН-2), предложенных и рассчитываемых ООН. У этого термина существуют и другие значения, см. среднее значение.

Сре́днее арифмети́ческое (в математике и статистике) множества чисел - сумма всех чисел, делённая на их количество. Является одной из наиболее распространённых мер центральной тенденции.

Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами.

Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).

Введение

Обозначим множество данных X = (x 1 , x 2 , …, x n ), тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной (x ¯ {\displaystyle {\bar {x}}} , произносится «x с чертой»).

Для обозначения среднего арифметического всей совокупности используется греческая буква μ. Для случайной величины, для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки x i из этой совокупности μ = E{x i } есть математическое ожидание этой выборки.

На практике разница между μ и x ¯ {\displaystyle {\bar {x}}} в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда x ¯ {\displaystyle {\bar {x}}} (но не μ) можно трактовать как случайную переменную, имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

Обе эти величины вычисляются одним и тем же способом:

X ¯ = 1 n ∑ i = 1 n x i = 1 n (x 1 + ⋯ + x n) . {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\cdots +x_{n}).}

Если X - случайная переменная, тогда математическое ожидание X можно рассматривать как среднее арифметическое значений в повторяющихся измерениях величины X . Это является проявлением закона больших чисел. Поэтому выборочное среднее используется для оценки неизвестного математического ожидания.

В элементарной алгебре доказано, что среднее n + 1 чисел больше среднего n чисел тогда и только тогда, когда новое число больше чем старое среднее, меньше тогда и только тогда, когда новое число меньше среднего, и не меняется тогда и только тогда, когда новое число равно среднему. Чем больше n , тем меньше различие между новым и старым средними значениями.

Заметим, что имеется несколько других «средних» значений, в том числе среднее степенное, среднее Колмогорова, гармоническое среднее, арифметико-геометрическое среднее и различные средне-взвешенные величины (например, среднее арифметическое взвешенное, среднее геометрическое взвешенное, среднее гармоническое взвешенное).

Примеры

  • Для трёх чисел необходимо сложить их и разделить на 3:
x 1 + x 2 + x 3 3 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}}{3}}.}
  • Для четырёх чисел необходимо сложить их и разделить на 4:
x 1 + x 2 + x 3 + x 4 4 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}+x_{4}}{4}}.}

Или проще 5+5=10, 10:2. Потому что мы складывали 2 числа, а значит, сколько чисел складываем, на столько и делим.

Непрерывная случайная величина

Для непрерывно распределённой величины f (x) {\displaystyle f(x)} среднее арифметическое на отрезке [ a ; b ] {\displaystyle } определяется через определённый интеграл:

F (x) ¯ [ a ; b ] = 1 b − a ∫ a b f (x) d x {\displaystyle {\overline {f(x)}}_{}={\frac {1}{b-a}}\int _{a}^{b}f(x)dx}

Некоторые проблемы применения среднего

Отсутствие робастности

Основная статья: Робастность в статистике

Хотя среднее арифметическое часто используется в качестве средних значений или центральных тенденций, это понятие не относится к робастной статистике, что означает, что среднее арифметическое подвержено сильному влиянию «больших отклонений». Примечательно, что для распределений с большим коэффициентом асимметрии среднее арифметическое может не соответствовать понятию «среднего», а значения среднего из робастной статистики (например, медиана) может лучше описывать центральную тенденцию.

