domvpavlino.ru

Нейтронные оригиналы. Невероятные факты из космоса Почему нейтронные звезды называют пульсарами

Прекрасная космическая юла однажды может уничтожить Землю смертоносными лучами, докладывают ученые.

В отличие от Звезды Смерти из «Звездных войн», которой требовалось приблизиться к планете, чтобы взорвать ее, эта сверкающая спираль в состоянии сжигать миры, находящиеся за тысячи световых лет, подобно Галактике Смерти, уже описанной на нашем сайте.

«Мне нравилась эта спираль из-за ее красоты, но теперь, глядя на нее, я не могу отделаться от чувства, будто заглядываю в дуло ружья»,- говорит исследователь Питер Татхилл (Peter Tuthill), астроном Сиднейского университета.

В сердце этой огненной космической юлы - две горячие, яркие звезды, обращающиеся друг вокруг друга. В таком взаимном вращении сполохи струящегося газа вырываются с поверхности звезд и сталкиваются в промежуточном пространстве, постепенно переплетаясь и закручиваясь орбитами звезд во вращающиеся спирали.

Последовательность из 11 снимков, совмещенных и расцвеченных, показывает юлу, образованную двойной звездой Wolf-Raet 104. Снимки сделаны в близком к инфракрасному диапазоне телескопом «Keck». Peter Tuthill, University of Sydney.

Короткое замыкание

Юла под названием WR 104, была открыта восемь лет назад в созвездии Стрельца. Она обращается по кругу «каждые восемь месяцев, с точностью космического хронометра»,- говорит Татхилл.

Обе тяжелые звезды в WR 104 однажды взорвутся как сверхновая. Однако одна из двух звезд - крайне нестабильная звезда типа Вольф-Рае, находящаяся в последней известной фазе жизни тяжелых звезд перед превращением в сверхновую.

«Астрономы считают звезды Вольфа-Рае тикающими бомбами,- объясняет Татхилл.- «Предохранитель» у этой звезды почти - с астрономической точки зрения - перегорел, и она может взорваться в любой момент в течение следующих нескольких сотен тысяч лет».

Когда Вольф-Рае станет сверхновой, она «может выбросить в нашу сторону мощный поток гамма-лучей, - говорит Татхилл.- И если произойдет такой гамма-взрыв, нам бы очень не хотелось, чтобы Земля оказалась у него на пути».

Поскольку первоначальная взрывная волна будет двигаться со скоростью света, предупредить о ее приближении не сможет ничто.

На линии огня

Выбросы гамма-лучей - самые мощные из всех взрывов, какие только известны нам во вселенной. За время от нескольких миллисекунд до минуты и больше они могут высвободить столько же энергии, сколько наше Солнце за все 10 миллиардов лет своего существования.

Но самое жуткое в этой юле - это то, что мы видим ее как практически идеальную спираль, согласно последним снимкам телескопа «Keck» на Гаваях. «Таким образом мы можем видеть двойную систему только в том случае, когда находимся практически на ее оси», - объясняет Татхилл.

К нашему величайшему сожалению, выброс гамма лучей происходит прямо по оси системы. По сути, если выброс гамма-лучей однажды произойдет, наша планета может оказаться прямо на линии огня.

«Это первый из известных нам объектов, который может выпустить в нас поток гамма-лучей,- говорит астрофизик Адриан Мелот (Adrian Melott) из Канзасского университета в Лауренсе, не принимавший участия в данном исследовании.- И расстояние до системы пугающе близкое».

Юла находится примерно в 8000 световых лет от Земли, примерно в четверти пути до центра галактики Млечного Пути. Хотя расстояние это и кажется приличным, «более ранние исследования показали, что выброс гамма-лучей может оказаться губительным для жизни на Земле - если нам не посчастливиться оказаться у него на пути - и на такой дистанции»,- говорит Татхилл.

Возможный сценарий

Хотя юла и не может разнести Землю на куски, словно Звезда Смерти и «Звездных Войн», - уж по крайней мере не с расстояния в 8000 световых лет - она может привести к массовому уничтожению и даже к полному исчезновению жизни, в известных нам формах, на нашей планете.

Гамма-лучи не смогут проникнуть в атмосферу Земли достаточно глубоко, чтобы сжечь почву, но смогут химически изменить стратосферу. По расчетам Мелота, если WR 104 выстрелит в нас выбросом продолжительностью около 10 секунд, то гамма-лучи лишат нас 25 процентов озонового слоя, защищающего нас от вредоносных ультрафиолетовых лучей. Для сравнения, вызванное человеческим фактором утоньшение озонового слоя, создавшее «озоновые дыры» над полярными регионами, уменьшило озоновую оболочку только на 3-4 процента.

«Всё будет очень плохо,- утверждает Мелот. - Всё начнет вымирать. Пищевая цепочка может разрушиться в океанах, может случиться сельскохозяйственный кризис и голод».

Выброс гамма-лучей может также привести к образованию тумана, затмевающего солнце, и кислотных дождей. Однако расстояние в 8000 лет «слишком велико, чтобы затемнение было сколько-нибудь ощутимым,- считает Мелот. - Я бы сказал, в целом солнечного света станет меньше на 1-2 процента. Климат может немного похолодать, но до катастрофического ледяного века дойти не должно».

