domvpavlino.ru

Малый математический факультет. Система счисления

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

НАЗВА УЧБОВОГО ЗАКЛАДУ

Разновидности систем счисления

Понятие системы счисления. Виды систем счисления

Система счисления -- совокупность нескольких названий и знаков, позволяющая записать любое число и дать ему имя.

Система счисления:

· даёт представления множества чисел (целых и/или вещественных);

· даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);

· отражает алгебраическую и арифметическую структуру чисел.

Системы счисления подразделяются на:

· Позиционные;

· Непозиционные;

· Смешанные.

Позиционные системы счисления

Позиционная система счисления -- это система, в которой значение каждой цифры зависит от ее числового эквивалента и от ее места (позиции) в числе, т.е. один и тот же символ (цифра) может принимать различные значения.

Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам. Развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации.

Наиболее известной позиционной системой счисления является десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

Любая позиционная система счисления характеризуется основанием. Основание или базис (n) естественной позиционной системы счисления -- это количество знаков или символов, используемых для изображения числа в данной системе. Поэтому, возможно бесчисленное множество позиционных систем, т.к. за основание можно принять любое натуральное число n>1, образовав новую систему счисления.

Когда представляют или записывают, некоторое число в позиционной системе счисления, размещают соответствующие цифры числа по отдельным нужным позициям, которые принято называть разрядами числа в данной позиционной системе счисления. Количество разрядов в записи числа называется разрядностью числа и совпадает с его длиной.

Общая система счисления может быть определена, как такая группировка целых и дробных чисел, при которой каждое из них представляется формулой:

где x -- произвольное число, записанное в системе счисления с основанием n; символ ai -- коэффициент ряда, т.е. i-таю цифра записи числа; k, m -- количество целых и дробных разрядов соответственно.

Каждая степень nk в такой записи называется весовым коэффициентом разряда. Старшинство разрядов и соответствующих им цифр определяется значением показателя k (номера разряда). Номера разрядов в позиционной системе счисления отсчитываются в целой части влево от запятой, а в дробной -- вправо от запятой. Причем, нумерация разрядов начинается с 0. Величина основания позиционной системы счисления определяет ее название: для десятичной системы это будет 10, для восьмеричной -- 8, для двоичной -- 2 и т.д. Обычно вместо названия системы счисления используют термин "код числа". Например, под понятием двоичный код подразумевается число, представленное в двоичной системе счисления, под понятием десятичный код - в десятичной системе счисления и т.д.

Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число x записывают в виде последовательности его n-ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:

Наиболее употребляемыми в настоящее время позиционными системами являются:

· 2 -- двоичная (в дискретной математике, информатике, программировании);

· 3 -- троичная (в троичных ЭВМ (например, «Сетунь»));

· 8 -- восьмеричная (используется в программировании, информатике);

· 10 -- десятичная (используется повсеместно);

· 12 -- двенадцатеричная (счёт дюжинами);

· 16 -- шестнадцатеричная (используется в программировании, информатике);

· 60 -- шестидесятеричная (единицы измерения времени, измерение углов и, в частности, координат, долготы и широты).

В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.

Двоичная система счисления -- позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях, двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах. В двоичной системе счисления числа записываются с помощью двух символов (0 и 1). Чтобы не путать, в какой системе счисления записано число, его снабжают указателем справа внизу. Например, число в десятичной системе 510, в двоичной 1012. Иногда двоичное число обозначают префиксом 0b, например 0b101.

Правила переводов

Перевод из любой системы счисления в десятичную систему счисления

Для перевода целого числа из любой системы счисления в десятичную, необходимо записать данное число в общем виде:

anbn+an-1bn-1+an-2bn-2+...+a2b2+a1b1+a0b0

Например: переведем число 12568 в десятичную систему счисления.

12568=1·83 +2·82 +5·81 +6·80 =1·512+2·64+5·8+6·1=68610.

Перевод числа из десятичной системы счисления в другую систему

1) Делим данное число на основание той системы, в которую необходимо перевести число.

2) Полученное число делим аналогично на основание системы, в которую необходимо перевести число.

3) Пункт 2 повторяем до тех пор пока, полученное частное не будет меньше основания.

4) Выписываем остатки от деления в порядке от последнего к первому.

Правило перевода чисел из двоичной системы счисления в восьмеричную

1) Разбиваем число по три цифры на группы начиная с младшего разряда.

Если не хватает до целой тройки цифр, то добавляем необходимое количество нулей слева.

2) Каждую полученную тройку цифр заменяем цифрой из восьмеричной системы счисления.

Двоичные триады

Восьмеричные цифры

3) Дробную часть разбиваем на тройки вправо от запятой.

Перевод чисел из двоичной системы счисления в шестнадцатеричную

1) Разбиваем число по четыре цифры на группы начиная с младшего разряда.

Если не хватает до целой четверки цифр, то добавляем необходимое количество нулей слева.

2) Каждую полученную четверку цифр заменяем цифрой из восьмеричной системы счисления.

3) Дробную часть разбиваем на четверки вправо от запятой.

Если не хватает цифр, то приписываем нули справа.

Правило перевода чисел из восьмеричной системы счисления в двоичную

1) Заменяем каждую цифру данного восьмеричного числа соответствующим ей двоичным эквивалентом.

2) Если до полной тройки не хватает цифр, то в данной тройке добавляем недостающее количество нулей слева.

Перевод чисел из шестнадцатеричной системы счисления в двоичную

1) Заменяем каждую цифру данного шестнадцатеричного числа соответствующим ей двоичным эквивалентом.

2) Если до полной четверки не хватает цифр, то в данной четверке добавляем недостающее количество нулей справа.

Необычные позиционные системы счисления

Необычные счисления не находят широкого применения, однако они могут быть интересными с точки зрения теории. Среди необычных систем счисления можно выделить: счисление позиционный символический знак

· системы счисления с ненатуральными основаниями

o отрицательными,

o иррациональными,

o комплексными (напр.: 1 + i);

· системы счисления с несколькими основаниями;

o вложенными (двоично-десятичная, десятично-шестидесятеричная и др.)

· системы счисления с нестандартными наборами цифр:

с набором цифр, симметричным относительно нуля.

Системы счисления с отрицательными основаниями

Отрицательные основания позволяют выражать отрицательные числа без введения дополнительного символа для знака. Для выражения чисел используется тот же набор цифр, что и для системы с равным по модулю натуральным основанием. Таким образом, нечётные разряды числа имеют отрицательный вес.

Системы счисления с иррациональным основанием

Иррациональное число вида можно выразить в системе счисления с иррациональным основанием, употребив цифры.

Системы счисления с комплексным основанием

Подобно системам с отрицательным основаниям, комплексные основания позволяют выражать комплексные числа.

Для этого основание системы счисления берётся вида:

удовлетворяющее условию -- количество цифр в наборе.

Системы основания с вложенными основаниями

Если цифры системы счисления с большим основанием представить числами в системе счисления с меньшим основанием, то получится особый составной род системы счисления.