Классическим примером является подсчёт среднего дохода. Арифметическое среднее может быть неправильно истолковано в качестве медианы, из-за чего может быть сделан вывод, что людей с большим доходом больше, чем на самом деле. «Средний» доход истолковывается таким образом, что доходы большинства людей находятся вблизи этого числа. Этот «средний» (в смысле среднего арифметического) доход является выше, чем доходы большинства людей, так как высокий доход с большим отклонением от среднего делает сильный перекос среднего арифметического (в отличие от этого, средний доход по медиане «сопротивляется» такому перекосу). Однако, этот «средний» доход ничего не говорит о количестве людей вблизи медианного дохода (и не говорит ничего о количестве людей вблизи модального дохода). Тем не менее, если легкомысленно отнестись к понятиям «среднего» и «большинство народа», то можно сделать неверный вывод о том, что большинство людей имеют доходы выше, чем они есть на самом деле. Например, отчёт о «среднем» чистом доходе в Медине, штат Вашингтон, подсчитанный как среднее арифметическое всех ежегодных чистых доходов жителей, даст на удивление большое число из-за Билла Гейтса. Рассмотрим выборку (1, 2, 2, 2, 3, 9). Среднее арифметическое равно 3.17, но пять значений из шести ниже этого среднего.

Сложный процент

Основная статья: Окупаемость инвестиций

Если числа перемножать , а не складывать , нужно использовать среднее геометрическое, а не среднее арифметическое. Наиболее часто этот казус случается при расчёте окупаемости инвестиций в финансах.

Например, если акции в первый год упали на 10 %, а во второй год выросли на 30 %, тогда некорректно вычислять «среднее» увеличение за эти два года как среднее арифметическое (−10 % + 30 %) / 2 = 10 %; правильное среднее значение в этом случае дают совокупные ежегодные темпы роста, по которым годовой рост получается только около 8,16653826392 % ≈ 8,2 %.

Причина этого в том, что проценты имеют каждый раз новую стартовую точку: 30 % - это 30 % от меньшего, чем цена в начале первого года, числа: если акции в начале стоили $30 и упали на 10 %, они в начале второго года стоят $27. Если акции выросли на 30 %, они в конце второго года стоят $35.1. Арифметическое среднее этого роста 10 %, но поскольку акции выросли за 2 года всего на $5.1, средний рост в 8,2 % даёт конечный результат $35.1:

[$30 (1 - 0.1) (1 + 0.3) = $30 (1 + 0.082) (1 + 0.082) = $35.1]. Если же использовать таким же образом среднее арифметическое значение 10 %, мы не получим фактическое значение: [$30 (1 + 0.1) (1 + 0.1) = $36.3].

Сложный процент в конце 2 года: 90 % * 130 % = 117 % , то есть общий прирост 17 %, а среднегодовой сложный процент 117 % ≈ 108.2 % {\displaystyle {\sqrt {117\%}}\approx 108.2\%} , то есть среднегодовой прирост 8,2 %.

Направления

Основная статья: Статистика направлений

При расчёте среднего арифметического значений некоторой переменной, изменяющейся циклически (например, фаза или угол), следует проявлять особую осторожность. Например, среднее чисел 1° и 359° будет равно 1 ∘ + 359 ∘ 2 = {\displaystyle {\frac {1^{\circ }+359^{\circ }}{2}}=} 180°. Это число неверно по двум причинам.

  • Во-первых, угловые меры определены только для диапазона от 0° до 360° (или от 0 до 2π при измерении в радианах). Таким образом, ту же пару чисел можно было бы записать как (1° и −1°) или как (1° и 719°). Средние значения каждой из пар будут отличаться: 1 ∘ + (− 1 ∘) 2 = 0 ∘ {\displaystyle {\frac {1^{\circ }+(-1^{\circ })}{2}}=0^{\circ }} , 1 ∘ + 719 ∘ 2 = 360 ∘ {\displaystyle {\frac {1^{\circ }+719^{\circ }}{2}}=360^{\circ }} .
  • Во-вторых, в данном случае, значение 0° (эквивалентное 360°) будет геометрически лучшим средним значеним, так как числа отклоняются от 0° меньше, чем от какого-либо другого значения (у значения 0° наименьшая дисперсия). Сравните:
    • число 1° отклоняется от 0° всего на 1°;
    • число 1° отклоняется от вычисленного среднего, равного 180°, на 179°.