Опасность космических лучей

Что неизвестно о гамма-лучах, так это сколько частиц они извергают в виде космических лучей.

«Как правило, выплески гамма-лучей происходят настолько далеко от нас, что магнитные поля вселенной оттягивают любые космические лучи, какие мы могли бы наблюдать, но если выплеск гамма-лучей произошел сравнительно близко, все высокоэнергетические частицы промчатся сквозь магнитное поле галактики и ударят по нам,- говорит Мелот.- Их энергия будет настолько высока, что прибудут они почти одновременно со световым потоком».

«Та часть Земли, которая окажется обращенной к потоку гамма-лучей, переживет нечто подобное находящемуся недалеко от ядерного взрыва; все организмы могут заболеть лучевой болезнью,- добавляет Мелот.- Более того, космические лучи могут усугубить эффект воздействия гамма-лучей на атмосферу. Но мы попросту не знаем, сколько космических лучей эманируют гамма-лучи, поэтому не можем оценить степень опасности».

Так же непонятно, насколько широким будет поток энергии, высвобожденной выплеском гамма-лучей. Но в любом случае конус разрушения, исходящий от юлы, достигнет нескольких сотен квадратных световых лет, пока подойдет к Земле, согласно расчетам Мелота. Татхилл же заявляет, что «ни у кого не получится улететь на космолете достаточно далеко, чтобы не попасть в луч, если тот действительно выстрелит в нашу сторону».


Вымышленная «Звезда Смерти» из «Звездных войн»

Не волнуйтесь

Тем не менее, Танхилл полагает, что юла может оказаться для нас вполне безопасной.

«Слишком много неопределенностей, - объясняет он.- Излучение может пройти в стороне, не причинив нам никакого вреда, если мы находимся не в точности на оси, к тому же никто до конце не уверен, что звезды, подобные WR 104, в состоянии вызвать столь мощный выплеск гамма-излучения».

Дальнейшие исследования должны сосредоточиться на том, действительно ли WR 104 нацелена на Землю, и на изучении того, как рождение сверхновой приводит к выбросам гамма-излучения.

Мелот и другие рассуждали также на тему того, что потоки гамма-лучей могли вызвать массовое вымирание видов на Земле. Но говоря о том, несет ли нам юла реальную угрозу, Мелот замечает: «Я бы скорее беспокоился о глобальном потеплении».

Еще в 1932 году молодой советский физик-теоретик Лев Давидович Ландау (1908—1968) сделал вывод о существовании во Вселенной, сверхплотных нейтронных звезд. Представим себе, что звезда величиной с наше Солнце сжалась бы до размеров нескольких десятков километров, а ее вещество превратилось бы в нейтроны,— это и есть нейтронная звезда.

Как показывают теоретические расчеты, звезды с массой ядра, более чем в 1,2 раза превышающей солнечную массу, после исчерпания ядерного горючего взрываются и с огромной скоростью сбрасывают сбои наружные оболочки. А внутренние слои взорвавшейся звезды, которым уже не препятствует газовое давление, под действием сил тяготения обрушиваются к центру. За несколько секунд объем звезды уменьшается в 1015 раз! В результате чудовищного гравитационного сжатия происходит как бы вдавливание свободных электронов в ядра атомов. Они соединяются с протонами и, нейтрализуя их заряд, образуют нейтроны. Лишенные электрического заряда, нейтроны под нагрузкой вышележащих слоев начинают быстро сближаться. Но давление вырожденного нейтронного газа останавливает дальнейшее сжатие. Возникает нейтронная звезда, практически полностью состоящая из нейтронов. Ее размеры — около 20 км, а плотность в недрах достигает 1 млрд т/см3, то есть близка к плотности атомного ядра.

Итак, нейтронная звезда подобна гигантскому ядру атома, перенасыщенному нейтронами. Только в отличие от атомного ядра нейтроны удерживаются не внутриядерными силами, а гравитационными. Согласно расчетам, такая звезда быстро остывает, и уже через несколько тысяч лет, протекших после ее образования, температура ее поверхности должна понизиться до 1 млн К, что подтверждают также измерения, сделанные в космосе. Конечно, сама по себе эта температура еще очень высока (в 170 раз выше температуры поверхности Солнца), но поскольку нейтронная звезда сложена исключительно плотным веществом, то температура его плавления много больше 1 млн К. В результате поверхность нейтронных звезд должна быть... твердой! Такие звезды обладают хотя и раскаленной, но твердой корой, прочность которой во много раз превышает прочность стали.

Сила тяжести на поверхности нейтронной звезды настолько велика, что если бы человеку все же удалось достичь поверхности необычной звезды, то он был бы раздавлен ее чудовищным притяжением до толщины следа, который остается на конверте от почтового отправления.

Летом 1967 года аспирантка Кембриджского университета (Англия) Джоселина Белл приняла весьма странные радиосигналы. Они поступали короткими импульсами ровно через каждые 1,33730113 секунды. Исключительно высокая точность следования радиоимпульсов наводила на мысль: а не посылают ли эти сигналы представители разу мной цивилизации?

Однако в течение нескольких последующих лет на небе было обнаружено много подобных объектов с быстрым пульсирующим радиоизлучением. Они были названы пульсарами, то есть пульсирующими звездами.