Хорошо известна десятично-шестидесятеричная система счисления, используемая для измерения времени -- часы, минуты и секунды, записанные десятичной системой здесь предстают в качестве разрядов шестидесятеричной системы счисления. Эта система пришла из Вавилона, где широко использовалась для записи чисел шестидесятеричная система, основанная всего на трёх клинописных символах:

· вертикльный клин -- единица разряда;

· уголок из клиньев -- десяток разряда;

· наклонный клин -- нуль, пустой разряд;

Двоично-десятичная система счисления используется в вычислительной технике. Двоичные разряды группируются по четыре, где каждая четвёрка (тетрада, ниббл) кодирует одну десятичную цифру. Это позволяет работать с приборами, имеющими десятичную индикацию и ввод без преобразования систем счисления.

Нестандартные наборы цифр, наборы, симметричные относительно нуля

Альтернативным способом записи отрицательных чисел без использования знака минуса (кроме отрицательных оснований) является использование цифр с отрицательным весом. При этом не требуется увеличения количества различных цифр для записи числа -- вместо набора можно использовать любой набор вида.

Замечательным в этом отношении является использование симметричного набора цифр. Если взять систему счисления с нечётным основанием вида 2p + 1, то набор цифр будет иметь вид.

Такой подход нашёл применение в троичных ЭВМ (например, «Сетунь»).

Смешанная система счисления

Смешанная система счисления является обобщением n-ричной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел, и каждое число в ней представляется как линейная комбинация:

В зависимости от вида ni как функции смешанные системы счисления могут быть степенными, показательными, факториальными, фибоначчиевыми и т. п. Когда для некоторого n, смешанная система счисления совпадает с показательной n-ричной системой счисления.

Самый яркий пример смешанной системы счисления -- это представление времени в виде количества суток, часов, минут и секунд. При этом величина «d дней, h часов, m минут, s секунд» соответствует значению

Непозиционные системы счисления

Непозиционная система счисления -- это система, для которой значение символа, т.е. цифры, не зависит от его положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания.

Биномиальная система счисления

В биномиальной системе счисления число x представляется в виде суммы биномиальных коэффициентов:

При всяком фиксированном значении n каждое натуральное число представляется уникальным образом.

Система остаточных классов (СОК)

Представление числа в системе остаточных классов основано на понятии вычета и китайской теореме об остатках. СОК определяется набором попарно взаимно простых модулей с произведением так, что каждому целому числу из отрезка ставится в соответствие набор вычетов, где

СОК гарантирует однозначность представления для чисел из отрезка

В СОК арифметические операции (сложение, вычитание, умножение, деление) выполняются покомпонентно, если про результат известно, что он является целочисленным и также лежит в .

Недостатками СОК является возможность представления только ограниченного количества чисел, а также отсутствие эффективных алгоритмов для сравнения чисел, представленных в СОК.

Исторические системы счисления

Единичная система счисления

Хронологически первая система счисления каждого народа, овладевшего счётом. Натуральное число изображается путём повторения одного и того же знака (чёрточки или точки). Впоследствии, ради удобства восприятия больших чисел, эти знаки группируются по три или по пять. Затем равнообъёмные группы знаков начинают заменяться каким-либо новым знаком -- так возникают прообразы будущих цифр.

Пятеричная система счисления (Счёт на пятки м)

Существовал в России. Применялся в народе как минимум до конца XVIII -- начала XIX вв.

Древнеегипетская система счисления

Древнеегипетская десятичная непозиционная система счисления возникла во второй половине третьего тысячелетия до н. э. Для обозначения чисел 0, 1, 10, 102, 103, 104, 105, 106, 107 использовались специальные цифры. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из цифр повторялась не более девяти раз. Значение числа равно простой сумме значений цифр, участвующих в его записи.

Алфавитные системы счисления

Алфавитными системами счисления пользовались древние армяне, грузины, греки (ионическая система счисления), арабы (абджадия), евреи и другие народы Ближнего Востока. В славянских богослужебных книгах греческая алфавитная система была переведена на буквы кириллицы.

Римская система счисления

Каноническим примером почти непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы:

I обозначает 1,

Римская система не является полностью непозиционной, так как меньшая цифра, идущая перед большей, вычитается из неё.

Система счисления майя

Майя использовали 20-ричную систему счисления за одним исключением: во втором разряде было не 20, а 18 ступеней, то есть за числом 17 19 сразу следовало число 1 0 0. Это было сделано для облегчения расчётов календарного цикла, поскольку 1 0 0 = 360 примерно равно числу дней в солнечном году.

Для записи основными знаками были точки (единицы) и отрезки (пятёрки).

Кипу инков

Прообразом баз данных, широко использовавшихся в Центральных Андах (Перу, Боливия) в государственных и общественных целях в I--II тысячелетии н. э., была узелковая письменность Инков -- кипу, состоявшая как из числовых записей десятичной системы, так и не числовых записей в двоичной системе кодирования. В кипу применялись первичные и дополнительные ключи, позиционные числа, кодирование цветом и образование серий повторяющихся данных. Кипу впервые в истории человечества использовалось для применения такого способа ведения бухгалтерского учёта как двойная запись.

Список используемой литературы

1. А. Г. Цыпкин. "Справочник по математике для средних учебных заведений"

Размещено на Allbest.ru

...

Подобные документы

    Понятие и математическое содержание систем счисления, их разновидности и сферы применения. Отличительные признаки и особенности позиционных и непозиционных, двоичных и десятичных систем счисления. Порядок перевода чисел из одной системы в другую.

    презентация , добавлен 10.11.2010

    Система счисления, применяемая в современной математике, используемые в ЭВМ. Запись чисел с помощью римских цифр. Перевод десятичных чисел в другие системы счисления. Перевод дробных и смешанных двоичных чисел. Арифметика в позиционных системах счисления.

    реферат , добавлен 09.07.2009

    Исследование истории систем счисления. Описание единичной и двоичной систем счисления, древнегреческой, славянской, римской и вавилонской поместной нумерации. Анализ двоичного кодирования в компьютере. Перевод чисел из одной системы счисления в другую.

    контрольная работа , добавлен 04.11.2013

    Совокупность приемов и правил записи и чтения чисел. Определение понятий: система счисления, цифра, число, разряд. Классификация и определение основания систем счисления. Разница между числом и цифрой, позиционной и непозиционной системами счисления.

    презентация , добавлен 15.04.2015

    Понятие системы счисления. История развития систем счисления. Понятие натурального числа, порядковые отношения. Особенности десятичной системы счисления. Общие вопросы изучения нумерации целых неотрицательных чисел в начальном курсе математики.

    курсовая работа , добавлен 29.04.2017

    Математическая теория чисел. Понятие систем счисления. Применения двоичной системы счисления. Компьютерная техника и информационные технологии. Алфавитное неравномерное двоичное кодирование. Достоинства и недостатки двоичной системы счисления.

    реферат , добавлен 25.12.2014

    История развития систем счисления. Непозиционная, позиционная и десятичная система счисления. Использование систем счисления в компьютерной технике и информационных технологиях. Двоичное кодирование информации в компьютере. Построение двоичных кодов.

