domvpavlino.ru

Оценка уровня углекислого газа в помещении с кондиционером. Почему уровень CO2 в атмосфере так встревожил ученых

1. Основной источник поступления углекислого газа в атмосферу - сжигание горючих ископаемых (угля, нефти, газа) для производства энергии. Около 80% всей энергии в мире производится за счет тепловой энерге­тики. Поступление углекислого газа в атмосферу за период с 1860 по 1990 г. увеличивалось в среднем на 0,4% в год. В течение 1980-х годов оно состав­ляло 5,5 + 0,5 млрд. т углерода в год.

2. Сокращение лесов тропического и экваториального поясов, деградация почв, другие антропогенные трансформации ландшафтов приводят в основ­ном к высвобождению углерода, которое сопровождается его окислением, т.е. образованием СО 2 . В целом эмиссия в атмосферу за счет преобразова­ния тропических ландшафтов составляет 1,6 ± 1,0 млрд. т углерода. С дру­гой стороны, в умеренных и высоких широтах Северного полушария отме­чается, в целом, преобладание восстановления лесов над их исчезновением. Для построения органического вещества лесов в процессе фотосинтеза уг­лекислый газ забирается из атмосферы. Это количество, в пересчете на уг­лерод, равно 0,5 ± 0,5 млрд. т. Пределы точности, равные самой величине, указывают нам также на все еще низкий уровень понимания антропогенной роли в некоторых звеньях глобального биогеохимического цикла углерода.

3. В атмосфере в результате деятельности человека ежегодно дополнитель­но накапливается 3,3 ± 0,2 млрд. т углерода в виде углекислого газа.

4. Мировой океан поглощает из атмосферы (растворяет, химически и био­логически связывает) около 2,0 ± 0,8 млрд. т углерода в виде углекислого газа. Суммарные величины поглощения углекислого газа океаном пока не­посредственно не измеряются. Они рассчитываются на основе моделей, описывающих обмен между атмосферой, поверхностным и глубинным сло­ями океана.

Увеличение концентрации СО 2 в атмосфере должно стимулировать процесс фотосинтеза. Это так называемая фертилиза­ция, благодаря которой, по некоторым о кого вещества может возрасти на 20-40% при удвоенной по сравнению с современной концентрацией углекислого газа. В балансе антропогенных потоков углерода все пока еще плохо по­нимаемые процессы, протекающие в экосистемах суши, включая фертилизацию, оцениваются в 1,3±1,5 млрд. т.



Метан (СН 4 ) также играет заметную роль в парниковом эффекте, составляя приблизительно 19% от общей его величины (на 1995 г.). Метан образуется в анаэробных условиях, таких как естественные бо­лота разного типа, толща сезонной и вечной мерзлоты, рисовые планта­ции, свалки, а также в результате жизнедеятельности жвачных живот­ных и термитов.

Оценки показывают, что около 20% суммарной эмис­сии метана связаны с технологией использования горючих ископаемых (сжигание топлива, эмиссии из угольных шахт, добыча и распределение природного газа, переработка нефти). Всего антропогенная деятельность обеспечивает 60-80% суммарной эмиссии метана в атмосферу. В атмосфере метан неустойчив . Он удаляется из нее вследствие вза­имодействия с ионом гидроксила (ОН) в тропосфере. Несмотря на этот процесс, концентрация метана в атмосфере увеличилась примерно вдвое по сравнению с доиндустриальным временем и продолжает расти со скоростью около 0,8% в год.

Оксид азота. Текущая роль оксида азота (N 2 О) в суммарном парниковом эффек­те составляет всего около 6%. Концентрация оксида азота в атмосфере также увеличивается. Предполагается, что его антропогенные источники приблизительно вдвое меньше естественных. Источниками антро­погенного оксида азота является сельское хозяйство (в особенности паст­бища в тропиках), сжигание биомассы и промышленность, производя­щая азотсодержащие вещества. Его относительный парниковый потен­циал (в 290 раз выше потенциала углекислого газа) и типичная продолжительность существования в атмосфере (120 лет) значитель­ны, компенсируя его относительно невысокую концентрацию.