Когда радиотелескопы были направлены на Крабовидную туманность, то в ее центре тоже обнаружили пульсар с периодом 0,033 секунды. С развитием внеатмосферных наблюдений было установлено, что он излучает и рентгеновские импульсы, причем рентгеновское излучение — основное и в согни раз сильнее всех других излучений.

Вскоре исследователи догадались, что причиной строгий периодичности пульсаров является быстрое вращение каких-то особых звезд. Но столь короткие периоды пульсаций, которые заключены в пределах от 1,6 миллисекунды до 5 секунд, можно объяснить быстрым вращением лишь очень малых и очень плотных звезд (большую звезду центробежные силы неизбежно разорвут!). А если так, то пульсары — это не что иное, как нейтронные звезды!

Но почему нейтронным звездам присуще столь быстрое вращение? Вспомним: экзотическая звезда рождается в результате сильного сжатия огромного светила. Поэтому в соответствии с заколом сохранения момента количества движения скорость вращения звезды должна резко увеличиться, а период вращения — сократиться. Кроме того, нейтронная звезда еще сильнейшим образом намагничена. Напряженность магнитного поля па се поверхности в триллион (1012) раз превосходит напряженность магнитного поля Земли! Мощное магнитное поле тоже результат сильного сжатия звезды — уменьшения ее поверхности и сгущения магнитных силовых линий. Однако истинным источником активности пульсаров (нейтронных звезд) служит не само магнитное поле, ci энергия вращения звезды. И теряя энергию на электромагнитное и корпускулярное излучение, пульсары постепенно замедляют свое вращение.

Если радиопульсары представляют собой одиночные нейтронные звезды, то рентгеновские пульсары — это компоненты двойных систем. Поскольку сила тяготения на поверхности нейтронной звезды в миллиарды рая болите, чем на Солнце, она «стягивает на себя» газ соседней (обычной) звезды. Частички газа с большой скоростью надают на нейтронную звезду, разогреваются при ударе о ее поверхность и испускают рентгеновские лучи. Нейтронная звезда может стать источником рентгеновского излучения и в том случае, если она «забредет» и облако межзвездного газа.

Из чего же складывается механизм пульсации нейтронной звезды? Не следует думать, что звезда просто пульсирует. Дело обстоит совсем иначе. Как уже говорилось, пульсар — это быстро вращающаяся нейтронная звезда. На ее поверхности, по-видимому, существует активная область в виде «горячего пятна», излучающего узкий, строго направленный пучок радиоволн. И в тот момент, когда тот пучок устремлен к земному наблюдателю, последний отметит импульс излучения. Иными словами, нейтронная звезда подобна радиомаяку, и период ее пульсации ранен периоду вращения этого «маяка». Исходя из такой модели, можно попять, почему в ряде случаен на месте вспышки сверхновой, где пульсар должен непременно находиться, он не был обнаружен. Наблюдаются лишь те пульсары, излучение которых удачно ориентировано по отношению к Земле.

33 факта. Известные и не очень. О планетах, о структуре пространства, о человеческом теле и дальнем космосе. Каждый факт сопровождается большой и красочной иллюстрацией.

1. Масса Солнца составляет 99.86% от массы всей Солнечной системы, оставшиеся 0.14% приходятся на планеты и астероиды.

2. Магнитное поле Юпитера настолько мощное, что ежедневно обогащает магнитное поле нашей планеты миллиардами Ватт.

3. Самый крупный бассейн Солнечной системы, образовавшийся в результате столкновения с космическим объектом, находится на Меркурии. Это «Калорис» (Caloris Basin), диаметр которого составляет 1,550 км. Столкновение было настолько сильным, что ударная волна прошла по всей планете, кардинально изменив ее внешний облик.

4. Солнечное вещество размером с булавочную головку, помещенное в атмосферу нашей планеты, начнет с невероятной скоростью поглощать кислород и за доли секунд уничтожит все живое в радиусе 160 километров.

5. 1 плутонианский год длится 248 земных лет. Это означает, что в то время как Плутон делает всего один полный оборот вокруг Солнца, Земля успевает сделать 248.

6. Еще более интересно обстоят дела с Венерой, 1 день на которой длится 243 земных суток, а год всего 225.

7. Марсианский вулкан «Олимп» (Olympus Mons) является крупнейшим в Солнечной системе. Его протяженность более 600 км, а высота 27 км, в то время как высота самой высокой точки на нашей планете, пика горы Эверест, достигает всего 8,5 км.

8. Взрыв (вспышка) сверхновой звезды сопровождается выделением гигантского количества энергии. В первые 10 секунд взорвавшаяся сверхновая производит больше энергии, чем Солнце за 10 миллиардов лет, и за короткий период времени вырабатывает больше энергии, чем все объекты в галактике вместе взятые (исключая другие вспыхнувшие сверхновые звезды).

Яркость таких звезд с легкостью затмевает светимость галактик, в которых они вспыхнули.

9. Крошечные нейтронные звезды , чей диаметр не превышает и 10 км, весят как Солнце (вспомним факт №1). Сила тяжести на этих астрономических объектах чрезвычайно высока и если, гипотетически, на ней высадится астронавт, то вес его тела увеличится приблизительно на один миллион тонн.

