domvpavlino.ru

Метод наименьших квадратов график. Метод наименьших квадратов. Области его применения

Суть метода заключается в том, что критерием качества рассматриваемого решения является сумма квадратов ошибок, которую стремятся свести к минимуму. Для применения этого требуется провести как можно большее число измерений неизвестной случайной величины (чем больше — тем выше точность решения) и некоторое множество предполагаемых решений, из которых требуется выбрать наилучшее. Если множество решений параметризировано, то нужно найти оптимальное значение параметров.

Почему сводятся к минимуму квадраты ошибок, а не сами ошибки? Дело в том, что в большинстве случаев ошибки бывают в обе стороны: оценка может быть больше измерения или меньше его. Если складывать ошибки с разными знаками, то они будут взаимно компенсироваться, и в итоге сумма даст нам неверное представление о качестве оценки. Часто для того, чтобы итоговая оценка имела ту же размерность, что и измеряемые величины, из суммы квадратов ошибок извлекают квадратный корень.


Фото:

МНК используется в математике, в частности — в теории вероятностей и математической статистике. Наибольшее применение этот метод имеет в задачах фильтрации, когда необходимо отделить полезный сигнал от наложенного на него шума.

Его применяют и в математическом анализе для приближённого представления заданной функции более простыми функциями. Ещё одна из областей применения МНК — решение систем уравнений с количеством неизвестных меньшим, чем число уравнений.

Я придумал ещё несколько весьма неожиданных областей применения МНК, о которых хотел бы рассказать в этой статье.

МНК и опечатки

Бичом автоматических переводчиков и поисковых систем являются опечатки и орфографические ошибки. Действительно, если слово отличается всего на 1 букву, программа расценивает его уже как другое слово и переводит/ищет его неправильно или не переводит/не находит его вообще.

У меня возникла похожая проблема: имелось две базы данных с адресами московских домов, и надо было их объединить в одну. Но адреса были записаны в разном стиле. В одной базе был стандарт КЛАДР (всероссийский классификатор адресов), например: «БАБУШКИНА ЛЕТЧИКА УЛ., Д10К3». А в другой базе был почтовый стиль, например: «Ул. Летчика Бабушкина, дом 10 корп.3». Вроде бы ошибок нет в обоих случаях, а автоматизировать процесс невероятно сложно (в каждой базе по 40 тысяч записей!). Хотя и опечаток там тоже хватало… Как дать компьютеру понять, что 2 вышеприведённых адреса принадлежат одному и тому же дому? Тут-то мне и пригодился МНК.

Что я сделал? Найдя очередную букву в первом адресе, я искал ту же букву во втором адресе. Если они обе находились на одном и том же месте, то я полагал ошибку для этой буквы равной 0. Если они располагались на соседних позициях, то ошибка была равна 1. Если имелся сдвиг на 2 позиции, ошибка равнялась 2 и т. д. Если такой буквы вообще не имелось в другом адресе, то ошибка полагалась равной n+1, где n — число букв в 1-м адресе. Таким образом я вычислял сумму квадратов ошибок и соединял те записи, в которых эта сумма была минимальной.

Разумеется, номера домов и корпусов обрабатывались отдельно. Не знаю, изобрёл ли я очередной «велосипед», или это впрямь было , но задача была решена быстро и качественно. Интересно, применяется ли этот метод в поисковых системах? Возможно, применяется, поскольку каждый уважающий себя поисковик при встрече незнакомого слова предлагает замену из знакомых слов («возможно, вы имели в виду…»). Впрочем, они могут делать этот анализ как-то по-другому.

МНК и поиск по картинкам, лицам и картам

Этот метод можно применить и в поиске по картинкам, чертежам, картам и даже по лицам людей.

Фото:

Сейчас все поисковики, вместо поиска по картинкам, по сути, используют поиск по подписям к картинкам. Это, несомненно, полезный и удобный сервис, но я предлагаю дополнить его настоящим поиском по картинкам.

Вводится картинка-образец и для всех изображений составляется рейтинг по сумме квадратов отклонений характерных точек. Определение этих самых характерных точек есть сама по себе нетривиальная задача. Однако она вполне решаема: например, для лиц это уголки глаз, губ, кончик носа, ноздри, края и центры бровей, зрачки и т. д.

Сопоставив эти параметры, можно найти лицо, наиболее похожее на образец. Я уже видел сайты, где такой сервис работает, и вы можете найти знаменитость, наиболее похожую на предложенную вами фотографию, и даже составить анимацию, превращающую вас в знаменитость и обратно. Наверняка этот же метод работает в базах МВД, содержащих фотороботы преступников.

Фото: pixabay.com

Да и по отпечаткам пальцев можно тем же методом делать поиск. Поиск по картам ориентируется на естественные неровности географических объектов — изгибы рек, горных хребтов, очертания берегов, лесов и полей.