Хлорфторбромуглероды (ХФУ) - это вещества, синтезируемые че­ловеком и содержащие хлор, фтор и бром. Они обладают очень силь­ным относительным парниковым потенциалом и значительной продол­жительностью жизни в атмосфере. Их итоговая роль в парниковом эффекте составляет на середину 1990-х годов приблизительно 7%.

Озон (0 3) - важный парниковый газ, находящийся как в страто­сфере, так и в тропосфере.

Аэрозоли - это твердые частицы в атмосфере диаметром несколько микрон. Они образуются вследствие вет­ровой эрозии почвы, извержений вулканов и других природных про­цессов, а также благодаря деятельности человека (сжигание горючих ис­копаемых и биомассы).

В отличие от парниковых газов, типичный срок существования аэро­золей в атмосфере не превышает нескольких дней. Поэтому их радиа­ционный потенциал быстро реагирует на рост эмиссии загрязнений и столь же быстро сокращается. В отличие от глобального воздействия газов с парниковым эффек­том, влияние атмосферных аэрозолей является локальным. Географи­ческое распространение сульфатных аэрозолей в воздухе в основном со­впадает с промышленными районами мира. Именно там локальный ох­лаждающий эффект аэрозолей может значительно уменьшить и даже свести практически на нет глобальный парниковый эффект. Извержения вулканов - нерегулярный, но существенный фактор об­разования высоких концентраций аэрозольных частиц, вызывающих за­держку солнечной радиации у земли и поэтому заметные похолодания. Катастрофический взрыв вулкана Тамбора в 1815 г. в Индонезии привел к заметному снижению температуры воздуха во всем мире в течение трех последующих лет.

Гидроклиматические последствия антропогенного

Парникового эффекта.

Накопление парниковых газов в атмосфере и последующее усиле­ние парникового эффекта приводят к повышению температуры призем­ного слоя воздуха и поверхности почвы. За последние сто лет средняя мировая температура повысилась приблизительно на 0,3-0,6°С. В осо­бенности заметный рост температуры происходил в последние годы, начиная с 1980-х годов, которые были самым теплым десятилетием за весь период инструментальных наблюдений. Анализ глобальных дан­ных по температурам воздуха позволил сделать обоснованный вывод о том, что наблюдаемый рост температуры обусловлен не только естествен­ными колебаниями климата, но и деятельностью человека. Можно по­лагать, что прогрессирующее антропогенное накопление парниковых газов в атмосфере приведет к дальнейшему усилению парникового эф­фекта. Оценки ожидаемых изменений климата обычно производятся на основе использования глобальных моделей циркуляции атмосферы . Однако точность моделей все еще не высока даже для расчетов на глобальном уровне. Прогноз же изменений по регионам мира, чрезвы­чайно важный для практических целей, пока еще вряд ли надежен. Кро­ме того, необходимо учитывать возможные изменения в деятельности человека, осознанные или неосознанные, приводящие к изменениям в накоплении парниковых газов, а значит, и к последующим изменени­ям парникового эффекта.

Эти обстоятельства учитываются посредством сценариев.

1. В соответствии со сценарием наиболее вероятной величины эмис­сии парниковых газов, средняя мировая температура приземного слоя воздуха за период с 1990 по 2100 г. увеличится приблизительно на 2°С. По сценариям низкой и высокой эмиссии рост температуры составит соответственно 1°С и 3,5°С. Вследствие термической инерции океанов средняя температура воз­духа будет повышаться и после 2100 г., даже если концентрация парни­ковых газов к этому времени стабилизируется.

2. При удвоении содержания углекислого газа в атмосфере по сравне­нию с прединдустриальным периодом повышение температуры воздуха в различных регионах будет в пределах между 0,6°С и 7°С . Суша будет нагреваться больше, чем океаны. Наибольшее повышение температуры ожидается в арктических и субарктических поясах, в особенности зи­мой, в основном вследствие сокращения площади морского льда.

3. Рост температуры воздуха будет сопровождаться увеличением ко­личества осадков, хотя картина пространственного распределения осад­ков будет более пестрой, чем распределение температуры воздуха. Ва­риация изменения осадков будет находиться в пределах от -35% до +50%. Надежность оценки изменений влажности почвы, что столь важ­но для сельского хозяйства, также значительно ниже, чем оценки изме­нения температуры воздуха.