10. 5 февраля 1843 года астрономы обнаружили комету, которой дали имя «Великая» (она же мартовская комета, C/1843 D1 и 1843 I). Пролетая рядом с Землей в марте того же года, она ‘расчертила’ небо надвое своим хвостом, длина которого достигала 800 млн. километров.

Тянущийся за «Великой Кометой» хвост земляне наблюдали более месяца, пока, 19 апреля 1843 года, он полностью не исчез с небосвода.

11. Согревающая нас сейчас энергия солнечных лучей зародилась в ядре Солнца более 30 миллионов лет назад - большая часть этого времени потребовалась ей на преодоление плотной оболочки небесного светила и всего 8 минут на то, чтобы достичь поверхности нашей планеты.

12. Большинство тяжелых элементов , содержащихся в вашем организме (таких как кальций, железо и углерод), являются побочными продуктами взрыва группы сверхновых звезд, положившего начало формированию Солнечной системы.

13. Исследователи из Гарвардского университета установили, что 0,67 % всех горных пород на Земле имеют марсианское происхождение.

14. Плотность 5,6846×1026-килограммового Сатурна настолько мала, что если бы нам удалось поместить его в воду, он бы плавал на самой поверхности.

15. На спутнике Юпитера, Ио , зафиксировано ~400 действующих вулканов. Скорость выбросов серы и диоксида серы при извержении может превышать 1 км/с, а высота потоков достигать 500-километровой отметки.

16. Вопреки распространенному мнению, космос – это не полный вакуум, но достаточно близок к нему, т.к. на 88 галлонов (0,4 м 3) космической материи приходится, по крайней мере, 1 атом (а как часто учат в школе, в вакууме нет ни атомов, ни молекул).

17. Венера, это единственная планета Солнечной системы, которая обращается против часовой стрелки. Этому существует несколько теоритических обоснований. Некоторые астрономы уверены, что такая участь постигает все планеты с плотной атмосферой, которая сначала замедляет, а затем закручивает небесное тело в обратную от первоначального обращения сторону, другие же предполагают, что причиной послужило падение на поверхность Венеры группы крупных астероидов.

18. С начала 1957 года (год запуска первого искусственного спутника «Спутник-1») человечество успело в прямом смысле слова засеять орбиту нашей планеты разнообразными спутниками, однако лишь одному из них посчастливилось повторить ‘судьбу Титаника’. В 1993 году спутник «Олимп» (Olympus), принадлежащий Европейскому Космическому Агентству (European Space Agency), был уничтожен в результате столкновения с астероидом.

19. Самым крупным упавшим на Землю метеоритом считается 2,7 метровый «Гоба» (Hoba), обнаруженный в Намибии. Метеорит весит 60 тонн и на 86% состоит из железа, что делает его самым крупным куском железа природного происхождения на Земле.

20. Крошечный Плутон считается самой холодной планетой (планетоид) Солнечной системы. Его поверхность покрывает толстая корка льда, а температура опускается до – 200 0 С. Лед на Плутоне имеет совершенно иную структуру, чем на Земле и в несколько раз прочнее стали.

21. Официальная научная теория гласит, что человек сможет выжить в открытом космосе без скафандра в течение 90 секунд, если немедленно выдохнет весь воздух из легких.

Если в легких останется незначительное количество газов, то они начнут расширяться с последующим образованием пузырьков воздуха, которые при попадании в кровь приведут к эмболии и неминуемой смерти. Если же легкие будут заполнены газами, то их просто разорвет.

Через 10-15 секунд пребывания в открытом космосе вода, находящаяся в человеческом теле, превратится в пар, а влага во рту и на глазах начнет закипать. В результате этого мягкие ткани и мышцы опухнут, что приведет к полному обездвиживанию.

Самое интересное, что последующие 90 секунд еще будет жить мозг и биться сердце.

В теории, если в течение первых 90 секунд отмучавшегося в открытом космосе космонавта-неудачника поместить в барокамеру, то он отделается лишь поверхностными повреждениями и легким испугом.

22. Вес нашей планеты – это величина непостоянная. Ученые выяснили, что каждый год Земля поправляется на ~40 160 тонн и сбрасывает ~96 600 тонн, теряя таким образом 56 440 тонн.

23. Земная сила тяжести сжимает человеческий позвоночник, поэтому, когда астронавт попадает в космос, он подрастает приблизительно на 5,08 см.

В то же самое время, его сердце сжимается, уменьшаясь в объеме, и начинает качать меньше крови. Это ответная реакция тела на увеличение объема крови, для нормальной циркуляции которой требуется меньше давления.

24. В космосе плотно сжатые металлические детали самопроизвольно свариваются. Это происходит в результате отсутствия на их поверхностях окислов, обогащение которыми происходит только в кислородосодержащей среде (наглядным примером такой среды может служить земная атмосфера). По этой причине специалисты НАСА (Национальное управление США по аэронавтике и исследованию космического пространства (англ. National Aeronautics and Space Administration)) обрабатывают все металлические детали космических аппаратов окислительными материалами.

25. Между планетой и ее спутником возникает эффект приливного ускорения, который характеризуется замедлением вращения планеты вокруг собственной оси и изменением орбиты спутника. Так, каждое столетие вращение Земли замедляется на 0.002 секунды, в результате чего продолжительность суток на планете увеличивается на ~15 микросекунд в год, а Луна ежегодно удаляется от нас на 3.8 сантиметров.