Вот такой замечательный и универсальный метод МНК. Я уверен, что вы, дорогие читатели, сможете и сами найти множество необычных и неожиданных областей применения этого метода.

  • Программирование
    • Tutorial

    Введение

    Я математик-программист. Самый большой скачок в своей карьере я совершил, когда научился говорить:«Я ничего не понимаю!» Сейчас мне не стыдно сказать светилу науки, что мне читает лекцию, что я не понимаю, о чём оно, светило, мне говорит. И это очень сложно. Да, признаться в своём неведении сложно и стыдно. Кому понравится признаваться в том, что он не знает азов чего-то-там. В силу своей профессии я должен присутствовать на большом количестве презентаций и лекций, где, признаюсь, в подавляющем большинстве случаев мне хочется спать, потому что я ничего не понимаю. А не понимаю я потому, что огромная проблема текущей ситуации в науке кроется в математике. Она предполагает, что все слушатели знакомы с абсолютно всеми областями математики (что абсурдно). Признаться в том, что вы не знаете, что такое производная (о том, что это - чуть позже) - стыдно.

    Но я научился говорить, что я не знаю, что такое умножение. Да, я не знаю, что такое подалгебра над алгеброй Ли. Да, я не знаю, зачем нужны в жизни квадратные уравнения. К слову, если вы уверены, что вы знаете, то нам есть над чем поговорить! Математика - это серия фокусов. Математики стараются запутать и запугать публику; там, где нет замешательства, нет репутации, нет авторитета. Да, это престижно говорить как можно более абстрактным языком, что есть по себе полная чушь.

    Знаете ли вы, что такое производная? Вероятнее всего вы мне скажете про предел разностного отношения. На первом курсе матмеха СПбГУ Виктор Петрович Хавин мне определил производную как коэффициент первого члена ряда Тейлора функции в точке (это была отдельная гимнастика, чтобы определить ряд Тейлора без производных). Я долго смеялся над таким определением, покуда в итоге не понял, о чём оно. Производная не что иное, как просто мера того, насколько функция, которую мы дифференцируем, похожа на функцию y=x, y=x^2, y=x^3.

    Я сейчас имею честь читать лекции студентам, которые боятся математики. Если вы боитесь математики - нам с вами по пути. Как только вы пытаетесь прочитать какой-то текст, и вам кажется, что он чрезмерно сложен, то знайте, что он хреново написан. Я утверждаю, что нет ни одной области математики, о которой нельзя говорить «на пальцах», не теряя при этом точности.

    Задача на ближайшее время: я поручил своим студентам понять, что такое линейно-квадратичный регулятор . Не постесняйтесь, потратьте три минуты своей жизни, сходите по ссылке. Если вы ничего не поняли, то нам с вами по пути. Я (профессиональный математик-программист) тоже ничего не понял. И я уверяю, в этом можно разобраться «на пальцах». На данный момент я не знаю, что это такое, но я уверяю, что мы сумеем разобраться.

    Итак, первая лекция, которую я собираюсь прочитать своим студентам после того, как они в ужасе прибегут ко мне со словами, что линейно-квадратичный регулятор - это страшная бяка, которую никогда в жизни не осилить, это методы наименьших квадратов . Умеете ли вы решать линейные уравнения? Если вы читаете этот текст, то скорее всего нет.

    Итак, даны две точки (x0, y0), (x1, y1), например, (1,1) и (3,2), задача найти уравнение прямой, проходящей через эти две точки:

    иллюстрация

    Эта прямая должна иметь уравнение типа следующего:

    Здесь альфа и бета нам неизвестны, но известны две точки этой прямой:

    Можно записать это уравнение в матричном виде:

    Тут следует сделать лирическое отступление: что такое матрица? Матрица это не что иное, как двумерный массив. Это способ хранения данных, более никаких значений ему придавать не стоит. Это зависит от нас, как именно интерпретировать некую матрицу. Периодически я буду её интерпретировать как линейное отображение, периодически как квадратичную форму, а ещё иногда просто как набор векторов. Это всё будет уточнено в контексте.

    Давайте заменим конкретные матрицы на их символьное представление:

    Тогда (alpha, beta) может быть легко найдено:

    Более конкретно для наших предыдущих данных:

    Что ведёт к следующему уравнению прямой, проходящей через точки (1,1) и (3,2):

    Окей, тут всё понятно. А давайте найдём уравнение прямой, проходящей через три точки: (x0,y0), (x1,y1) и (x2,y2):

    Ой-ой-ой, а ведь у нас три уравнения на две неизвестных! Стандартный математик скажет, что решения не существует. А что скажет программист? А он для начала перепишет предыдующую систему уравнений в следующем виде:

    В нашем случае векторы i,j,b трёхмерны, следовательно, (в общем случае) решения этой системы не существует. Любой вектор (alpha\*i + beta\*j) лежит в плоскости, натянутой на векторы (i, j). Если b не принадлежит этой плоскости, то решения не существует (равенства в уравнении не достичь). Что делать? Давайте искать компромисс. Давайте обозначим через e(alpha, beta) насколько именно мы не достигли равенства:

    И будем стараться минимизировать эту ошибку:

    Почему квадрат?