    курсовая работа , добавлен 21.06.2010

    Ознакомление с записью чисел в алфавитной системе счисления. Особенности установления числовых значений букв у славянских народов. Рассмотрение записи больших чисел в славянской системе счисления. Обозначение "тем", "легионов", "леордов" и "колод".

    презентация , добавлен 30.09.2012

    Определения системы счисления, числа, цифры, алфавита. Типы систем счисления. Плюсы и минусы двоичных кодов. Перевод шестнадцатеричной системы в восьмеричную и разбитие ее на тетрады и триады. Решение задачи Баше методом троичной уравновешенной системы.

    презентация , добавлен 20.06.2011

    Сущность двоичной, восьмеричной и шестнадцатиричной систем счисления, их отличительные черты и взаимосвязь. Пример алгоритмов перевода чисел из одной системы в другую. Составление таблицы истинности и логической схемы для заданных логических функций.

Единичная система счисления

Необходимость в записи чисел стала возникать у людей еще в древности после того, как они научились считать. Свидетельством этого являются археологические находки в местах стойбищ первобытных людей, которые относятся к периоду палеолита ($10$-$11$ тыс. лет до н.э.). Изначально количество предметов изображали, используя определенные знаки: черточки, насечки, кружочки, нанесенные на камни, дерево или глину, а также узлы на веревках.

Рисунок 1.

Ученые эту систему записи чисел называют единичной (унарной) , поскольку число в ней образовано повторением одного знака, который символизирует единицу.

Недостатки системы:

    при написании большого числа необходимо использовать большое количество палочек;

    возможно легко ошибиться при нанесении палочек.

Позднее, чтобы облегчить счет, эти знаки люди стали объединять.

Пример 1

С примерами использования единичной системы счисления можно встретится и в нашей жизни. Например, маленькие дети пытаются изобразить на пальцах сколько им лет, или же счетные палочки используют для обучения счету в первом классе.

Единичная система не совсем удобна, так как записи выглядят очень длинно и их нанесение довольно утомительно, поэтому со временем стали появляться более практичые в использовании системы счисления.

Вот некоторые примеры.

Древнеегипетская десятичная непозиционная система счисления

Данная система счисления появилась около 3000 лет до н.э. в результате того, что жители Древнего Египта придумали свою числовую систему, в которой при обозначении ключевых чисел $1$, $10$, $100$ и т.д. были использованы иероглифы, что было удобным при написании на глиняных дощечках, которые заменяли бумагу. Другие числа составлялись из них с помощью сложения. Сначала записывалось число высшего порядка, а затем низшего. Умножали и делили египтяне, последовательно удваивая числа. Каждая цифра могла повторяться до $9$ раз. Примеры чисел данной системы приведены ниже.

Рисунок 2.

Римская система счисления

Данная система принципиально не намного отличается от предыдущей и сохранилась до наших дней. В ее основе находятся знаки:

    $I$ (один палец) для числа $1$;

    $V$ (раскрытая ладонь) для числа $5$;

    $X$ (две сложенные ладони) для $10$;

    для обозначения чисел $100$, $500$ и $1000$ использовались первые буквы соответствующих латинских слов (Сentum – сто, Demimille – половина тысячи, Мille – тысяча).

При составлении чисел римляне использовали следующие правила:

    Число равно сумме значений расположенных подряд нескольких одинаковых «цифр», образующих группу первого вида.

    Число равно разности значений двух «цифр», если слева от большей стоит меньшая. В этом случае от значения большей отнимается значение меньшей. Вместе они образуют группу второго вида. При этом левая «цифра» может быть меньше правой максимально на $1$ порядок: перед $L(50)$ и $C(100$) из «младших» может стоять только $Х(10$), перед $D(500$) и $M(1000$) – только $C(100$), перед $V(5) – I(1)$.

    Число равно сумме значений групп и «цифр», не вошедших в группы $1$ или $2$ вида.

Рисунок 3.

Римскими цифрами пользуются издревле: ими обозначаются даты, номера томов, разделов, глав. Раньше считал, что обычные арабские цифры можно легко подделать.

Алфавитные системы счисления

Данные системы счисления более совершенны. К ним относятся греческая, славянская, финикийская, еврейская и другие. В этих системах числа от $1$ до $9$, а также количество десятков (от $10$ до $90$), сотен (от $100$ до $900$) были обозначены буквами алфавита.

В древнегреческой алфавитной системе счисления числа $1, 2, ..., 9$ обозначались первыми девятью буквами греческого алфавита, и т.д. Для обозначения чисел $10, 20, ..., 90$ применялись следующие $9$ букв а для обозначения чисел $100, 200, ..., 900$ – последние $9$ букв.

У славянских народов числовые значения букв устанавливались в соответствии с порядком славянского алфавита, использовавшего изначально глаголицу, а затем кириллицу.

Рисунок 4.

Замечание 1

Алфавитная система использовалась и в древней Руси. До конца $XVII$ века в качестве цифр использовались $27$ букв кириллицы.

Непозиционные системы счисления имеют ряд существенных недостатков:

    Существует постоянная потребность введения новых знаков для записи больших чисел.

    Невозможно представлять дробные и отрицательные числа.

    Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.

Изучая кодировки, я понял, что недостаточно хорошо понимаю системы счислений. Тем не менее, часто использовал 2-, 8-, 10-, 16-ю системы, переводил одну в другую, но делалось все на “автомате”. Прочитав множество публикаций, я был удивлен отсутствием единой, написанной простым языком, статьи по столь базовому материалу. Именно поэтому решил написать свою, в которой постарался доступно и по порядку изложить основы систем счисления.

Введение

Система счисления - это способ записи (представления) чисел.

Что под этим подразумевается? Например, вы видите перед собой несколько деревьев. Ваша задача - их посчитать. Для этого можно - загибать пальцы, делать зарубки на камне (одно дерево - один палец\зарубка) или сопоставить 10 деревьям какой-нибудь предмет, например, камень, а единичному экземпляру - палочку и выкладывать их на землю по мере подсчета. В первом случае число представляется, как строка из загнутых пальцев или зарубок, во втором - композиция камней и палочек, где слева - камни, а справа - палочки

Системы счисления подразделяются на позиционные и непозиционные, а позиционные, в свою очередь, - на однородные и смешанные.

Непозиционная - самая древняя, в ней каждая цифра числа имеет величину, не зависящую от её позиции (разряда). То есть, если у вас 5 черточек - то число тоже равно 5, поскольку каждой черточке, независимо от её места в строке, соответствует всего 1 один предмет.

Позиционная система - значение каждой цифры зависит от её позиции (разряда) в числе. Например, привычная для нас 10-я система счисления - позиционная. Рассмотрим число 453. Цифра 4 обозначает количество сотен и соответствует числу 400, 5 - кол-во десяток и аналогично значению 50, а 3 - единиц и значению 3. Как видим - чем больше разряд - тем значение выше. Итоговое число можно представить, как сумму 400+50+3=453.

Однородная система - для всех разрядов (позиций) числа набор допустимых символов (цифр) одинаков. В качестве примера возьмем упоминавшуюся ранее 10-ю систему. При записи числа в однородной 10-й системе вы можете использовать в каждом разряде исключительно одну цифру от 0 до 9, таким образом, допускается число 450 (1-й разряд - 0, 2-й - 5, 3-й - 4), а 4F5 - нет, поскольку символ F не входит в набор цифр от 0 до 9.