26. "Космическая юла" под названием нейтронная звезда – это самый быстро крутящийся объект во Вселенной, который делает вокруг своей оси до 500 оборотов в секунду. Помимо этого эти космические тела настолько плотные, что одна столовая ложка составляющего их вещества будет весить ~10 млрд. тонн.

27. Звезда Бетельгейзе находится от Земли на расстоянии 640 световых лет и является ближайшим к нашей планетарной системе кандидатом на звание сверхновой. Она настолько крупная, что если поместить ее на место Солнца, то она заполнит собой диаметр орбиты Сатурна. Эта звезда уже набрала достаточную для взрыва массу 20 Солнц и, по мнению некоторых ученых, должна взорваться в ближайшие 2-3 тысячи лет. На пике своего взрыва, который продлится не менее двух месяцев, светимость Бетельгейзе будет в 1 050 раз превышать солнечную, благодаря чему наблюдать за ее гибелью можно будет с Земли даже невооруженным взглядом.

28. Ближайшая к нам галактика, Андромеда , находится на расстоянии 2,52 млн. лет. Млечный путь и Андромеда движутся навстречу друг другу на огромных скоростях (скорость Андромеды составляет 300 км/с, а Млечного пути 552 км/с) и вероятнее всего столкнутся через 2,5-3 млрд. лет.

29. В 2011 году астрономы обнаружили планету, состоящую на 92% из сверхплотного кристаллического углерода - алмаза. Драгоценное небесное тело, которое в 5 раз крупнее нашей планеты и тяжелее Юпитера, находится в созвездии Змеи, на расстоянии 4 000 световых лет от Земли.

30. Главный претендент на звание обитаемой планеты внесолнечной системы, «Супер-Земля» GJ 667Cc, находится на расстоянии всего 22 световых лет от Земли. Однако путешествие до нее займет у нас 13 878 738 000 лет.

31. На орбите нашей планеты находится свалка из отходов развития космонавтики. Боле 370 000 объектов массой от нескольких грамм до 15 тон обращаются вокруг Земли со скоростью 9 834 м/c, сталкиваясь между собой и разлетаясь на тысячи более мелких частей.

32. Каждую секунду Солнце теряет ~1 миллион тонн вещества и становится легче на несколько миллиардов грамм. Причиной этому является истекающий с его кроны поток ионизированных частиц, который получил название «солнечный ветер».

33. С течением определенного времени планетарные системы становятся крайне нестабильными. Это происходит в результате ослабевания связей между планетами и звездами, вокруг которых они обращаются.

В таких системах орбиты планет постоянно смещаются и могут даже пересекаться, что рано или поздно приведет к столкновению планет. Но если даже этого и не произойдет, то через несколько сотен, тысяч, миллионов или миллиардов лет планеты удалятся от своей звезды на такое расстояние, что ее гравитационное притяжение просто не сможет их удержать, и они отправятся в свободный полет по галактике.

О планетах, о структуре пространства, о человеческом теле и дальнем космосе. Каждый факт сопровождается большой и красочной иллюстрацией.

Масса Солнца составляет 99.86% от массы всей Солнечной системы, оставшиеся 0.14% приходятся на планеты и астероиды.

Магнитное поле Юпитера настолько мощное, что ежедневно обогащает магнитное поле нашей планеты миллиардами Ватт.

Самый крупный бассейн Солнечной системы, образовавшийся в результате столкновения с космическим объектом, находится на Меркурии. Это «Калорис» (Caloris Basin), диаметр которого составляет 1,550 км. Столкновение было настолько сильным, что ударная волна прошла по всей планете, кардинально изменив ее внешний облик.

Солнечное вещество размером с булавочную головку, помещенное в атмосферу нашей планеты, начнет с невероятной скоростью поглощать кислород и за доли секунд уничтожит все живое в радиусе 160 километров.

1 плутонический год длится 248 земных лет. Это означает, что в то время как Плутон делает всего один полный оборот вокруг Солнца, Земля успевает сделать 248.

Еще более интересно обстоят дела с Венерой, 1 день на которой длится 243 земных суток, а год всего 225.

Марсианский вулкан «Олимп» (Olympus Mons) является крупнейшим в Солнечной системе. Его протяженность более 600 км, а высота 27 км, в то время как высота самой высокой точки на нашей планете, пика горы Эверест, достигает всего 8,5 км.

Взрыв (вспышка) сверхновой звезды сопровождается выделением гигантского количества энергии. В первые 10 секунд взорвавшаяся сверхновая производит больше энергии, чем Солнце за 10 миллиардов лет, и за короткий период времени вырабатывает больше энергии, чем все объекты в галактике вместе взятые (исключая другие вспыхнувшие сверхновые звезды). Яркость таких звезд с легкостью затмевает светимость галактик, в которых они вспыхнули.

Крошечные нейтронные звезды, чей диаметр не превышает и 10 км, весят как Солнце (вспомним факт №1). Сила тяжести на этих астрономических объектах чрезвычайно высока и если, гипотетически, на ней высадится астронавт, то вес его тела увеличится приблизительно на один миллион тонн.

