domvpavlino.ru

Очистка и обеззараживание воды разными методами. Методы обеззараживания воды

Министерство образования Республики Башкортостан

Государственное бюджетное образовательное учреждение

Среднего профессионального учреждения

«Аксеновский сельскохозяйственный техникум»

По дисциплине: Биология

На тему: Современные методы обеззараживание воды.

Проверил преподаватель: Выполнил студент

Тимербаев С.А. Специальности «Агрономия»

Оценка________ Виталий Павлов

Подпись_________ группы А-14

с. Ким 2015 г

Введение

Среди многих отраслей современной техники, направленных на повышение уровня жизни людей, благоустройства населенных мест и развития промышленности, водоснабжение занимает большое и почетное место. Ведь вода – это непременная часть всех живых организмов, жизнедеятельность которых без воды невозможна. Для нормального течения физиологических процессов в организме человека и для создания благоприятных условий жизни людей очень важно гигиеническое значение воды. В настоящее время обеспечение населения водой высокого качества стало настоящей проблемой.

Проблема питьевого водоснабжения затрагивает очень многие стороны жизни человеческого общества в течение всей истории его существования. В настоящее время это проблема социальная, политическая, медицинская, географическая, а также инженерная и экономическая. На питьевые и бытовые потребности населения, коммунальных объектов, лечебно-профилактических учреждений, а также на технологические нужды предприятий пищевой промышленности расходуется около 5-6% общего водопотребления. Технически обеспечить подачу такого количества воды нетрудно, но потребности должны удовлетворяться водой определённого качества, так называемой питьевой водой.

Питьевая вода – это вода, отвечающая по своему качеству в естественном состоянии или после обработки (очистки, обеззараживания) установленным нормативным требованиям и предназначенная для питьевых и бытовых нужд человека. Основные требования к качеству питьевой воды: быть безопасной в эпидемическом и радиационном отношении, быть безвредной по химическому составу, обладать благоприятными органолептическими свойствами. Для удовлетворения этих требований в настоящее время используется целый комплекс мер по подготовке питьевой воды.

Конечно, в реках и других водоёмах происходит естественный процесс самоочищения воды. Однако он протекает очень медленно. Реки уже давно не справляются со сбросами сточных вод и другими источниками загрязнения. А ведь уровень бактерицидного воздействия в сточных водах часто превышает норму в тысячи и миллионы раз. Стоки попадают в реки и озёра, а большинство городских водоканалов берут воду именно из них. Таким образом, обязательными процессами в подготовке питьевой воды являются качественная очистка и обеззараживание сточных вод.

Обеззараживанием воды называется процесс уничтожения находящихся там микроорганизмов. В процессе первичной очистки вод задерживаются до 98% бактерий. Но среди оставшихся бактерий, а также среди вирусов могут находиться патогенные (болезнетворные) микробы, для уничтожения которых нужна специальная обработка воды – её обеззараживание.

При полной очистке поверхностных вод обеззараживание необходимо всегда, а при использовании подземных вод – только тогда, когда микробиологические свойства исходной воды этого требуют. Но на практике использование для питья и подземных, и поверхностных вод практически всегда без обеззараживания невозможно.

Вода природных источников питьевого водоснабжения, как правило, не соответствует гигиеническим требованиям к питьевой воде и требует перед подачей населению подготовки - очистки и обеззараживания.

Очистка воды, включающая её осветление и обесцвечивание, является первым этапом в подготовке питьевой воды. В результате её из воды удаляются взвешенные вещества, яйца гельминтов и значительная часть микроорганизмов. Но часть патогенных бактерий и вирусов проникает через очистные сооружения и содержится в фильтрованной воде. Для создания надёжного и управляемого барьера на пути возможной передачи через воду кишечных инфекций и других не менее опасных болезней применяется её обеззараживание, т.е. уничтожение живых и вирулентных патогенных микроорганизмов – бактерий и вирусов. Ведь именно микробиологические загрязнения воды занимают первое место в оценке степени риска для здоровья человека. Сегодня доказано, что опасность заболеваний от присутствующих в воде болезнетворных микроорганизмов в тысячи раз выше, чем при загрязнении воды химическими соединениями различной природы. Поэтому обеззараживание до пределов, отвечающих установленным гигиеническим нормативам, является обязательным условием получения воды питьевого качества.

В практике коммунального водоснабжения используют реагентные (хлорирование, озонирование, воздействие препаратами серебра), безреагентные (ультрафиолетовые лучи, воздействие импульсными электрическими разрядами, гамма-лучами и др.) и комбинированные методы обеззараживания воды. В первом случае должный эффект достигается внесением в воду биологически активных химических соединений. Безреагентные методы обеззараживания подразумевают обработку воды физическими воздействиями. А в комбинированных методах используются одновременно химическое и физическое воздействия.

При выборе метода обеззараживания следует учитывать опасность для здоровья человека остаточных количеств биологически активных веществ, применяемых для обеззараживания или образующихся в процессе обеззараживания, возможность изменения физико-химических свойств воды (например, образование свободных радикалов). Важными характеристиками метода обеззараживания являются также его эффективность в отношении различных видов микронаселения воды, зависимость эффекта от условий среды.

При химических способах обеззараживания питьевой воды для достижения стойкого обеззараживающего эффекта необходимо правильно определить дозу вводимого реагента и обеспечить достаточную длительность его контакта с водой. Доза реагента определяется пробным обеззараживанием или расчетными методами. Для поддержания необходимого эффекта при химических способах обеззараживания питьевой воды доза реагента рассчитывается с избытком (остаточный хлор, остаточный озон), гарантирующим уничтожение микроорганизмов, попадающих в воду некоторое время после обеззараживания.