Смешанная система - в каждом разряде (позиции) числа набор допустимых символов (цифр) может отличаться от наборов других разрядов. Яркий пример - система измерения времени. В разряде секунд и минут возможно 60 различных символов (от «00» до «59»), в разряде часов – 24 разных символа (от «00» до «23»), в разряде суток – 365 и т. д.

Непозиционные системы

Как только люди научились считать - возникла потребность записи чисел. В начале все было просто - зарубка или черточка на какой-нибудь поверхности соответствовала одному предмету, например, одному фрукту. Так появилась первая система счисления - единичная.
Единичная система счисления
Число в этой системе счисления представляет собой строку из черточек (палочек), количество которых равно значению данного числа. Таким образом, урожай из 100 фиников будет равен числу, состоящему из 100 черточек.
Но эта система обладает явными неудобствами - чем больше число - тем длиннее строка из палочек. Помимо этого, можно легко ошибиться при записи числа, добавив случайно лишнюю палочку или, наоборот, не дописав.

Для удобства, люди стали группировать палочки по 3, 5, 10 штук. При этом, каждой группе соответствовал определенный знак или предмет. Изначально для подсчета использовались пальцы рук, поэтому первые знаки появились для групп из 5 и 10 штук (единиц). Все это позволило создать более удобные системы записи чисел.

Древнеегипетская десятичная система
В Древнем Египте использовались специальные символы (цифры) для обозначения чисел 1, 10, 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 . Вот некоторые из них:

Почему она называется десятичной? Как писалось выше - люди стали группировать символы. В Египте - выбрали группировку по 10, оставив без изменений цифру “1”. В данном случае, число 10 называется основанием десятичной системы счисления, а каждый символ - представление числа 10 в какой-то степени.

Числа в древнеегипетской системе счисления записывались, как комбинация этих
символов, каждый из которых повторялся не более девяти раз. Итоговое значение равнялось сумме элементов числа. Стоит отметить, что такой способ получения значения свойственен каждой непозиционной системе счисления. Примером может служить число 345:

Вавилонская шестидесятеричная система
В отличии от египетской, в вавилонской системе использовалось всего 2 символа: “прямой” клин - для обозначения единиц и “лежачий” - для десятков. Чтобы определить значение числа необходимо изображение числа разбить на разряды справа налево. Новый разряд начинается с появления прямого клина после лежачего. В качестве примера возьмем число 32:

Число 60 и все его степени так же обозначаются прямым клином, что и “1”. Поэтому вавилонская система счисления получила название шестидесятеричной.
Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а большие значения - в позиционной с основанием 60. Число 92:

Запись числа была неоднозначной, поскольку не существовало цифры обозначающей ноль. Представление числа 92 могло обозначать не только 92=60+32, но и, например, 3632=3600+32. Для определения абсолютного значения числа был введен специальный символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа:

Теперь число 3632 следует записывать, как:

Шестидесятеричная вавилонская система - первая система счисления, частично основанная на позиционном принципе. Данная система счисления используется и сегодня, например, при определении времени - час состоит из 60 минут, а минута из 60 секунд.

Римская система
Римская система не сильно отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100, 500 и 1000 используются заглавные латинские буквы I, V, X, L, C, D и M соответственно. Число в римской системе счисления - это набор стоящих подряд цифр.

Методы определения значения числа:

  1. Значение числа равно сумме значений его цифр. Например, число 32 в римской системе счисления имеет вид XXXII=(X+X+X)+(I+I)=30+2=32
  2. Если слева от большей цифры стоит меньшая, то значение равно разности между большей и меньшей цифрами. При этом, левая цифра может быть меньше правой максимум на один порядок: так, перед L(50) и С(100) из «младших» может стоять только X(10), перед D(500) и M(1000) - только C(100), перед V(5) - только I(1); число 444 в рассматриваемой системе счисления будет записано в виде CDXLIV = (D-C)+(L-X)+(V-I) = 400+40+4=444.
  3. Значение равно сумме значений групп и цифр, не подходящих под 1 и 2 пункты.
Помимо цифирных, существуют и буквенные (алфавитные) системы счисления, вот некоторые из них:
1) Славянская
2) Греческая (ионийская)

Позиционные системы счисления

Как упоминалось выше - первые предпосылки к появлению позиционной системы возникли в древнем Вавилоне. В Индии система приняла форму позиционной десятичной нумерации с применением нуля, а у индусов эту систему чисел заимствовали арабы, от которых её переняли европейцы. По каким-то причинам, в Европе за этой системой закрепилось название “арабская”.
Десятичная система счисления
Это одна из самых распространенных систем счисления. Именно её мы используем, когда называем цену товара и произносим номер автобуса. В каждом разряде (позиции) может использоваться только одна цифра из диапазона от 0 до 9. Основанием системы является число 10.

Для примера возьмем число 503. Если бы это число было записано в непозиционной системе, то его значение равнялось 5+0+3 = 8. Но у нас - позиционная система и значит каждую цифру числа необходимо умножить на основание системы, в данном случае число “10”, возведенное в степень, равную номеру разряда. Получается, значение равно 5*10 2 + 0*10 1 + 3*10 0 = 500+0+3 = 503. Чтобы избежать путаницы при одновременной работе с несколькими системами счисления основание указывается в качестве нижнего индекса. Таким образом, 503 = 503 10 .

Помимо десятичной системы, отдельного внимания заслуживают 2-, 8-, 16-ая системы.

Двоичная система счисления
Эта система, в основном, используется в вычислительной технике. Почему не стали использовать привычную нам 10-ю? Первую вычислительную машину создал Блез Паскаль, использовавший в ней десятичную систему, которая оказалась неудобной в современных электронных машинах, поскольку требовалось производство устройств, способных работать в 10 состояниях, что увеличивало их цену и итоговые размеры машины. Этих недостатков лишены элементы, работающие в 2-ой системе. Тем не менее, рассматриваемая система была создана за долго до изобретения вычислительных машин и уходит “корнями” в цивилизацию Инков, где использовались кипу - сложные верёвочные сплетения и узелки.

Двоичная позиционная система счисления имеет основание 2 и использует для записи числа 2 символа (цифры): 0 и 1. В каждом разряде допустима только одна цифра - либо 0, либо 1.

Примером может служить число 101. Оно аналогично числу 5 в десятичной системе счисления. Для того, чтобы перевести из 2-й в 10-ю необходимо умножить каждую цифру двоичного числа на основание “2”, возведенное в степень, равную разряду. Таким образом, число 101 2 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 5 10 .

Хорошо, для машин 2-я система счисления удобнее, но мы ведь часто видим, используем на компьютере числа в 10-й системе. Как же тогда машина определяет какую цифру вводит пользователь? Как переводит число из одной системы в другую, ведь в её распоряжении всего 2 символа - 0 и 1?