5 февраля 1843 года астрономы обнаружили комету, которой дали имя «Великая» (она же мартовская комета, C/1843 D1 и 1843 I). Пролетая рядом с Землей в марте того же года, она ‘расчертила’ небо надвое своим хвостом, длина которого достигала 800 млн. километров. Тянущийся за «Великой Кометой» хвост земляне наблюдали более месяца, пока, 19 апреля 1983 года, он полностью не исчез с небосвода.

Согревающая нас сейчас энергия солнечных лучей зародилась в ядре Солнца более 30 миллионов лет назад - большая часть этого времени потребовалась ей на преодоление плотной оболочки небесного светила и всего 8 минут на то, чтобы достичь поверхности нашей планеты.

Большинство тяжелых элементов, содержащихся в вашем организме (таких как кальций, железо и углерод), являются побочными продуктами взрыва группы сверхновых звезд, положившего начало формированию Солнечной системы.

Исследователи из Гарвардского университета установили, что 0,67 % всех горных пород на Земле имеют марсианское происхождение.

Плотность 5,6846×1026-килограммового Сатурна настолько мала, что если бы нам удалось поместить его в воду, он бы плавал на самой поверхности.

На спутнике Юпитера, Ио, зафиксировано ~400 действующих вулканов. Скорость выбросов серы и диоксида серы при извержении может превышать 1 км/с, а высота потоков достигать 500-километровой отметки.

Вопреки распространенному мнению, космос – это не полный вакуум, но достаточно близок к нему, т.к. на 88 галлонов (0,4 м3) космической материи приходится, по крайней мере, 1 атом (а как часто учат в школе, в вакууме нет ни атомов, ни молекул).

Венера, это единственная планета Солнечной системы, которая обращается против часовой стрелки. Этому существует несколько теоретических обоснований. Некоторые астрономы уверены, что такая участь постигает все планеты с плотной атмосферой, которая сначала замедляет, а затем закручивает небесное тело в обратную от первоначального обращения сторону, другие же предполагают, что причиной послужило падение на поверхность Венеры группы крупных астероидов.

С начала 1957 года (год запуска первого искусственного спутника «Спутник-1») человечество успело в прямом смысле слова засеять орбиту нашей планеты разнообразными спутниками, однако лишь одному из них посчастливилось повторить ‘судьбу Титаника’. В 1993 году спутник «Олимп» (Olympus), принадлежащий Европейскому Космическому Агентству (European Space Agency), был уничтожен в результате столкновения с астероидом.

Самым крупным упавшим на Землю метеоритом считается 2,7 метровый «Гоба» (Hoba), обнаруженный в Намибии. Метеорит весит 60 тонн и на 86% состоит из железа, что делает его самым крупным куском железа природного происхождения на Земле.

Крошечный Плутон считается самой холодной планетой (планетоид) Солнечной системы. Его поверхность покрывает толстая корка льда, а температура опускается до – 2000 Цельсию. Лед на Плутоне имеет совершенно иную структуру, чем на Земле и в несколько раз прочнее стали.

Официальная научная теория гласит, что человек сможет выжить в открытом космосе без скафандра в течение 90 секунд, если немедленно выдохнет весь воздух из легких. Если в легких останется незначительное количество газов, то они начнут расширяться с последующим образованием пузырьков воздуха, которые при попадании в кровь приведут к эмболии и неминуемой смерти. Если же легкие будут заполнены газами, то их просто разорвет. Через 10-15 секунд пребывания в открытом космосе вода, находящаяся в человеческом теле, превратится в пар, а влага во рту и на глазах начнет закипать. В результате этого мягкие ткани и мышцы опухнут, что приведет к полному обездвиживанию. Далее последует потеря зрения, оледенение полости носа и гортани, посинение кожи, которая в придачу пострадает от сильнейших солнечных ожогов. Самое интересное, что последующие 90 секунд еще будет жить мозг и биться сердце. В теории, если в течение первых 90 секунд отмучившегося в открытом космосе космонавта-неудачника поместить в барокамеру, то он отделается лишь поверхностными повреждениями и легким испугом.

Вес нашей планеты – это величина непостоянная. Ученые выяснили, что каждый год Земля поправляется на ~40 160 тонн и сбрасывает ~96 600 тонн, теряя таким образом 56 440 тонн.

Земная сила тяжести сжимает человеческий позвоночник, поэтому, когда астронавт попадает в космос, он подрастает приблизительно на 5,08 см. В то же самое время, его сердце сжимается, уменьшаясь в объеме, и начинает качать меньше крови. Это ответная реакция тела на увеличение объема крови, для нормальной циркуляции которой требуется меньше давления.

В космосе плотно сжатые металлические детали самопроизвольно свариваются. Это происходит в результате отсутствия на их поверхностях окислов, обогащение которыми происходит только в кислородсодержащей среде (наглядным примером такой среды может служить земная атмосфера). По этой причине специалисты НАСА (Национальное управление США по аэронавтике и исследованию космического пространства (англ. National Aeronautics and Space Administration)) обрабатывают все металлические детали космических аппаратов окислительными материалами.