Среднее значение для циклической переменной, рассчитанное по приведённой формуле, будет искусственно сдвинуто относительно настоящего среднего к середине числового диапазона. Из-за этого среднее рассчитывается другим способом, а именно, в качестве среднего значения выбирается число с наименьшей дисперсией (центральная точка). Также вместо вычитания используется модульное расстояние (то есть, расстояние по окружности). Например, модульное расстояние между 1° и 359° равно 2°, а не 358° (на окружности между 359° и 360°==0° - один градус, между 0° и 1° - тоже 1°, в сумме - 2°).

4.3. Средние величины. Сущность и значение средних величин

Средней величиной в статистике называется обобщающий показатель, характеризующий типичный уровень явления в конкретных условиях места и времени, отражающий величину варьирующего признака в расчете на единицу качественно однородной совокупности. В экономической практике используется широкий круг показателей, вычисленных в виде средних величин.

Например, обобщающим показателем доходов рабочих акционерного общества (АО) служит средний доход одного рабочего, определяемый отношением фонда заработной платы и выплат социального характера за рассматриваемый период (год, квартал, месяц) к численности рабочих АО.

Вычисление среднего - один из распространенных приемов обобщения; средний показатель отражает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнори­рует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.

Там, где возникает потребность обобщения, расчет таких характе­ристик приводит к замене множества различных индивидуальных зна­чений признака средним показателем, характеризующим всю совокуп­ность явлений, что позволяет выявить закономерности, присущие мас­совым общественным явлениям, незаметные в единичных явлениях.

Средняя отражает характерный, типичный, реальный уровень изу­чаемых явлений, характеризует эти уровни и их изменения во времени и в пространстве.

Средняя - это сводная характеристика закономерностей процесса в тех условиях, в которых он протекает.

4.4. Виды средних и способы их вычисления

Выбор вида средней определяется экономическим содержанием определенного показателя и исходных данных. В каждом конкретном случае применяется, одна из средних величин: арифметическая, гар­ моническая, геометрическая, квадратическая, кубическая и т.д. Пере­численные средние относятся к классу степенных средних.

Помимо степенных средних в статистической практике использу­ются средние структурные, в качестве которых рассматриваются мода и медиана.

Остановимся подробнее на степенных средних.

Средняя арифметическая

Наиболее распространенным видом средних является средняя арифметическая. Она применяется в тех случаях, когда объем варьиру­ющего признака для всей совокупности является суммой значений при­знаков отдельных ее единиц. Для общественных явлений характерна аддитивность (суммарность) объемов варьирующего признака, этим определяется область применения средней арифметической и объяс­няется ее распространенность как обобщающего показателя, например: общий фонд заработной платы - это сумма заработных плат всех ра­ботников, валовый сбор урожая - сумма произведенной продукции со всей посевной площади.

Чтобы исчислить среднюю арифметическую, нужно сумму всех зна­чений признаков разделить на их число.

Средняя арифметическая применяется в форме простой средней и взвешенной средней. Исходной, определяющей формой служит про­стая средняя.

Средняя арифметическая простая равна простой сумме от­дельных значений осредняемого признака, деленной на общее число этих значений (она применяется в тех случаях, когда имеются несгруппированные индивидуальные значения признака):

где
- индивидуальные значения варьирующего (варианты);м - число единиц совокупности.

Далее пределы суммирования в формулах указываться не будут. Например, требуется найти среднюю выработку одного рабочего (слесаря), если известно, сколько деталей изготовил каждый из 15 рабочих, т.е. дан ряд индивидуальных значений признака, шт.:

21; 20; 20; 19; 21; 19; 18; 22; 19; 20; 21; 20; 18; 19; 20.

Средняя арифметическая простая рассчитывается по формуле (4.1),1 шт.:

Средняя из вариантов, которые повторяются различное число раз, или, как говорят, имеют различный вес, называется взвешенной. В качестве весов выступают численности единиц в разных группах совокупности (в группу объединяют одинаковые варианты).