    Мы ищем не просто минимум нормы, а минимум квадрата нормы. Почему? Сама точка минимума совпадает, а квадрат даёт гладкую функцию (квадратичную функцию от агрументов (alpha,beta)), в то время как просто длина даёт функцию в виде конуса, недифференцируемую в точке минимума. Брр. Квадрат удобнее.

    Очевидно, что ошибка минимизируется, когда вектор e ортогонален плоскости, натянутой на векторы i и j .

    Иллюстрация

    Иными словами: мы ищем такую прямую, что сумма квадратов длин расстояний от всех точек до этой прямой минимальна:

    UPDATE: тут у меня косяк, расстояние до прямой должно измеряться по вертикали, а не ортогональной проекцией. комментатор прав.

    Иллюстрация

    Совсеми иными словами (осторожно, плохо формализовано, но на пальцах должно быть ясно): мы берём все возможные прямые между всеми парами точек и ищем среднюю прямую между всеми:

    Иллюстрация

    Иное объяснение на пальцах: мы прикрепляем пружинку между всеми точками данных (тут у нас три) и прямой, что мы ищем, и прямая равновесного состояния есть именно то, что мы ищем.

    Минимум квадратичной формы

    Итак, имея данный вектор b и плоскость, натянутую на столбцы-векторы матрицы A (в данном случае (x0,x1,x2) и (1,1,1)), мы ищем вектор e с минимум квадрата длины. Очевидно, что минимум достижим только для вектора e , ортогонального плоскости, натянутой на столбцы-векторы матрицы A :

    Иначе говоря, мы ищем такой вектор x=(alpha, beta), что:

    Напоминаю, что этот вектор x=(alpha, beta) является минимумом квадратичной функции ||e(alpha, beta)||^2:

    Тут нелишним будет вспомнить, что матрицу можно интерпретирвать в том числе как и квадратичную форму, например, единичная матрица ((1,0),(0,1)) может быть интерпретирована как функция x^2 + y^2:

    квадратичная форма

    Вся эта гимнастика известна под именем линейной регрессии .

    Уравнение Лапласа с граничным условием Дирихле

    Теперь простейшая реальная задача: имеется некая триангулированная поверхность, необходимо её сгладить. Например, давайте загрузим модель моего лица:

    Изначальный коммит доступен . Для минимизации внешних зависимостей я взял код своего софтверного рендерера, уже на хабре. Для решения линейной системы я пользуюсь OpenNL , это отличный солвер, который, правда, очень сложно установить: нужно скопировать два файла (.h+.c) в папку с вашим проектом. Всё сглаживание делается следующим кодом:

    For (int d=0; d<3; d++) { nlNewContext(); nlSolverParameteri(NL_NB_VARIABLES, verts.size()); nlSolverParameteri(NL_LEAST_SQUARES, NL_TRUE); nlBegin(NL_SYSTEM); nlBegin(NL_MATRIX); for (int i=0; i<(int)verts.size(); i++) { nlBegin(NL_ROW); nlCoefficient(i, 1); nlRightHandSide(verts[i][d]); nlEnd(NL_ROW); } for (unsigned int i=0; i &face = faces[i]; for (int j=0; j<3; j++) { nlBegin(NL_ROW); nlCoefficient(face[ j ], 1); nlCoefficient(face[(j+1)%3], -1); nlEnd(NL_ROW); } } nlEnd(NL_MATRIX); nlEnd(NL_SYSTEM); nlSolve(); for (int i=0; i<(int)verts.size(); i++) { verts[i][d] = nlGetVariable(i); } }

    X, Y и Z координаты отделимы, я их сглаживаю по отдельности. То есть, я решаю три системы линейных уравнений, каждое имеет количество переменных равным количеству вершин в моей модели. Первые n строк матрицы A имеют только одну единицу на строку, а первые n строк вектора b имеют оригинальные координаты модели. То есть, я привязываю по пружинке между новым положением вершины и старым положением вершины - новые не должны слишком далеко уходить от старых.

    Все последующие строки матрицы A (faces.size()*3 = количеству рёбер всех треугольников в сетке) имеют одно вхождение 1 и одно вхождение -1, причём вектор b имеет нулевые компоненты напротив. Это значит, я вешаю пружинку на каждое ребро нашей треугольной сетки: все рёбра стараются получить одну и ту же вершину в качестве отправной и финальной точки.

    Ещё раз: переменными являются все вершины, причём они не могут далеко отходить от изначального положения, но при этом стараются стать похожими друг на друга.