Между планетой и ее спутником возникает эффект приливного ускорения, который характеризуется замедлением вращения планеты вокруг собственной оси и изменением орбиты спутника. Так, каждое столетие вращение Земли замедляется на 0.002 секунды, в результате чего продолжительность суток на планете увеличивается на ~15 микросекунд в год, а Луна ежегодно удаляется от нас на 3.8 сантиметров.

«Космическая юла» под названием нейтронная звезда – это самый быстро крутящийся объект во Вселенной, который делает вокруг своей оси до 500 оборотов в секунду. Помимо этого эти космические тела настолько плотные, что одна столовая ложка составляющего их вещества будет весить ~10 млрд. тонн.

Звезда Бетельгейзе находится от Земли на расстоянии 640 световых лет и является ближайшим к нашей планетарной системе кандидатом на звание сверхновой. Она настолько крупная, что если поместить ее на место Солнца, то она заполнит собой диаметр орбиты Сатурна. Эта звезда уже набрала достаточную для взрыва массу 20 Солнц и, по мнению некоторых ученых, должна взорваться в ближайшие 2-3 тысячи лет. На пике своего взрыва, который продлится не менее двух месяцев, светимость Бетельгейзе будет в 1 050 раз превышать солнечную, благодаря чему наблюдать за ее гибелью можно будет с Земли даже невооруженным взглядом.

Ближайшая к нам галактика, Андромеда, находится на расстоянии 2,52 млн. лет. Млечный путь и Андромеда движутся навстречу друг другу на огромных скоростях (скорость Андромеды составляет 300 км/с, а Млечного пути 552 км/с) и вероятнее всего столкнутся через 2,5-3 млрд. лет.

В 2011 году астрономы обнаружили планету, состоящую на 92% из сверхплотного кристаллического углерода - алмаза. Драгоценное небесное тело, которое в 5 раз крупнее нашей планеты и тяжелее Юпитера, находится в созвездии Змеи, на расстоянии 4 000 световых лет от Земли.

Главный претендент на звание обитаемой планеты вне солнечной системы, «Супер-Земля» GJ 667Cc, находится на расстоянии всего 22 световых лет от Земли. Однако путешествие до нее займет у нас 13 878 738 000 лет.

На орбите нашей планеты находится свалка из отходов развития космонавтики. Боле 370 000 объектов массой от нескольких грамм до 15 тон обращаются вокруг Земли со скоростью 9 834 м/c, сталкиваясь между собой и разлетаясь на тысячи более мелких частей.

Каждую секунду Солнце теряет ~1 миллион тонн вещества и становится легче на несколько миллиардов грамм. Причиной этому является истекающий с его кроны поток ионизированных частиц, который получил название «солнечный ветер».

С течением определенного времени планетарные системы становятся крайне нестабильными. Это происходит в результате ослабевания связей между планетами и звездами, вокруг которых они обращаются. В таких системах орбиты планет постоянно смещаются и могут даже пересекаться, что рано или поздно приведет к столкновению планет. Но если даже этого и не произойдет, то через несколько сотен, тысяч, миллионов или миллиардов лет планеты удалятся от своей звезды на такое расстояние, что ее гравитационное притяжение просто не сможет их удержать, и они отправятся в свободный полет по галактике.

Нейтронная звезда — очень быстро вращающееся тело, оставшееся после взрыва . При диаметре 20 километров это тело имеет массу сравнимую с солнечной, один грамм нейтронной звезды весил бы в земных условиях более 500 миллионов тонн! Такая огромная плотность возникает от вдавливания электронов в ядра, от чего они объединяются с протонами и образуют нейтроны. По сути, нейтронные звезды по свойствам, включая плотность и состав, очень похожи на атомные ядра.Но есть существенная разница: в ядрах нуклоны притягивает сильное взаимодействие, а в звездах – сила

Что из себя представляет

Для того, чтобы понять, что же из себя представляют эти загадочные объекты мы настоятельно рекомендуем обратиться к выступлениям Сергея Борисовича ПоповаСергей Борисович Попов Астрофизик и популяризатор науки, доктор физико-математических наук, ведущий научный сотрудник Государственного астрономического института им. П.К. Штернберга. Лауреат фонда «Династия» (2015). Лауреат государственной премии «За верность науке» как лучший популяризатор 2015 года

Состав нейтронных звёзд

Состав этих объектов (по понятным причинам) изучен пока только в теории и математических расчетах. Однако, известно уже многое. Как и следует из названия, состоят они преимущественно из плотно упакованных нейтронов.

Атмосфера нейтронной звезды имеет толщину всего несколько сантиметров, но в ней сосредоточено все её тепловое излучение. За атмосферой находится кора, состоящая из плотно упакованных ионов и электронов. В середине находится ядро, состоящее из нейтронов. Ближе к центру достигается максимальная плотность вещества, которая в 15 раз больше ядерной. Нейтронные звезды — самые плотные объекты во вселенной. Если попытаться и далее увеличивать плотность вещества произойдет коллапс в черную дыру, или образуется кварковая звезда.

Сейчас эти объекты изучают путем вычисления сложных математических моделей на суперкомпьютерах.

Магнитное поле

Нейтронные звёзды имеют скорости вращения до 1000 оборотов в секунду. При этом электропроводящие плазма и ядерное вещество вырабатывают магнитные поля гигантских величин.