4. Относительно небольшие изменения сред­них показателей климата будут, по всей вероятности, сопровождаться повышением частоты редких катастрофических событий , таких как тро­пические циклоны, штормы, засухи, экстремальные температуры воз­духа и пр. Событие масштаба всего голоцена - катастрофическое цуна­ми, обрушившееся на северные берега Индийского океана 26 декабря 2005 г. и унесшее 250-400 тыс. чел.

5. В последнее столетие происходил неуклонный рост среднего уров­ня Мирового океана , составивший 10-25 см. Основные причины роста уровня океана - термическое расширение воды вследствие ее нагрева­ния из-за потепления климата, а также дополнительный приток воды вследствие сокращения горных и небольших полярных ледников. Эти же факторы будут работать и в дальнейшем, с постепенным подключе­нием в более отдаленном будущем талых вод Гренландского, а затем и Антарктического ледниковых щитов. Ожидается, что уровень Мирового океана поднимется к 2100 г. на 50 см, а с учетом неопределенности при­рост уровня ожидается в пределах от 20 до 86 см. Уровень океана будет продолжать расти в течение нескольких столетий после 2100 г., даже если концентрация парниковых газов стабилизируется. Рост уровня океана вызовет серьезные естественные и социально-экономические про­блемы в прибрежных зонах морей и океанов.

Есть прописные истины, знакомые любому человеку практически с рождения. Зимой холодно, а летом тепло. При дыхании потребляется кислород и выделяется углекислый газ. Когда в помещении скапливается много углекислого газа, то становится душно, а чтобы в помещении стало находиться комфортнее - его нужно проветрить. Но при этом большинство людей склонно недооценивать влияние повышенной концентрации CO2 на здоровье и качество жизни. Об этом я и хочу поговорить в данной статье, а также показать, как влияет кондиционер на процесс очистки воздуха. И заодно представить обзор детектора уровня CO2, который помогает держать качество воздуха в помещении под контролем.

1 Что нужно знать о CO2
2 Техническая информация
3 Внешний вид и принцип действия
4 Измерения
5 Домашняя автоматизация
6 Выводы

1. Что нужно знать о CO2

CO2 или углекислый газ - неотъемлемая часть любой воздушной смеси, содержание которого измеряется в миллионных долях (ppm - parts per million). Условно нормальный уровень CO2 в свежем уличном воздухе принято считать за 400ppm. Эта цифра непостоянна и зависит от конкретной локации - так, в экологически чистом районе с отсутствием промышленности и малой плотностью заселенности содержание углекислого газа в атмосфере может быть ниже среднего значения, а в густонаселенном мегаполисе, да еще с промышленными предприятиями практически наверняка будет выше среднего.

Воздух в помещении считается качественным, если содержание CO2 в нем колеблется в пределах 800ppm. При достижении концентрации углекислого газа 1000ppm у многих людей уже появляется ощущение духоты и вялости, а 1400ppm - предел нормы по рекомендациям Сан-Пина.

Опасным уровнем является 30000ppm - при достижении такой концентрации CO2 у человека учащается пульс, возникает ощущение тошноты и прочие симптомы кислородного голодания. Хорошая новость заключается в том, что «надышать» такую концентрацию углекислого газа практически невозможно в офисных и жилых помещениях даже очень низкого качества. Тем не менее, даже небольшие превышения допустимой концентрации CO2 способны существенно влиять на качество жизни. Уже при 1000ppm снижается концентрация внимания, появляется ощущение вялости, мозг начинает хуже обрабатывать информацию. При концентрации CO2 выше 1400ppm в офисе становится трудно концентрироваться на работе, а дома появятся проблемы со сном. Содержание СО2 зависит, в большей степени, от количества людей, находящихся в закрытом помещении.

«Управлять можно только тем, что можно измерить», писал основоположник современной теории управления Питер Друкер. И первый шаг к управлению микроклиматом помещения заключается в начале отслеживания его объективных показателей.

В этом-то нам и поможет от компании Даджет.

2. Техническая информация

Название модели: Детектор СО2 (Mini Monitor СО2)
Диапазон измерения CO2: 0 - 3000 ppm
Диапазон измерения температуры: 0 - 50
Точность измерений: ±10% ppm, ±1,5°C
Вывод информации: ЖК-дисплей, светодиодные индикаторы
Потребление тока: до 200мА
Дополнительные функции: звуковой сигнал превышения концентрации CO2

3. Внешний вид и принцип действия

Детектор CO2 поставляется в картонной коробке, содержащей сведения о производителе и краткую памятку по влиянию повышенных концентраций углекислого газа на самочувствие человека.