    Вот результат:

    Всё бы было хорошо, модель действительно сглажена, но она отошла от своего изначального края. Давайте чуть-чуть изменим код:

    For (int i=0; i<(int)verts.size(); i++) { float scale = border[i] ? 1000: 1; nlBegin(NL_ROW); nlCoefficient(i, scale); nlRightHandSide(scale*verts[i][d]); nlEnd(NL_ROW); }

    В нашей матрице A я для вершин, что находятся на краю, добавляю не строку из разряда v_i = verts[i][d], а 1000*v_i = 1000*verts[i][d]. Что это меняет? А меняет это нашу квадратичную форму ошибки. Теперь единичное отклонение от вершины на краю будет стоить не одну единицу, как раньше, а 1000*1000 единиц. То есть, мы повесили более сильную пружинку на крайние вершины, решение предпочтёт сильнее растянуть другие. Вот результат:

    Давайте вдвое усилим пружинки между вершинами:
    nlCoefficient(face[ j ], 2); nlCoefficient(face[(j+1)%3], -2);

    Логично, что поверхность стала более гладкой:

    А теперь ещё в сто раз сильнее:

    Что это? Представьте, что мы обмакнули проволочное кольцо в мыльную воду. В итоге образовавшаяся мыльная плёнка будет стараться иметь наименьшую кривизну, насколько это возможно, касаясь-таки границы - нашего проволочного кольца. Именно это мы и получили, зафиксировав границу и попросив получить гладкую поверхность внутри. Поздравляю вас, мы только что решили уравнение Лапласа с граничными условиями Дирихле. Круто звучит? А на деле всего-навсего одну систему линейных уравнений решить.

    Уравнение Пуассона

    Давайте ещё крутое имя вспомним.

    Предположим, что у меня есть такая картинка:

    Всем хороша, только стул мне не нравится.

    Разрежу картинку пополам:



    И выделю руками стул:

    Затем всё, что белое в маске, притяну к левой части картинки, а заодно по всей картинке скажу, что разница между двумя соседними пикселями должна равняться разнице между двумя соседними пикселями правой картинки:

    For (int i=0; i

    Вот результат:

    Код и картинки доступны

    Метод наименьших квадратов используется для оценки параметров уравнение регрессии.
    Количество строк (исходных данных)

    Одним из методов изучения стохастических связей между признаками является регрессионный анализ .
    Регрессионный анализ представляет собой вывод уравнения регрессии, с помощью которого находится средняя величина случайной переменной (признака-результата), если величина другой (или других) переменных (признаков-факторов) известна. Он включает следующие этапы:

    1. выбор формы связи (вида аналитического уравнения регрессии);
    2. оценку параметров уравнения;
    3. оценку качества аналитического уравнения регрессии.
    Наиболее часто для описания статистической связи признаков используется линейная форма. Внимание к линейной связи объясняется четкой экономической интерпретацией ее параметров, ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения расчетов преобразуют (путем логарифмирования или замены переменных) в линейную форму.
    В случае линейной парной связи уравнение регрессии примет вид: y i =a+b·x i +u i . Параметры данного уравнения а и b оцениваются по данным статистического наблюдения x и y . Результатом такой оценки является уравнение: , где , - оценки параметров a и b , - значение результативного признака (переменной), полученное по уравнению регрессии (расчетное значение).

    Наиболее часто для оценки параметров используют метод наименьших квадратов (МНК).
    Метод наименьших квадратов дает наилучшие (состоятельные, эффективные и несмещенные) оценки параметров уравнения регрессии. Но только в том случае, если выполняются определенные предпосылки относительно случайного члена (u) и независимой переменной (x) (см. предпосылки МНК).

    Задача оценивания параметров линейного парного уравнения методом наименьших квадратов состоит в следующем: получить такие оценки параметров , , при которых сумма квадратов отклонений фактических значений результативного признака - y i от расчетных значений – минимальна.
    Формально критерий МНК можно записать так: .

    Классификация методов наименьших квадратов

    1. Метод наименьших квадратов.
    2. Метод максимального правдоподобия (для нормальной классической линейной модели регрессии постулируется нормальность регрессионных остатков).
    3. Обобщенный метод наименьших квадратов ОМНК применяется в случае автокорреляции ошибок и в случае гетероскедастичности.
    4. Метод взвешенных наименьших квадратов (частный случай ОМНК с гетероскедастичными остатками).

    Проиллюстрируем суть классического метода наименьших квадратов графически . Для этого построим точечный график по данным наблюдений (x i , y i , i=1;n) в прямоугольной системе координат (такой точечный график называют корреляционным полем). Попытаемся подобрать прямую линию, которая ближе всего расположена к точкам корреляционного поля. Согласно методу наименьших квадратов линия выбирается так, чтобы сумма квадратов расстояний по вертикали между точками корреляционного поля и этой линией была бы минимальной.