Для примера — магнитное поле Земли -1 гаусс, нейтронной звезды — 10 000 000 000 000 гаусс. Самое сильное поле, созданное человеком, будет в миллиарды раз слабее.

Типы нейтронных звезд

Пульсары

Это обобщающее название для всех нейтронных звезд. Пульсары имеют четко определенный период вращения, который не меняется очень долгое время. Благодаря этому свойству их прозвали «маяками вселенной»

Частицы узким потоком на очень высоких скоростях вылетают через полюса, становясь источником радиоизлучения. Из-за несовпадения осей вращения, направление потока постоянно меняется, создавая эффект маяка. И, как у каждого маяка, у пульсаров своя частота сигнала, по которой его можно идентифицировать.

Практически все обнаруженные нейтронные звёзды существуют в двойных рентгеновских системах или в качестве одиночных пульсаров.

Магнетары

При рождении очень быстро крутящейся нейтронной звезды, общие вращение и конвекция создают громадное магнитное поле. Это происходит за счёт процесса «активного динамо». Это поле превышает величины полей обычных пульсаров в десятки тысяч раз. Действие динамо заканчивается через 10 – 20 секунд, и происходит охлаждение атмосферы звезды, но магнитное поле успевает возникнуть заново за этот срок. Оно неустойчиво, и быстрая смена его структуры порождает выброс гигантского количества энергии. Получается, что магнитное поле звезды разрывает её саму. Кандидатов на роль магнетаров в нашей галактике насчитывается около десятка. Появление его возможно из звезды, превосходящей минимум в 8 раз массу нашего Солнца. Размеры же их порядка 15 км в диаметре, при массе около одной солнечной. Но достаточного подтверждения существования магнетаров пока не получено.

Рентгеновские пульсары.

Они считаются другой фазой жизни магнетара и излучают исключительно в рентгеновском диапазоне. Излучение возникает в результате взрывов, имеющих определённый период.

Некоторые нейтронные звёзды появляются в двойных системах или же приобретают компаньона, захватив его в свое гравитационное поле. Такой компаньон будет отдавать своё вещество агрессивной соседке. Если компаньон нейтронной звезды по массе не меньше Солнца, то возможны интересные явления – барстеры. Это рентгеновские вспышки, продолжительностью в секунды или минуты. Но они способны усилить светимость звезды до 100 тыс. солнечных. Перенесённые с компаньона водород и гелий наслаиваются на поверхности барстера. Когда слой становится очень плотным и горячим, запускается термоядерная реакция. Мощность такого взрыва невероятна: на каждом квадратном сантиметре звезды выделяется мощь, эквивалентная взрыву всего земного ядерного потенциала.

При наличии компаньона-гиганта, вещество теряется им в виде звёздного ветра, а нейтронная звезда втягивает его своей гравитацией. Частицы летят по силовым линиям по направлению к магнитным полюсам. При несовпадении магнитной оси и оси вращения, яркость звезды будет переменной. Получается рентгеновский пульсар.

Миллисекундные пульсары.

Они тоже связаны с двойными системами и обладают самыми короткими периодами (меньше 30 миллисекунд). Вопреки ожиданиям, они оказываются не самыми молодыми, а достаточно старыми. Старая и медленная нейтронная звезда поглощает материю компаньона-гиганта. Падая на поверхность захватчика, материя придаёт ей вращательную энергию, и вращение звезды усиливается. Постепенно компаньон превратится в , потеряв в массе.

Экзопланеты у нейтронных звезд

Очень легко отыскалась планетная система у пульсара PSR 1257+12, удалённого от Солнца на 1000 световых лет. Рядом со звездой три планеты, имеющие массы 0,2, 4,3 и 3,6 масс Земли с периодами обращений в 25, 67 и 98 суток. Позже нашлась ещё одна планета с массой Сатурна и периодом обращения 170 лет. Также известен пульсар с планетой немного массивнее Юпитера.

На самом деле парадоксально, что возле пульсара существуют планеты. Нейтронная звезда рождается в результате взрыва сверхновой, и та теряет основную часть своей массы. Оставшаяся часть уже не обладает достаточной гравитацией для удержания спутников. Вероятно, найденные планеты образовались уже после катаклизма.

Исследования

Число известных нейтронных звёзд около 1200. Из них 1000 считаются радиопульсарами, а остальные определены как рентгеновские источники. Изучать эти объекты невозможно, послав к ним какой-либо аппарат. В кораблях «Пионер» были отправлены послания разумным существам. И местоположение нашей Солнечной системы указано именно с ориентацией на ближайшие к Земле пульсары. От Солнца линиями показаны направления на эти пульсары и расстояния до них. А прерывистость линии обозначает период их обращения.

Ближайший к нам нейтронный сосед расположен в 450 световых годах. Это двойная система – нейтронная звезда и белый карлик, период её пульсации 5,75 миллисекунды.

Вряд ли возможно оказаться рядом с нейтронной звездой и остаться в живых. Можно только фантазировать на эту тему. Да и как представить выходящие за границы разума величины температуры, магнитного поля и давления? Но пульсары ещё помогут нам в освоении межзвёздного пространства. Любое, даже самое дальнее галактическое путешествие, окажется не гибельным, если будут работать стабильные маяки, видимые во всех уголках Вселенной.

Загрузка...