Внутри находится сам прибор, инструкция на русском языке и USB-кабель. У детектора нет встроенного аккумулятора, поэтому работать он может только от внешнего источника питания: USB-порта компьютера или обычного зарядного устройства для смартфона.

Само устройство крупным планом. На передней панели находится экран и три индикационных светодиода, отображающих усреднённо результаты измерений: при концентрации CO2 ниже 800ppm светится зеленый светодиод, при 800-1200ppm - желтый, выше 1200ppm - красный. Значения интервалов действия индикаторов можно изменить в настройках.

Вообще, светодиодная индикация оказалась очень информативной вещью. Не нужно подходить к прибору и всматриваться в текущие значения показателей. Издалека видно, что если индикатор переключился с зеленого на желтый, то помещение можно уже и проветрить, а если он покраснел - проветривание желательно начать уже прямо сейчас.

На правом боку находится microUSB-порт и отверстие, через которое происходит забор воздуха для анализа.

Сзади отверстия для вентиляции, наклейка с технической информацией и две кнопки, которыми осуществляется настройка.

Сердцем устройства является датчик углекислого газа ZGm053UK, работающий по технологии NDIR (non-dispersive infrared radiation, недисперсионное инфракрасное излучение): в световодную трубку заходит поток воздуха и попадает под излучение инфракрасной лампы, а на другом конце трубки стоит инфракрасный детектор с соответствующим фильтром. Чем больше в воздушной смеси содержится CO2 - тем сильнее ослабевает инфракрасное свечение, что и позволяет датчику определить текущую концентрацию CO2.

Себестоимость NDIR-сенсоров выше, чем у аналогов с другим принципом работы (электрохимическим или электроакустическим), но при этом они имеют длительный срок службы и обеспечивают более точные результаты.

4. Измерения

Теперь испытаем детектор в работе. Место проведения измерений - Челябинск, двухкомнатная квартира в относительно тихом районе, окна выходят во двор.

Опыт №1. Знакомство с прибором

Первым делом я измерил концентрацию углекислого газа на улице, разместив детектор у открытого окна на 4 этаже.

Измерения показали 440ppm. Нормальный уровень содержания CO2 в атмосфере, напоминаю, составляет 400ppm. Ну что же, с поправкой на безветренную погоду и проживание в промышленном мегаполисе с традиционно проблемной экологией, 440ppm можно считать нормальным результатом.

Теперь измерим уровень CO2 в самой квартире, предварительно хорошо ее проветрив все комнаты.

Получилось 550ppm. Это отличный результат, воздух почти как на улице.

Но, забегая наперед, скажу: поддерживать такое качество воздуха на постоянной основе в квартире, не оснащенной продвинутыми системами вентиляции, практически невозможно.

Опыт №2. Длительные измерения

По ходу обзора я еще не упоминал, что детектор не только отображает моментальные значения концентрации CO2, но и способен работать в связке с компьютером.

Если установить специальную программу, то устройство будет фиксировать уровень концентрации CO2 и температуры в помещении с привязкой ко времени и строить график на основании этих показателей.

Дальнейшие измерения будем проводить при помощи этой программы.

Ночь с закрытыми окном и дверью. К утру концентрация CO2 в комнате подскакивает практически до 2000ppm.

Открываем створку окна на проветривание и смотрим на график. Примерно за 40 минут концентрация углекислого газа снижается с 2000ppm до здорового уровня 700ppm.

Вечер. Затихает естественный шум и становятся особенно слышны голоса отдыхающих во дворе компаний. Они мешают, поэтому закрываю окно.

За час концентрация CO2 повышается почти что вдвое, с 700ppm до 1300ppm.

Опыт №3. Суточный мониторинг

Теперь посмотрим, как меняется концентрация CO2 в помещении в течение одного полного дня.
Исходные данные: все та же двухкомнатная квартира, в которой одновременно находятся от одного до трех человек. Окно на кухне практически всегда открыто, окна и балконная дверь в комнатах открываются и закрываются в течение дня, межкомнатные двери закрываются на ночь.