    Математическая запись данной задачи: .
    Значения y i и x i =1...n нам известны, это данные наблюдений. В функции S они представляют собой константы. Переменными в данной функции являются искомые оценки параметров - , . Чтобы найти минимум функции 2-ух переменных необходимо вычислить частные производные данной функции по каждому из параметров и приравнять их нулю, т.е. .
    В результате получим систему из 2-ух нормальных линейных уравнений:
    Решая данную систему, найдем искомые оценки параметров:

    Правильность расчета параметров уравнения регрессии может быть проверена сравнением сумм (возможно некоторое расхождение из-за округления расчетов).
    Для расчета оценок параметров , можно построить таблицу 1.
    Знак коэффициента регрессии b указывает направление связи (если b >0, связь прямая, если b <0, то связь обратная). Величина b показывает на сколько единиц изменится в среднем признак-результат -y при изменении признака-фактора - х на 1 единицу своего измерения.
    Формально значение параметра а – среднее значение y при х равном нулю. Если признак-фактор не имеет и не может иметь нулевого значения, то вышеуказанная трактовка параметра а не имеет смысла.

    Оценка тесноты связи между признаками осуществляется с помощью коэффициента линейной парной корреляции - r x,y . Он может быть рассчитан по формуле: . Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b: .
    Область допустимых значений линейного коэффициента парной корреляции от –1 до +1. Знак коэффициента корреляции указывает направление связи. Если r x, y >0, то связь прямая; если r x, y <0, то связь обратная.
    Если данный коэффициент по модулю близок к единице, то связь между признаками может быть интерпретирована как довольно тесная линейная. Если его модуль равен единице ê r x , y ê =1, то связь между признаками функциональная линейная. Если признаки х и y линейно независимы, то r x,y близок к 0.
    Для расчета r x,y можно использовать также таблицу 1.

    Таблица 1

    N наблюдения x i y i x i ∙y i
    1 x 1 y 1 x 1 ·y 1
    2 x 2 y 2 x 2 ·y 2
    ...
    n x n y n x n ·y n
    Сумма по столбцу ∑x ∑y ∑x·y
    Среднее значение
    Для оценки качества полученного уравнения регрессии рассчитывают теоретический коэффициент детерминации – R 2 yx:

    ,
    где d 2 – объясненная уравнением регрессии дисперсия y ;
    e 2 - остаточная (необъясненная уравнением регрессии) дисперсия y ;
    s 2 y - общая (полная) дисперсия y .
    Коэффициент детерминации характеризует долю вариации (дисперсии) результативного признака y , объясняемую регрессией (а, следовательно, и фактором х), в общей вариации (дисперсии) y . Коэффициент детерминации R 2 yx принимает значения от 0 до 1. Соответственно величина 1-R 2 yx характеризует долю дисперсии y , вызванную влиянием прочих неучтенных в модели факторов и ошибками спецификации.
    При парной линейной регрессии R 2 yx =r 2 yx .
    • Tutorial

    Введение

    Я математик-программист. Самый большой скачок в своей карьере я совершил, когда научился говорить:«Я ничего не понимаю!» Сейчас мне не стыдно сказать светилу науки, что мне читает лекцию, что я не понимаю, о чём оно, светило, мне говорит. И это очень сложно. Да, признаться в своём неведении сложно и стыдно. Кому понравится признаваться в том, что он не знает азов чего-то-там. В силу своей профессии я должен присутствовать на большом количестве презентаций и лекций, где, признаюсь, в подавляющем большинстве случаев мне хочется спать, потому что я ничего не понимаю. А не понимаю я потому, что огромная проблема текущей ситуации в науке кроется в математике. Она предполагает, что все слушатели знакомы с абсолютно всеми областями математики (что абсурдно). Признаться в том, что вы не знаете, что такое производная (о том, что это - чуть позже) - стыдно.

    Но я научился говорить, что я не знаю, что такое умножение. Да, я не знаю, что такое подалгебра над алгеброй Ли. Да, я не знаю, зачем нужны в жизни квадратные уравнения. К слову, если вы уверены, что вы знаете, то нам есть над чем поговорить! Математика - это серия фокусов. Математики стараются запутать и запугать публику; там, где нет замешательства, нет репутации, нет авторитета. Да, это престижно говорить как можно более абстрактным языком, что есть по себе полная чушь.

    Знаете ли вы, что такое производная? Вероятнее всего вы мне скажете про предел разностного отношения. На первом курсе матмеха СПбГУ Виктор Петрович Хавин мне определил производную как коэффициент первого члена ряда Тейлора функции в точке (это была отдельная гимнастика, чтобы определить ряд Тейлора без производных). Я долго смеялся над таким определением, покуда в итоге не понял, о чём оно. Производная не что иное, как просто мера того, насколько функция, которую мы дифференцируем, похожа на функцию y=x, y=x^2, y=x^3.