Чтобы компьютер мог работать с двоичными числами (кодами), необходимо чтобы они где-то хранились. Для хранения каждой отдельной цифры применяется триггер, представляющий собой электронную схему. Он может находится в 2-х состояниях, одно из которых соответствует нулю, другое - единице. Для запоминания отдельного числа используется регистр - группа триггеров, число которых соответствует количеству разрядов в двоичном числе. А совокупность регистров - это оперативная память. Число, содержащееся в регистре - машинное слово. Арифметические и логические операции со словами осуществляет арифметико-логическое устройство (АЛУ). Для упрощения доступа к регистрам их нумеруют. Номер называется адресом регистра. Например, если необходимо сложить 2 числа - достаточно указать номера ячеек (регистров), в которых они находятся, а не сами числа. Адреса записываются в 8- и 16-ричной системах (о них будет рассказано ниже), поскольку переход от них к двоичной системе и обратно осуществляется достаточно просто. Для перевода из 2-й в 8-ю число необходимо разбить на группы по 3 разряда справа налево, а для перехода к 16-ой - по 4. Если в крайней левой группе цифр не достает разрядов, то они заполняются слева нулями, которые называются ведущими. В качестве примера возьмем число 101100 2 . В восьмеричной - это 101 100 = 54 8 , а в шестнадцатеричной - 0010 1100 = 2С 16 . Отлично, но почему на экране мы видим десятичные числа и буквы? При нажатии на клавишу в компьютер передаётся определённая последовательность электрических импульсов, причём каждому символу соответствует своя последовательность электрических импульсов (нулей и единиц). Программа драйвер клавиатуры и экрана обращается к кодовой таблице символов (например, Unicode, позволяющая закодировать 65536 символов), определяет какому символу соответствует полученный код и отображает его на экране. Таким образом, тексты и числа хранятся в памяти компьютера в двоичном коде, а программным способом преобразуются в изображения на экране.

Восьмеричная система счисления
8-я система счисления, как и двоичная, часто применяется в цифровой технике. Имеет основание 8 и использует для записи числа цифры от 0 до 7.

Пример восьмеричного числа: 254. Для перевода в 10-ю систему необходимо каждый разряд исходного числа умножить на 8 n , где n - это номер разряда. Получается, что 254 8 = 2*8 2 + 5*8 1 + 4*8 0 = 128+40+4 = 172 10 .

Шестнадцатеричная система счисления
Шестнадцатеричная система широко используется в современных компьютерах, например при помощи неё указывается цвет: #FFFFFF - белый цвет. Рассматриваемая система имеет основание 16 и использует для записи числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. C, D, E, F, где буквы равны 10, 11, 12, 13, 14, 15 соответственно.

В качестве примера возьмем число 4F5 16 . Для перевода в восьмеричную систему - сначала преобразуем шестнадцатеричное число в двоичное, а затем, разбив на группы по 3 разряда, в восьмеричное. Чтобы преобразовать число в 2-е необходимо каждую цифру представить в виде 4-х разрядного двоичного числа. 4F5 16 = (100 1111 101) 2 . Но в 1 и 3 группах не достает разряда, поэтому заполним каждый ведущими нулями: 0100 1111 0101. Теперь необходимо разделить полученное число на группы по 3 цифры справа налево: 0100 1111 0101 = 010 011 110 101. Переведем каждую двоичную группу в восьмеричную систему, умножив каждый разряд на 2 n , где n - номер разряда: (0*2 2 +1*2 1 +0*2 0) (0*2 2 +1*2 1 +1*2 0) (1*2 2 +1*2 1 +0*2 0) (1*2 2 +0*2 1 +1*2 0) = 2365 8 .

Помимо рассмотренных позиционных систем счисления, существуют и другие, например:
1) Троичная
2) Четверичная
3) Двенадцатеричная

Позиционные системы подразделяются на однородные и смешанные.

Однородные позиционные системы счисления
Определение, данное в начале статьи, достаточно полно описывает однородные системы, поэтому уточнение - излишне.
Смешанные системы счисления
К уже приведенному определению можно добавить теорему: “если P=Q n (P,Q,n – целые положительные числа, при этом P и Q - основания), то запись любого числа в смешанной (P-Q)-ой системе счисления тождественно совпадает с записью этого же числа в системе счисления с основанием Q.”

Опираясь на теорему, можно сформулировать правила перевода из P-й в Q-ю системы и наоборот:

  1. Для перевода из Q-й в P-ю, необходимо число в Q-й системе, разбить на группы по n цифр, начиная с правой цифры, и каждую группу заменить одной цифрой в P-й системе.
  2. Для перевода из P-й в Q-ю, необходимо каждую цифру числа в P-й системе перевести в Q-ю и заполнить недостающие разряды ведущими нулями, за исключением левого, так, чтобы каждое число в системе с основанием Q состояло из n цифр.
Яркий пример - перевод из двоичной системы счисления в восьмеричную. Возьмем двоичное число 10011110 2 , для перевода в восьмеричное - разобьем его справа налево на группы по 3 цифры: 010 011 110, теперь умножим каждый разряд на 2 n , где n - номер разряда, 010 011 110 = (0*2 2 +1*2 1 +0*2 0) (0*2 2 +1*2 1 +1*2 0) (1*2 2 +1*2 1 +0*2 0) = 236 8 . Получается, что 10011110 2 = 236 8 . Для однозначности изображения двоично-восьмеричного числа его разбивают на тройки: 236 8 = (10 011 110) 2-8 .

Смешанными системами счисления также являются, например:
1) Факториальная
2) Фибоначчиева

Перевод из одной системы счисления в другую

Иногда требуется преобразовать число из одной системы счисления в другую, поэтому рассмотрим способы перевода между различными системами.
Преобразование в десятичную систему счисления
Имеется число a 1 a 2 a 3 в системе счисления с основанием b. Для перевода в 10-ю систему необходимо каждый разряд числа умножить на b n , где n - номер разряда. Таким образом, (a 1 a 2 a 3) b = (a 1 *b 2 + a 2 *b 1 + a 3 *b 0) 10 .

Пример: 101 2 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 5 10

Преобразование из десятичной системы счисления в другие
Целая часть:
  1. Последовательно делим целую часть десятичного числа на основание системы, в которую переводим, пока десятичное число не станет равно нулю.
  2. Полученные при делении остатки являются цифрами искомого числа. Число в новой системе записывают, начиная с последнего остатка.
Дробная часть:
  1. Дробную часть десятичного числа умножаем на основание системы, в которую требуется перевести. Отделяем целую часть. Продолжаем умножать дробную часть на основание новой системы, пока она не станет равной 0.
  2. Число в новой системе составляют целые части результатов умножения в порядке, соответствующем их получению.
Пример: переведем 15 10 в восьмеричную:
15\8 = 1, остаток 7
1\8 = 0, остаток 1

Записав все остатки снизу вверх, получаем итоговое число 17. Следовательно, 15 10 = 17 8 .

Преобразование из двоичной в восьмеричную и шестнадцатеричную системы
Для перевода в восьмеричную - разбиваем двоичное число на группы по 3 цифры справа налево, а недостающие крайние разряды заполняем ведущими нулями. Далее преобразуем каждую группу, умножая последовательно разряды на 2 n , где n - номер разряда.