Хорошо проветриваю комнату перед сном, закрываю окно и ложусь спать.

К полуночи концентрация CO2 уже превышена, но до пяти часов утра сохраняется на уровне, который с натяжкой можно назвать удовлетворительным. На временном промежутке с пяти до девяти утра концентрация CO2 повышается до 2000ppm. Кстати, это вполне коррелирует с личными ощущениями при сне с закрытым окном. Где-то в 5 утра я просыпаюсь в достаточно бодром состоянии, но поскольку еще слишком рано - остаюсь в кровати досыпать до звонка будильника. По звонку будильника в 7 утра просыпаюсь с тяжелой головой и в подавленном настроении, как будто и не спал всю ночь - к этому времени организм уже успевает надышаться «плохим» воздухом, что сказывается на самочувствии.

С 9 до 10 часов - проветривание. Открыты окна во всех комнатах, концентрация CO2 спадает с 2000ppm до 600ppm.

С 10 до 15 часов - окна в комнатах закрыты, на кухне открыта форточка. В квартире 1 человек. Концентрация CO2 в норме.

С 15 до 18 часов - открыты форточки во всех комнатах. В квартире 2 человека. Концентрация CO2 всё еще в норме.

С 18 до 21 часа - открыты форточки во всех комнатах. В квартире 3 человека. Концентрация CO2 начинает нарастать, форточки уже не спасают.

С 21 до 22-30 часов - проветривание с открытыми окнами. В квартире 3 человека. Концентрация CO2 приходит в норму, но начинает повышаться сразу же, стоит закрыть окна и оставить одни форточки для проветривания.

А теперь рассмотрим другой день с другим распорядком.

Ночью в комнате открыта форточка, концентрация CO2 немного превышена, но все же не растет до совсем диких величин.

С 8 до 14 часов - в квартире никого нет, межкомнатные двери открыты, во всех комнатах открыты окна. Концентрация CO2 спадает до уровня уличного воздуха.

С 14 до 18 часов - в квартире 2 человека, межкомнатные двери открыты, во всех комнатах открыты форточки. Концентрация CO2 уже не как на улице, но в пределах нормы.

С 18 часов и до утра - в квартире 3 человека, межкомнатные двери закрыты, форточки открыты. Концентрация CO2 немного превышена, но стабильна.

Вывод: если жить одному в двухкомнатной квартире, то о качестве воздуха можно практически не беспокоиться. Достаточно лишь иногда проветривать помещение. А вот при двух-трех обитателях на том же количестве квадратных метров для поддержания концентрации углекислого газа в нормальных пределах придется осуществлять проветривание практически круглосуточно.

Опыт №4. CO2 и кондиционер

Теперь посмотрим, что происходит в комнате при использовании кондиционера.
Исходные данные: проветренное помещение, но на улице жарко, а соответственно и в помещении тоже.

Закрываю окна чтобы воздух не уходил, включаю кондиционер.

В результате, за час работы кондиционера температура в комнате упала на несколько градусов, а концентрация CO2 возросла.

Подвох в том, что если не выходить из помещения на свежий воздух, то субъективно воздух в нем воспринимается как свежий и качественный просто за счет своей прохлады. И только цифры на приборе показывают реальную картину.

Кондиционирование не заменяет проветривания, поэтому сидя целый день в уютной и прохладной комнате можно незаметно для себя «надышать» концентрацию CO2 в 2000ppm, а то и больше. Особенно это актуально для офисов, где в одном небольшом помещении находятся сразу несколько человек. Широко распространено заблуждение, что раз для кондиционера монтируется отдельный воздуховод прямо на улицу, то кондиционер забирает уличный воздух, охлаждает его внутри себя и выпускает в помещение. На самом же деле воздуховод служит для выброса горячего воздуха из помещения на улицу, то есть работает как вытяжка. Причём такие кондиционеры встречаются далеко не везде. Обычная сплит система «гоняет» воздух в помещении по кругу, а по трубкам поступает охлаждённых хладагент.

Пользуясь кондиционером следует помнить о необходимости насыщать помещение свежим воздухом.

5. Домашняя автоматизация

В завершение обзора хочу отметить, что сфера применения детектора CO2 не ограничивается одним лишь проведением измерений и построением графиком на компьютере.