    Я сейчас имею честь читать лекции студентам, которые боятся математики. Если вы боитесь математики - нам с вами по пути. Как только вы пытаетесь прочитать какой-то текст, и вам кажется, что он чрезмерно сложен, то знайте, что он хреново написан. Я утверждаю, что нет ни одной области математики, о которой нельзя говорить «на пальцах», не теряя при этом точности.

    Задача на ближайшее время: я поручил своим студентам понять, что такое линейно-квадратичный регулятор . Не постесняйтесь, потратьте три минуты своей жизни, сходите по ссылке. Если вы ничего не поняли, то нам с вами по пути. Я (профессиональный математик-программист) тоже ничего не понял. И я уверяю, в этом можно разобраться «на пальцах». На данный момент я не знаю, что это такое, но я уверяю, что мы сумеем разобраться.

    Итак, первая лекция, которую я собираюсь прочитать своим студентам после того, как они в ужасе прибегут ко мне со словами, что линейно-квадратичный регулятор - это страшная бяка, которую никогда в жизни не осилить, это методы наименьших квадратов . Умеете ли вы решать линейные уравнения? Если вы читаете этот текст, то скорее всего нет.

    Итак, даны две точки (x0, y0), (x1, y1), например, (1,1) и (3,2), задача найти уравнение прямой, проходящей через эти две точки:

    иллюстрация

    Эта прямая должна иметь уравнение типа следующего:

    Здесь альфа и бета нам неизвестны, но известны две точки этой прямой:

    Можно записать это уравнение в матричном виде:

    Тут следует сделать лирическое отступление: что такое матрица? Матрица это не что иное, как двумерный массив. Это способ хранения данных, более никаких значений ему придавать не стоит. Это зависит от нас, как именно интерпретировать некую матрицу. Периодически я буду её интерпретировать как линейное отображение, периодически как квадратичную форму, а ещё иногда просто как набор векторов. Это всё будет уточнено в контексте.

    Давайте заменим конкретные матрицы на их символьное представление:

    Тогда (alpha, beta) может быть легко найдено:

    Более конкретно для наших предыдущих данных:

    Что ведёт к следующему уравнению прямой, проходящей через точки (1,1) и (3,2):

    Окей, тут всё понятно. А давайте найдём уравнение прямой, проходящей через три точки: (x0,y0), (x1,y1) и (x2,y2):

    Ой-ой-ой, а ведь у нас три уравнения на две неизвестных! Стандартный математик скажет, что решения не существует. А что скажет программист? А он для начала перепишет предыдующую систему уравнений в следующем виде:

    В нашем случае векторы i,j,b трёхмерны, следовательно, (в общем случае) решения этой системы не существует. Любой вектор (alpha\*i + beta\*j) лежит в плоскости, натянутой на векторы (i, j). Если b не принадлежит этой плоскости, то решения не существует (равенства в уравнении не достичь). Что делать? Давайте искать компромисс. Давайте обозначим через e(alpha, beta) насколько именно мы не достигли равенства:

    И будем стараться минимизировать эту ошибку:

    Почему квадрат?

    Мы ищем не просто минимум нормы, а минимум квадрата нормы. Почему? Сама точка минимума совпадает, а квадрат даёт гладкую функцию (квадратичную функцию от агрументов (alpha,beta)), в то время как просто длина даёт функцию в виде конуса, недифференцируемую в точке минимума. Брр. Квадрат удобнее.

    Очевидно, что ошибка минимизируется, когда вектор e ортогонален плоскости, натянутой на векторы i и j .

    Иллюстрация

    Иными словами: мы ищем такую прямую, что сумма квадратов длин расстояний от всех точек до этой прямой минимальна:

    UPDATE: тут у меня косяк, расстояние до прямой должно измеряться по вертикали, а не ортогональной проекцией. Вот этот комментатор прав.

    Иллюстрация

    Совсеми иными словами (осторожно, плохо формализовано, но на пальцах должно быть ясно): мы берём все возможные прямые между всеми парами точек и ищем среднюю прямую между всеми:

    Иллюстрация

    Иное объяснение на пальцах: мы прикрепляем пружинку между всеми точками данных (тут у нас три) и прямой, что мы ищем, и прямая равновесного состояния есть именно то, что мы ищем.

    Минимум квадратичной формы

    Итак, имея данный вектор b и плоскость, натянутую на столбцы-векторы матрицы A (в данном случае (x0,x1,x2) и (1,1,1)), мы ищем вектор e с минимум квадрата длины. Очевидно, что минимум достижим только для вектора e , ортогонального плоскости, натянутой на столбцы-векторы матрицы A :

    Иначе говоря, мы ищем такой вектор x=(alpha, beta), что:

    Напоминаю, что этот вектор x=(alpha, beta) является минимумом квадратичной функции ||e(alpha, beta)||^2:

    Тут нелишним будет вспомнить, что матрицу можно интерпретирвать в том числе как и квадратичную форму, например, единичная матрица ((1,0),(0,1)) может быть интерпретирована как функция x^2 + y^2:

    квадратичная форма

    Вся эта гимнастика известна под именем линейной регрессии .