В качестве примера возьмем число 1001 2: 1001 2 = 001 001 = (0*2 2 + 0*2 1 + 1*2 0) (0*2 2 + 0*2 1 + 1*2 0) = (0+0+1) (0+0+1) = 11 8

Для перевода в шестнадцатеричную - разбиваем двоичное число на группы по 4 цифры справа налево, затем - аналогично преобразованию из 2-й в 8-ю.

Преобразование из восьмеричной и шестнадцатеричной систем в двоичную
Перевод из восьмеричной в двоичную - преобразуем каждый разряд восьмеричного числа в двоичное 3-х разрядное число делением на 2 (более подробно о делении см. выше пункт “Преобразование из десятичной системы счисления в другие”), недостающие крайние разряды заполним ведущими нулями.

Для примера рассмотрим число 45 8: 45 = (100) (101) = 100101 2

Перевод из 16-ой в 2-ю - преобразуем каждый разряд шестнадцатеричного числа в двоичное 4-х разрядное число делением на 2, недостающие крайние разряды заполняем ведущими нулями.

Преобразование дробной части любой системы счисления в десятичную

Преобразование осуществляется также, как и для целых частей, за исключением того, что цифры числа умножаются на основание в степени “-n”, где n начинается от 1.

Пример: 101,011 2 = (1*2 2 + 0*2 1 + 1*2 0), (0*2 -1 + 1*2 -2 + 1*2 -3) = (5), (0 + 0,25 + 0,125) = 5,375 10

Преобразование дробной части двоичной системы в 8- и 16-ую
Перевод дробной части осуществляется также, как и для целых частей числа, за тем лишь исключением, что разбивка на группы по 3 и 4 цифры идёт вправо от десятичной запятой, недостающие разряды дополняются нулями справа.

Пример: 1001,01 2 = 001 001, 010 = (0*2 2 + 0*2 1 + 1*2 0) (0*2 2 + 0*2 1 + 1*2 0), (0*2 2 + 1*2 1 + 0*2 0) = (0+0+1) (0+0+1), (0+2+0) = 11,2 8

Преобразование дробной части десятичной системы в любую другую
Для перевода дробной части числа в другие системы счисления нужно обратить целую часть в ноль и начать умножение получившегося числа на основание системы, в которую нужно перевести. Если в результате умножения будут снова появляться целые части, их нужно повторно обращать в ноль, предварительно запомнив (записав) значение получившейся целой части. Операция заканчивается, когда дробная часть полностью обратится в нуль.

Для примера переведем 10,625 10 в двоичную систему:
0,625*2 = 1,25
0,250*2 = 0,5
0,5*2 = 1,0
Записав все остатки сверху вниз, получаем 10,625 10 = (1010), (101) = 1010,101 2

Система счисления - это способ изображения чисел и соответствующие ему правила действия над числами . Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные . Знаки, используемые при записи чисел , называются цифрами.

В непозиционных системах счисления значение цифры не зависит от положения в числе .

Примером непозиционной системы счисления является римская система (римские цифры). В римской системе в качестве цифр используются латинские буквы:

Пример 1. Число CCXXXII складывается из двух сотен, трех десятков и двух единиц и равно двумстам тридцати двум.

В римских числах цифры записываются слева направо в порядке убывания. В таком случае их значения складываются. Если же слева записана меньшая цифра, а справа - большая, то их значения вычитаются.

Пример 2.

VI = 5 + 1 = 6; IV = 5 – 1 = 4.

Пример 3.

MCMXCVIII = 1000 + (–100 + 1000) +

+ (–10 + 100) + 5 + 1 + 1 + 1 = 1998.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции . Количество используемых цифр называется основанием позиционной системы счисления.

Система счисления, применяемая в современной математике, является позиционной десятичной системой . Ее основание равно десяти, т.к. запись любых чисел производится с помощью десяти цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Позиционный характер этой системы легко понять на примере любого многозначного числа. Например, в числе 333 первая тройка означает три сотни, вторая - три десятка, третья - три единицы.

Для записи чисел в позиционной системе с основанием n нужно иметь алфавит из n цифр. Обычно для этого при n < 10 используют n первых арабских цифр, а при n > 10 к десяти арабским цифрам добавляют буквы. Вот примеры алфавитов нескольких систем:

Если требуется указать основание системы, к которой относится число, то оно приписывается нижним индексом к этому числу. Например:

101101 2 , 3671 8 , 3B8F 16 .

В системе счисления с основанием q (q -ичная система счисления) единицами разрядов служат последовательные степени числаq .q единиц какого-либо разряда образуют единицу следующего разряда. Для записи числа вq -ичной системе счисления требуетсяq различных знаков (цифр), изображающих числа 0, 1, ...,q – 1. Запись числаq вq -ичной системе счисления имеет вид 10.

Развернутая форма записи числа

Пусть Aq - число в системе с основанием q , аi - цифры данной системы счисления, присутствующие в записи числа A , n + 1 - число разрядов целой части числа, m - число разрядов дробной части числа:

Развернутой формой числа А называется запись в виде:

Например, для десятичного числа:

В следующих примерах приводится развернутая форма шестнадцатеричного и двоичного чисел:

В любой системе счисления ее основание записывается как 10.

Если все слагаемые в развернутой форме недесятичного числа представить в десятичной системе и вычислить полученное выражение по правилам десятичной арифметики, то получится число в десятичной системе, равное данному. По этому принципу производится перевод из недесятичной системы в десятичную. Например, перевод в десятичную систему написанных выше чисел производится так:

Перевод десятичных чисел в другие системы счисления

Перевод целых чисел

Целое десятичное число X требуется перевести в систему с основаниемq :X = (a n a n-1 a 1 a 0) q . Нужно найти значащие цифры числа:. Представим число в развернутой форме и выполним тождественное преобразование:

Отсюда видно, что a 0 есть остаток от деления числаX на числоq . Выражение в скобках - целое частное от этого деления. Обозначим его заX 1. Выполняя аналогичные преобразования, получим:

Следовательно, a 1 есть остаток от деленияX 1 наq . Продолжая деление с остатком, будем получать последовательность цифр искомого числа. Цифраan в этой цепочке делений будет последним частным, меньшимq .

Сформулируем полученное правило: для того чтобы перевести целое десятичное число в систему счисления с другим основанием, нужно :

1) основание новой системы счисления выразить в десятичной системе счисления и все последующие действия производить по правилам десятичной арифметики;

2) последовательно выполнять деление данного числа и получаемых неполных частных на основание новой системы счисления до тех пор, пока не получим неполное частное, меньшее делителя;

3) полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

4) составить число в новой системе счисления, записывая его, начиная с последнего частного.

Пример 1. Перевести число 37 10 в двоичную систему.

Для обозначения цифр в записи числа используем символику: a 5 a 4 a 3 a 2 a 1 a 0

Отсюда: 37 10 = l00l0l 2

Пример 2. Перевести десятичное число 315 в восьмеричную и в шестнадцатеричную системы:

Отсюда следует: 315 10 = 473 8 = 13B 16 . Напомним, что 11 10 = B 16 .