Средняя арифметическая взвешенная - средняя сгруппиро­ванных величин , - вычисляется по формуле:

, (4.2)

где
- веса (частоты повторения одинаковых признаков);

- сумма произведений величины признаков на их частоты;

- общая численность единиц совокупности.

Технику вычисления средней арифметической взвешенной проил­люстрируем на рассмотренном выше примере. Для этого сгруппируем исходные данные и поместим их в табл. 4.1.

Таблица 4.1

Распределение рабочих по выработке деталей

По формуле (4.2) средняя арифметическая взвешенная равна, шт.:

В отдельных случаях веса могут быть представлены не абсолютными величинами, а относительными (в процентах или долях единицы). Тог­да формула средней арифметической взвешенной будет иметь вид:

где
- частность, т.е. доля каждой частоты в общей сумме всех

Если частоты подсчитывают в долях (коэффициентах), то
= 1,и формула средней арифметически взвешенной имеет вид:

Вычисление средней арифметической взвешенной из групповых средних осуществляется по формуле:

,

где f -число единиц в каждой группе.

Результаты вычисления средней арифметической из групповых средних представлены в табл. 4.2.

Таблица 4.2

Распределение рабочих по среднему стажу работы

В этом примере вариантами являются не индивидуальные данные о стаже работы отдельных рабочих, а средние по каждому цеху . Весами f являются численности рабочих в цехах. Отсюда средний стаж работы рабочих по всему предприятию составит, лет:

.

Расчет средней арифметической в рядах распределения

Если значения осредняемого признака заданы в виде интервалов («от - до»), т.е. интервальных рядов распределения, то при расчете средней арифметической величины в качестве значений признаков в группах принимают середины этих интервалов, в результате чего образуется дискретный ряд. Рассмотрим следующий пример (табл. 4.3).

От интервального ряда перейдем к дискретному путем замены интервальных значений их средними значениями/(простая средняя

Таблица 4.3

Распределение рабочих АО по уровню ежемесячной оплаты труда

Группы рабочих по

Число рабочих,

Середина интервала,

оплате труда, руб.

чел., f

руб., х

900 и более

величины открытых интервалов (первый и последний) условно приравни­ваются к интервалам, примыкающим к ним (второй и предпоследний).

При таком исчислении средней допускается некоторая неточность, поскольку делается предположение о равномерности распределения единиц признака внутри группы. Однако ошибка будет тем меньше, чем уже интервал и чем больше единиц в интервале.

После того как найдены середины интервалов, вычисления дела­ют так же, как и в дискретном ряду, - варианты умножают на частоты (веса) и сумму произведений делят на сумму частот (весов), тыс. руб.:

.

Итак, средний уровень оплаты труда рабочих АО составляет 729 руб. в месяц.

Вычисление средней арифметической часто сопряжено с большими затратами времени и труда. Однако в ряде случаев процедуру расчета средней можно упростить и облегчить, если воспользоваться ее свойствами. Приведем (без доказательства) некоторые основные свойства средней арифметической.

Свойство 1. Если все индивидуальные значения признака (т.е. все варианты) уменьшить или увеличить в i раз, то среднее значение нового признака соответственно уменьшится или увеличится в i раз.

Свойство 2. Если все варианты осредняемого признака умень шить или увеличить на число А, то средняя арифметическая соответ ственно уменьшится или увеличится на это же число А.

Свойство 3. Если веса всех осредняемых вариантов уменьшить или увеличить в к раз, то средняя арифметическая не изменится.

В качестве весов средней вместо абсолютных показателей можно использовать удельные веса в общем итоге (доли или проценты). Тем самым достигается упрощение расчетов средней.

Для упрощения расчетов средней идут по пути уменьшения зна­чений вариантов и частот. Наибольшее упрощение достигается, когда в качестве А выбирается значение одного из центральных вариантов, обладающего наибольшей частотой, в качестве / - величина интервала (для рядов с одинаковыми интервалами). Величина Л называется нача­лом отсчета, поэтому такой метод вычисления средней называется «способом отсчета от условного нуля» или «способом моментов».