    Уравнение Лапласа с граничным условием Дирихле

    Теперь простейшая реальная задача: имеется некая триангулированная поверхность, необходимо её сгладить. Например, давайте загрузим модель моего лица:

    Изначальный коммит доступен . Для минимизации внешних зависимостей я взял код своего софтверного рендерера, уже на хабре. Для решения линейной системы я пользуюсь OpenNL , это отличный солвер, который, правда, очень сложно установить: нужно скопировать два файла (.h+.c) в папку с вашим проектом. Всё сглаживание делается следующим кодом:

    For (int d=0; d<3; d++) { nlNewContext(); nlSolverParameteri(NL_NB_VARIABLES, verts.size()); nlSolverParameteri(NL_LEAST_SQUARES, NL_TRUE); nlBegin(NL_SYSTEM); nlBegin(NL_MATRIX); for (int i=0; i<(int)verts.size(); i++) { nlBegin(NL_ROW); nlCoefficient(i, 1); nlRightHandSide(verts[i][d]); nlEnd(NL_ROW); } for (unsigned int i=0; i &face = faces[i]; for (int j=0; j<3; j++) { nlBegin(NL_ROW); nlCoefficient(face[ j ], 1); nlCoefficient(face[(j+1)%3], -1); nlEnd(NL_ROW); } } nlEnd(NL_MATRIX); nlEnd(NL_SYSTEM); nlSolve(); for (int i=0; i<(int)verts.size(); i++) { verts[i][d] = nlGetVariable(i); } }

    X, Y и Z координаты отделимы, я их сглаживаю по отдельности. То есть, я решаю три системы линейных уравнений, каждое имеет количество переменных равным количеству вершин в моей модели. Первые n строк матрицы A имеют только одну единицу на строку, а первые n строк вектора b имеют оригинальные координаты модели. То есть, я привязываю по пружинке между новым положением вершины и старым положением вершины - новые не должны слишком далеко уходить от старых.

    Все последующие строки матрицы A (faces.size()*3 = количеству рёбер всех треугольников в сетке) имеют одно вхождение 1 и одно вхождение -1, причём вектор b имеет нулевые компоненты напротив. Это значит, я вешаю пружинку на каждое ребро нашей треугольной сетки: все рёбра стараются получить одну и ту же вершину в качестве отправной и финальной точки.

    Ещё раз: переменными являются все вершины, причём они не могут далеко отходить от изначального положения, но при этом стараются стать похожими друг на друга.

    Вот результат:

    Всё бы было хорошо, модель действительно сглажена, но она отошла от своего изначального края. Давайте чуть-чуть изменим код:

    For (int i=0; i<(int)verts.size(); i++) { float scale = border[i] ? 1000: 1; nlBegin(NL_ROW); nlCoefficient(i, scale); nlRightHandSide(scale*verts[i][d]); nlEnd(NL_ROW); }

    В нашей матрице A я для вершин, что находятся на краю, добавляю не строку из разряда v_i = verts[i][d], а 1000*v_i = 1000*verts[i][d]. Что это меняет? А меняет это нашу квадратичную форму ошибки. Теперь единичное отклонение от вершины на краю будет стоить не одну единицу, как раньше, а 1000*1000 единиц. То есть, мы повесили более сильную пружинку на крайние вершины, решение предпочтёт сильнее растянуть другие. Вот результат:

    Давайте вдвое усилим пружинки между вершинами:
    nlCoefficient(face[ j ], 2); nlCoefficient(face[(j+1)%3], -2);

    Логично, что поверхность стала более гладкой:

    А теперь ещё в сто раз сильнее:

    Что это? Представьте, что мы обмакнули проволочное кольцо в мыльную воду. В итоге образовавшаяся мыльная плёнка будет стараться иметь наименьшую кривизну, насколько это возможно, касаясь-таки границы - нашего проволочного кольца. Именно это мы и получили, зафиксировав границу и попросив получить гладкую поверхность внутри. Поздравляю вас, мы только что решили уравнение Лапласа с граничными условиями Дирихле. Круто звучит? А на деле всего-навсего одну систему линейных уравнений решить.

    Уравнение Пуассона

    Давайте ещё крутое имя вспомним.

    Предположим, что у меня есть такая картинка:

    Всем хороша, только стул мне не нравится.

    Разрежу картинку пополам:



    И выделю руками стул:

    Затем всё, что белое в маске, притяну к левой части картинки, а заодно по всей картинке скажу, что разница между двумя соседними пикселями должна равняться разнице между двумя соседними пикселями правой картинки:

    For (int i=0; i

    Вот результат:

    Код и картинки доступны

    Выбрав вид функции регрессии, т.е. вид рассматриваемой модели зависимости Y от Х (или Х от У), например, линейную модель y x =a+bx, необходимо определить конкретные значения коэффициентов модели.