Десятичную дробь X < 1 требуется перевести в систему с основаниемq :X = (0,a –1 a –2 …a –m+1 a –m) q . Нужно найти значащие цифры числа:a –1 , a –2 , …,a –m . Представим число в развернутой форме и умножим его наq :

Отсюда видно, что a –1 есть целая часть произведенияX на числоq . Обозначим заX 1 дробную часть произведения и умножим ее наq :

Следовательно, a –2 есть целая часть произведенияX 1 на числоq . Продолжая умножения, будем получать последовательность цифр. Теперь сформулируем правило:для того чтобы перевести десятичную дробь в систему счисления с другим основанием, нужно :

1) последовательно умножать данное число и получаемые дробные части произведений на основание новой системы до тех пор, пока дробная часть произведения не станет равной нулю или не будет достигнута требуемая точность представления числа в новой системе счисления;

2) полученные целые части произведений, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

3) составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.

Пример 3. Перевести десятичную дробь 0,1875 в двоичную, восьмеричную и шестнадцатеричную системы.

Здесь в левом столбце находится целая часть чисел, а в правом - дробная.

Отсюда: 0,1875 10 = 0,0011 2 = 0,14 8 = 0,3 16

Перевод смешанных чисел , содержащих целую и дробную части, осуществляется в два этапа. Целая и дробная части исходного числа переводятся отдельно по соответствующим алгоритмам. В итоговой записи числа в новой системе счисления целая часть отделяется от дробной запятой (точкой).

Двоичные вычисления

Согласно принципу Джона фон Неймана, компьютер производит вычисления в двоичной системе счисления. В рамках базового курса достаточно ограничиться рассмотрением вычислений с целыми двоичными числами. Для выполнения вычислений с многозначными числами необходимо знать правила сложения и правила умножения однозначных чисел. Вот эти правила:

Принцип перестановочности сложения и умножения работает во всех системах счисления. Приемы выполнения вычислений с многозначными числами в двоичной системе аналогичны десятичной. Иначе говоря, процедуры сложения, вычитания и умножения “столбиком” и деления “уголком” в двоичной системе производятся так же, как и в десятичной.

Рассмотрим правила вычитания и деления двоичных чисел. Операция вычитания является обратной по отношению к сложению. Из приведенной выше таблицы сложения следуют правила вычитания:

0 - 0 = 0; 1 - 0 = 1; 10 - 1 = 1.

Вот пример вычитания многозначных чисел:

Полученный результат можно проверить сложением разности с вычитаемым. Должно получиться уменьшаемое число.

Деление - операция обратная умножению. В любой системе счисления делить на 0 нельзя. Результат деления на 1 равен делимому. Деление двоичного числа на 10 2 ведет к перемещению запятой на один разряд влево, подобно десятичному делению на десять. Например:

Деление на 100 смещает запятую на 2 разряда влево и т.д. В базовом курсе можно не рассматривать сложные примеры деления многозначных двоичных чисел. Хотя способные ученики могут справиться и с ними, поняв общие принципы.

Представление информации, хранящейся в компьютерной памяти в ее истинном двоичном виде, весьма громоздко из-за большого количества цифр. Имеется в виду запись такой информации на бумаге или вывод ее на экран. Для этих целей принято использовать смешанные двоично-восьмеричную или двоично-шестнадцатеричную системы.

Существует простая связь между двоичным и шестнадцатеричным представлением числа. При переводе числа из одной системы в другую одной шестнадцатеричной цифре соответствует четырехразрядный двоичный код. Это соответствие отражено в двоично-шестнадцатеричной таблице:

Двоично-шестнадцатеричная таблица

Такая связь основана на том, что 16 = 2 4 и число различных четырехразрядных комбинаций из цифр 0 и 1 равно 16: от 0000 до 1111. Поэтомуперевод чисел из шестнадцатеричных в двоичные и обратно производится путем формальной перекодировки по двоично-шестнадцатеричной таблице .

Вот пример перевода 32-разрядного двоичного кода в 16-ричную систему:

1011 1100 0001 0110 1011 1111 0010 1010 BC16BF2A

Если дано шестнадцатеричное представление внутренней информации, то его легко перевести в двоичный код. Преимущество шестнадцатеричного представления состоит в том, что оно в 4 раза короче двоичного . Желательно, чтобы ученики запомнили двоично-шестнадцатеричную таблицу. Тогда действительно для них шестнадцатеричное представление станет эквивалентным двоичному.

В двоично-восьмеричной системе каждой восьмеричной цифре соответствует триада двоичных цифр. Эта система позволяет сократить двоичный код в 3 раза.

Лабораторная работа 1. «Системы счисления»

Система счисления – это правила записи чисел с помощью заданного набора специальных знаков – цифр.

Людьми использовались различные способы записи чисел, которые можно объединить в несколько групп: унарная, непозиционные и позиционные.

Две первые представляют скорее исторический интерес, поскольку имеют весьма ограниченное применение в настоящее время.

Унарная система счисления

Унарная система счисления – это система счисления, в которой для записи чисел используется только один знак – 1 («палочка»).

Следующее число получается из предыдущего добавлением новой 1; их количество (сумма) равно самому числу.

Именно такая система применяется для начального обучения счету детей (можно вспомнить «счетные палочки»).

Другими словами, использование именно унарной системы оказывается важным педагогическим приемом для введения детей в мир чисел и действий с ними.

Непозиционные система счисления

Непозиционная система счисления - система, в которой символы, обозначающие то или иное количество, не меняют сво­его значения в зависимости от местоположения (позиции) в изоб­ражении числа.

Из непозиционных наиболее распространенной можно считать римскую систему счисления.

В ней некоторые базовые числа обозначены заглавными латинскими буквами:

1 – I, 5 – V, 10 – X, 50 – L , 100 – C, 500 – D, 1000 – M.

Все другие числа строятся из комбинаций базовых, причем:

    если цифра слева меньше, чем цифра справа, то левая цифра вычитается из правой;

    если цифра справа меньше или равна цифре слева, то эти цифры складываются;

Запись чисел в такой системе громоздка и неудобна, но еще более неудобным оказывается выполнение в ней даже самых простых арифметических операций.

Наконец, отсутствие нуля и знаков для чисел больше M не позволяют римскими цифрами записать любое число (хотя бы натуральное). Используется эта система для нумерации.

Позиционные системы счисления

Позиционными называются системы счисления, в которых значение каждой цифры в изображении числа определяется ее положением (позицией) в ряду других цифр.

Упорядоченный набор символов (цифр) 0 , a v ..., а п ), используемый для представления любых чисел в заданной позиционной си­стеме счисления, называют ееалфавитом, число символов (цифр)алфавита р = п + 1 - ее основанием, а саму систему счисления называютр -ричной.

Основание позиционной системы счисления - количестворазличных цифр, используемых для изображения чисел в данной системе счисления.