Это устройство можно использовать в проектах домашней автоматизации, причём сделать это можно двумя различными способами.

Первый способ - подключение силового реле к одному из индикационных светодиодов.

Принцип действия очевиден: при повышении концентрации CO2 в воздухе зеленый индикатор сменяется на желтый, при этом автоматически замыкается электронный ключ в реле, что в свою очередь включает подключенное к реле устройство (например, вентилятор приточной системы).

Второй способ - программный.

Поскольку детектор поддерживает передачу данных с датчика на компьютер по USB-протоколу, его можно внедрить в любую самодельную систему «умного дома», считывая показатели с датчика на головное устройство. А уже с головного устройства, на основании получаемых показателей, управлять другой подключенной к системе электроникой.

6. Выводы

Было интересно увидеть реальное состояние воздуха в своей квартире. С использованием стало наглядно видно, что имеющаяся пассивная вентиляция малоэффективна, и если в теплое время еще можно держать окна открытыми практически круглосуточно (хотя и летом это не всегда удобно из-за уличного шума), то зимой это неосуществимо по причине быстрого остывания помещений. Появился повод задуматься о модернизации домашней вентиляции, да и о поддержании здорового микроклимата в помещении в целом. Кроме того, в ассортименте магазина имеется , обладающий более крупным дисплеем и позволяющий измерять помимо концентрации CO2 и температуры еще и относительную влажность воздуха. Скидка 10% предоставляется по промокоду GT-CO2 в течение 14 дней.

В одной из следующих статей будет описано, как подружить детектор СО2 с микрокомпьютером Raspberry Pi. Добавить метки

Вызвала в комментариях ожесточенный спор на тему, является ли человеческая цивилизация основным источником парниковых газов на планете. Уважаемый dims12 привел интересную ссылку , где говорится, что вулканы выбрасывают в 100-500 раз меньше углекислого газа, чем современная цивилизация:

В ответ на это, уважаемый vladimir000 привел свой . В результате него он получил, что выбросы СО2 человеческой цивилизацией гораздо меньше: около 600 миллионов тонн:

Что-то у вас порядок цифр странный. Поиск дает суммарную мощность всех электростанций Земли 2*10^12 ватт, то есть, предположив, что все они работают на ископаемом топливе круглый год, получаем примерно 2*10^16 ватт-час годового потребления, то есть 6*10^15 КДжоулей.

Опять же, поиск дает удельную теплоту сгорания первые десятки тысяч КДжоулей на килограмм ископаемого топлива. Примем для простоты 10000, и примем, что все переработанное топливо улетает в трубу без остатка.

Тогда, чтобы полностью покрыть потребности человечества в энергии, получается, достаточно сжигать 6*10^15 / 10^4 килограмм углерода в год, то есть 6*10^8 тонн. 600 мегатонн в год. Учитывая, что существуют еще атомные, гидро и прочие возобновляемые станции, не вижу за счет чего, итоговое потребление увеличится в 500 раз.

Разница получилась огромная - 500 раз. Но при этом я не совсем понял, откуда получилась эта 500-кратная разница. Если разделить 29 миллиардов тонн на 600 миллионов тонн, то будет разница в 50 раз. С другой стороны, эта разница, вероятно, связана с не 100% КПД электростанцией, и с тем фактом, что ископаемое топливо потребляют не только электростанции, но и для транспорта, обогрева жилищ или производства цемента.

Поэтому можно точнее произвести этот расчет. Для этого просто используем следующую цитату : "при сжигании угля в размере одной тонны условного топлива потребляется 2,3 тонны кислорода и выбрасывается 2,76 тонны углекислого газа, а при сжигании природного газа выбрасывается 1,62 тонны углекислого газа, а потребляется все те же 2,35 тонны кислорода ".

Сколько сейчас человечество потребляет условного топлива в год? Такая статистика приводится в отчетах компании BP . Около 13 миллиардов тонн условного топлива. Тем самым человечество выбрасывает в атмосферу порядка 26 миллиардов тонн углекислого газа. Более того, в тех же данных приводится подробная статистика по выбросам СО2 за каждый год. Из неё следует, что эти выбросы постоянно растут:

В тоже время, только половина этих выбросов попадает в атмосферу. Другая половина

Загрузка...