Допустим, что все варианты х сначала уменьшены на одно и то же число А, а затем уменьшены в i раз. Получим новый вариационный ряд распределения новых вариантов .

Тогда новые варианты будут выражаться:

,

а их новая средняя арифметическая , -момент первого порядка -формулой:

.

Она равна средней из первоначальных вариантов, уменьшенной сначала на А, а затем в i раз.

Для получения действительной средней надо момент первого по­рядка m 1 , умножить на i и прибавить А:

.

Данный способ вычисления средней арифметической из вариа­ционного ряда называют «способом моментов». Применяется этот спо­соб в рядах с равными интервалами.

Расчет средней арифметической по способу моментов ил­люстрируется данными табл. 4.4.

Таблица 4.4

Распределение малых предприятий региона по стоимости основных производственных фондов (ОПФ) в 2000 г.

Группы предпри­ятий по стоимости ОПФ, тыс. руб.

Число пред­приятий,f

Середины интервалов, x

14-16 16-18 18-20 20-22 22-24

Находим момент первого порядка

.

Затем, принимая А = 19 и зная, что i = 2, вычисляем х, тыс. руб.:

Виды средних величин и методы их расчета

На этапе статистической обработки могут быть поставлены самые различные задачи исследования, для решения которых нужно выбрать соответствующую среднюю. При этом необходимо руководствоваться следующим правилом: величины, которые представляют собой числитель и знаменатель средней, должны быть логически связаны между собой.

  • степенные средние ;
  • структурные средние .

Введем следующие условные обозначения:

Величины, для которых исчисляется средняя;

Средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений;

Частота (повторяемость индивидуальных значений признака).

Различные средние выводятся из общей формулы степенной средней:

(5.1)

при k = 1 - средняя арифметическая; k = -1 - средняя гармоническая; k = 0 - средняя геометрическая; k = -2 - средняя квадратическая.

Средние величины бывают простые и взвешенные. Взвешенными средними называют величины, которые учитывают, что некоторые варианты значений признака могут иметь различную численность, в связи с чем каждый вариант приходится умножать на эту численность. Иными словами, «весами» выступают числа единиц совокупности в разных группах, т.е. каждый вариант «взвешивают» по своей частоте. Частоту f называют статистическим весом или весом средней .

Средняя арифметическая - самый распространенный вид средней. Она используется, когда расчет осуществляется по несгруппированным статистическим данным, где нужно получить среднее слагаемое. Средняя арифметическая - это такое среднее значение признака, при получении которого сохраняется неизменным общий объем признака в совокупности.

Формула средней арифметической (простой ) имеет вид

где n - численность совокупности.

Например, средняя заработная плата работников предприятия вычисляется как средняя арифметическая:

Определяющими показателями здесь являются заработная плата каждого работника и число работников предприятия. При вычислении средней общая сумма заработной платы осталась прежней, но распределенной как бы между всеми работниками поровну. К примеру, необходимо вычислить среднюю заработную плату работников небольшой фирмы, где заняты 8 человек:

При расчете средних величин отдельные значения признака, который осредняется, могут повторяться, поэтому расчет средней величины производится по сгруппированным данным. В этом случае речь идет об использовании средней арифметической взвешенной , которая имеет вид

(5.3)

Так, нам необходимо рассчитать средний курс акций какого-то акционерного общества на торгах фондовой биржи. Известно, что сделки осуществлялись в течение 5 дней (5 сделок), количество проданных акций по курсу продаж распределилось следующим образом:

1 - 800 ак. - 1010 руб.

2 - 650 ак. - 990 руб.

3 - 700 ак. - 1015 руб.

4 - 550 ак. - 900 руб.

5 - 850 ак. - 1150 руб.

Исходным соотношением для определения среднего курса стоимости акций является отношение общей суммы сделок (ОСС) к количеству проданных акций (КПА).

Загрузка...