Самой привычной для нас является десятичная система счисле­ния. Ее алфавит - {0, 1, 2, 3, 4, 5, б, 7, 8, 9}, а основание р = 10, т. е. в этой системе для записи любых чисел используется только десятьразных символов (цифр). Десятичная система счисления основана на том, что 10 единиц каж­дого разряда объединяются в одну единицу соседнего старшего разряда, поэтому каждый разряд имеет вес, равный степени 10. Сле­довательно, значение одной и той же цифры определяется ее местоположением в изображении числа, характеризуемым степенью числа 10. Например, в изображении числа 222.22 цифра 2 повторяется5 раз, при этом первая слева цифра 2 означает количество сотен (ее вес равен 10 2); вторая - количество десятков (ее вес равен 10 1), третья - количество единиц (ее вес равен 10 0), четвертая - количество десятых долей единицы (ее вес равен 10 -1) и пятая цифра - количество сотых долей единицы (ее вес равен 10 -2), т. е. число 222.22 может быть разложено по степеням числа 10:

222.22 = 2 10 2 + 2 10 1 + 2 10° + 2 10 -1 + 2 10 -2 .

Аналогично 725 = 7 10 2 + 2 10 1 + 5 10°;

1304.5 = 1 10 3 + 3 10 2 + 0 10 1 + 4 10° + 5 10 -1 ,

50328.15 = 5 10 4 + 0 10 3 + 3 10 2 + 2 10 1 + 8 10° + 1 10 -1 + 5 10 -2 .

В общем случае для задания р -ричной системы счисления необходимо определить основание р и алфавит, состоящий из р различ­ных символов (цифр)а р i = 1,...,р.

Любое число X p можно представить в виде поли­нома путем разложения его по степеням числаp :

последовательность из коэффициентов которого представляет со­бой сокращенную запись числа X p :

Точка, отделяющая целую часть числа от дробной, служит для фиксации конкретных значений каждой позиции в этой последо­вательности цифр и является началом отсчета.

Методы перевода чисел. Представление чисел в различных системах счисления

Перевод чисел из одной системы счисления в другую

Одно и то же число может быть записано в различных системах счисления.

Алгоритм перевода целых чисел из q -ричной системы в p -ричную, при q > p

Для замены исходного числа X q равным ему числом X p нужно по правилам q -ричной арифметики целочисленно делить X q на новое основание p . Результаты деления, записанные в порядке от последнего к первому, и окажутся цифрами X p .

Поскольку коэффициенты многочлена неизвестны, обозначим их a i ; получаем:

Обычно описанную процедуру представляют в виде привычной по школе операции деления:

Таким образом, получили X 5 =443.

Проверяем правильность перевода: 4*5 2 +4*5 1 +3*5 0 =100+20+3=123 10 .

Второе, на что нужно обратить внимание – все операции выполнялись по правилам арифметики той системы счисления, от которой осуществлялся перевод (в рассмотренном примере – десятичной).

Алгоритм перевода целых чисел из q -ричной системы в p -ричную, при q < p

Для перевода необходимо представить число X q p -ричной арифметики.

X 6  X 10 , Х= 234 6

234 6 = 26 2 +36 1 +46 0 = 236+36+41 = 94 10

Приведенными алгоритмами удобно пользоваться при переводе числа из десятичной системы в какую-то иную или наоборот.

Они работают и для перевода между любыми иными системами счисления, однако, такой перевод будет затруднен тем, что все арифметические операции необходимо осуществлять по правилам исходной (в первом алгоритме) или конечной (во втором алгоритме) системы.

По этой причине переход, например X 3  X 8 проще осуществить через промежуточный переход к 10-ной системе X 3  X 10  X 8 .

Алгоритм перевода правильной дроби при q > p

Результатом перевода правильной дроби 0,X q будет также правильная дробь 0,X p , которая получится в результате умножения исходной дроби на новое основание p по правилам q -ричной арифметики; целая часть полученного произведения будет цифрой старшего разряда новой дроби; дробную часть полученного произведение следует снова умножить на p и т.д.

Пример: 0,X 10  0,X 2 . 0,Х=0,375 10

Тогда для получения 0,X 2:

0,375*2 = 0 ,750

0,75*2 = 1 ,50

0,5*2 = 1 ,0

Таким образом, 0,375 10 = 0,011 2 .

Проверяем 0,011=0*2 -1 +1*2 -2 +1*2 -3 =0,25+1,125=0,375 10

Алгоритм перевода правильной дроби при q < p

Для перевода X q X p необходимо представить число X q в форме многочлена и выполнить все операции по правилам p -ричной арифметики.

Пример: X 6  X 10 , Х 6 =0,234 6

Для этого

0,234 6 = 26 -1 +36 -2 +46 -3 =0,33(3)+0,083(3)+0,01(851)= 0,43517 10

Проверяем:

0, 43517*6=2 ,61102

0, 61102*6=3, 66612

0,66612*6=3,996724 ,0 {погрешность вычислений в случае получения иррациональных чисел}

Пример: X 2  X 10 , Х=0,10101 2

Для этого

0, 10101 2 = 12 -1 +02 -2 +12 -3 +02 -4 +12 -5 = 0,5+0,125+0,03125= 0,65625 10.

Проверяем:

0,65625*2=1 ,3125

0,3125*2=0, 625

0,625*2=1 ,25

0,25*2=0 ,5

0,5*2=1 ,0 . Все верно

Перевод чисел между системами счисления 2 – 8 – 16

Примеры изображения чисел в данных системах счисления приведены в таблице 1

Таблица 1. Системы счисления

десятичная

двоичная

десятичная

двоичная

Для перевода целого двоичного числа в систему счисления с основанием p = 2 r достаточно данное двоичное число, начиная с младшего разряда, разбить на группы в r цифр каждая и каждую группу независимо перевести в систему p .

Например, для перевода числа 110001 2 в систему счисления p=8, нужно разбить исходное число на группы по три разряда справа налево (8 = 2 3 , следовательно, r = 3) и перевести в 8-ричную систему счисления: 110001 2 =61 8 . Проверяем 110001 2 =32+16+1=49 10 , 6*8 1 +1*8 0 =49 10

Аналогично, разбивая на группы по 4 двоичные цифры, получим 110001 2 = 31 16 .

Для перевода целого числа, записанного в системе счисления с основанием p = 2 r , в двоичную систему достаточно каждую цифру исходного числа независимо заменить соответствующим r -разрядным двоичным числом, дополняя его при необходимости незначащими нулями до группы в r цифр.

Пример: представим число D3 16 в двоичной системе счисления:

Пример, 123 8 = 001010011 2 = 53 16 .

Задания для самостоятельного выполнения

    Переведите число X p p-ричной системы счисления вX q q-ричной системы счисления

    X 5  X 10 , где X 5 =123

    X 3  X 10 , где X 3 =102

    X 10  X 4 , где X 10 =123

    X 10  X 6 , где X 10 =548

    X 5  X 3 , где X 3 =421

    X 2  X 6 , где X 2 =0111001

    X 2  X 16 , где X 2 =10011

    X 2  X 8 , где X 2 =101010

    X 16  X 2 , где X 16 =AD3

    X 8  X 2 , где X 8 =5470

II. Переведите десятичное число в двоичное:

    743 10 , b) 334.12 10 , c) 61.375, d) 160.25 10 , e) 131.82 10

III. Переведите десятичное число в шестнадцатеричное число:

    445 10 , b) 334.12 10 , c) 261.375, d) 160.25 10 , e) 131.82 10

Загрузка...