    При различных значениях а и b можно построить бесконечное число зависимостей вида y x =a+bx т.е на координатной плоскости имеется бесконечное количество прямых, нам же необходима такая зависимость, которая соответствует наблюдаемым значениям наилучшим образом. Таким образом, задача сводится к подбору наилучших коэффициентов.

    Линейную функцию a+bx ищем, исходя лишь из некоторого количества имеющихся наблюдений. Для нахождения функции с наилучшим соответствием наблюдаемым значениям используем метод наименьших квадратов.

    Обозначим: Y i - значение, вычисленное по уравнению Y i =a+bx i . y i - измеренное значение, ε i =y i -Y i - разность между измеренными и вычисленными по уравнению значениям, ε i =y i -a-bx i .

    В методе наименьших квадратов требуется, чтобы ε i , разность между измеренными y i и вычисленными по уравнению значениям Y i , была минимальной. Следовательно, находим коэффициенты а и b так, чтобы сумма квадратов отклонений наблюдаемых значений от значений на прямой линии регрессии оказалась наименьшей:

    Исследуя на экстремум эту функцию аргументов а и с помощью производных, можно доказать, что функция принимает минимальное значение, если коэффициенты а и b являются решениями системы:

    (2)

    Если разделить обе части нормальных уравнений на n, то получим:

    Учитывая, что (3)

    Получим , отсюда , подставляя значение a в первое уравнение, получим:

    При этом b называют коэффициентом регрессии; a называют свободным членом уравнения регрессии и вычисляют по формуле:

    Полученная прямая является оценкой для теоретической линии регрессии. Имеем:

    Итак, является уравнением линейной регрессии.

    Регрессия может быть прямой (b>0) и обратной (b Пример 1. Результаты измерения величин X и Y даны в таблице:

    x i -2 0 1 2 4
    y i 0.5 1 1.5 2 3

    Предполагая, что между X и Y существует линейная зависимость y=a+bx, способом наименьших квадратов определить коэффициенты a и b.

    Решение. Здесь n=5
    x i =-2+0+1+2+4=5;
    x i 2 =4+0+1+4+16=25
    x i y i =-2 0.5+0 1+1 1.5+2 2+4 3=16.5
    y i =0.5+1+1.5+2+3=8

    и нормальная система (2) имеет вид

    Решая эту систему, получим: b=0.425, a=1.175. Поэтому y=1.175+0.425x.

    Пример 2. Имеется выборка из 10 наблюдений экономических показателей (X) и (Y).

    x i 180 172 173 169 175 170 179 170 167 174
    y i 186 180 176 171 182 166 182 172 169 177

    Требуется найти выборочное уравнение регрессии Y на X. Построить выборочную линию регрессии Y на X.

    Решение. 1. Проведем упорядочивание данных по значениям x i и y i . Получаем новую таблицу:

    x i 167 169 170 170 172 173 174 175 179 180
    y i 169 171 166 172 180 176 177 182 182 186

    Для упрощения вычислений составим расчетную таблицу, в которую занесем необходимые численные значения.

    x i y i x i 2 x i y i
    167 169 27889 28223
    169 171 28561 28899
    170 166 28900 28220
    170 172 28900 29240
    172 180 29584 30960
    173 176 29929 30448
    174 177 30276 30798
    175 182 30625 31850
    179 182 32041 32578
    180 186 32400 33480
    ∑x i =1729 ∑y i =1761 ∑x i 2 299105 ∑x i y i =304696
    x=172.9 y=176.1 x i 2 =29910.5 xy=30469.6

    Согласно формуле (4), вычисляем коэффициента регрессии

    а по формуле (5)

    Таким образом, выборочное уравнение регрессии имеет вид y=-59.34+1.3804x.
    Нанесем на координатной плоскости точки (x i ; y i) и отметим прямую регрессии.


    Рис 4

    На рис.4 видно, как располагаются наблюдаемые значения относительно линии регрессии. Для численной оценки отклонений y i от Y i , где y i наблюдаемые, а Y i определяемые регрессией значения, составим таблицу:

    x i y i Y i Y i -y i
    167 169 168.055 -0.945
    169 171 170.778 -0.222
    170 166 172.140 6.140
    170 172 172.140 0.140
    172 180 174.863 -5.137
    173 176 176.225 0.225
    174 177 177.587 0.587
    175 182 178.949 -3.051
    179 182 184.395 2.395
    180 186 185.757 -0.243

    Значения Y i вычислены согласно уравнению регрессии.

    Заметное отклонение некоторых наблюдаемых значений от линии регрессии объясняется малым числом наблюдений. При исследовании степени линейной зависимости Y от X число наблюдений учитывается. Сила зависимости определяется величиной коэффициента корреляции.

    Загрузка...