При физических способах необходимо подвести к единице объема воды заданное количество энергии, определяемое как произведение интенсивности воздействия (мощности излучения) на время контакта.

Существуют и другие ограничения в использовании того или иного метода обеззараживания воды. На этих ограничениях, а также на достоинствах и недостатках методов обеззараживания мы подробно остановимся ниже.

2.1 Хлорирование

Самый распространенный и проверенный способ дезинфекции воды – первичное хлорирование. В настоящее время этим методом обеззараживается 98,6 % воды. Причина этого заключается в повышенной эффективности обеззараживания воды и экономичности технологического процесса в сравнении с другими существующими способами. Хлорирование позволяет не только очистить воду от нежелательных органических и биологических примесей, но и полностью удалить растворенные соли железа и марганца. Другое важнейшее преимущество этого способа – его способность обеспечить микробиологическую безопасность воды при ее транспортировании пользователю благодаря эффекту последействия.

Существенный недостаток хлорирования – присутствие в обработанной воде свободного хлора, ухудшающее ее органолептические свойства и являющееся причиной образования побочных галогенсодержащих соединений (ГСС). Бόльшую часть ГСС составляют тригалометаны (ТГМ) – хлороформ, дихлорбромметан, дибромхлорметан и бромоформ. Их образование обусловлено взаимодействием соединений активного хлора с органическими веществами природного происхождения. Этот процесс растянут по времени до нескольких десятков часов, а количество образующихся ТГМ при прочих равных условиях тем больше, чем выше рН воды. Для устранения примесей требуется доочистка воды на угольных фильтрах. В настоящее время предельно допустимые концентрации для веществ, являющихся побочными продуктами хлорирования, установлены в различных развитых странах в пределах от 0,06 до 0,2 мг/л и соответствуют современным научным представлениям о степени их опасности для здоровья.

Для хлорирования воды используются такие вещества как собственно хлор (жидкий или газообразный), диоксид хлора и другие хлорсодержащие вещества.

Хлор является наиболее распространённым из всех веществ, используемых для обеззараживания питьевой воды. Это объясняется высокой эффективностью, простотой используемого технологического оборудования, дешевизной применяемого реагента – жидкого или газообразного хлора – и относительной простотой обслуживания.

Очень важным и ценным качеством использования хлора является его последействие. Если количество хлора взято с некоторым расчетным избытком, так чтобы после прохождения очистных сооружений в воде содержалось 0,3–0,5 мг/л остаточного хлора, то не происходит вторичного роста микроорганизмов в воде.

Однако, хлор является сильнодействующим токсическим веществом, требующим соблюдения специальных мер по обеспечению безопасности при его транспортировке, хранении и использовании; мер по предупреждению катастрофических последствий в чрезвычайных аварийных ситуациях. Поэтому ведется постоянный поиск реагентов, сочетающих положительные качества хлора и не имеющих его недостатков.

Одновременно с обеззараживанием воды протекают реакции окисления органических соединений, при которых в воде образуются хлорорганические соединения, обладающие высокой токсичностью, мутагенностью и канцерогенностью. Последующая очистка воды на активном угле не всегда может удалить эти соединения. Кроме того, что эти хлорорганические соединения, обладающие высокой стойкостью, становятся загрязнителями питьевой воды, они, пройдя через систему водоснабжения и канализации, вызывают загрязнение рек вниз по течению.

Присутствие в воде побочных соединений – один из недостатков использования в качестве дезинфектанта газообразного, а равно и жидкого хлора (Cl2).

2.1.2 Диоксид хлора

В настоящее время для обеззараживания питьевой воды также предлагается применение диоксида хлора (ClO2), который обладает рядом преимуществ, таких как: более высокое бактерицидное и дезодорирующее действие, отсутствие в продуктах обработки хлорорганических соединений, улучшение органолептических качеств воды, отсутствие необходимости перевозки жидкого хлора. Однако диоксид хлора дорог и должен производиться на месте по достаточно сложной технологии. Его применение имеет перспективу для установок относительно небольшой производительности.

Действие на болезнетворную флору ClО2 обусловлено не только высоким содержанием при реакции высвобождающегося хлора, но и образующимся атомарным кислородом. Именно это сочетание делает диоксид хлора более сильным обеззараживающим агентом. Кроме того, он не ухудшает вкус и запах воды. Сдерживающим фактором в использовании данного дезинфектанта до последнего времени была повышенная взрывоопасность, осложнявшая его производство, транспортировку и хранение. Однако современные технологии позволяют устранить этот недостаток за счет производства диоксида хлора непосредственно на месте применения.

2.1.3 Гипохлорит натрия

Технология применения гипохлорита натрия (NaClO) основана на его способности распадаться в воде с образованием диоксида хлора. Применение концентрированного гипохлорита натрия на треть снижает вторичное загрязнение, в сравнении с использованием газообразного хлора. Кроме того, транспортировка и хранение концентрированного раствора NaClO достаточно просты и не требуют повышенных мер безопасности. Также получение гипохлорита натрия возможно и непосредственно на месте, путем электролиза. Электролитический метод характеризуют малые затраты и безопасность; реагент легко дозируется, что позволяет автоматизировать процесс обеззараживания воды.

Применение для обеззараживания воды хлорсодержащих реагентов (хлорной извести, гипохлоритов натрия и кальция) менее опасно в обслуживании и не требует сложных технологических решений. Правда, используемое при этом реагентное хозяйство более громоздко, что связано с необходимостью хранения больших количеств препаратов (в 3–5 раз больше, чем при использовании хлора). Во столько же раз увеличивается объем перевозок. При хранении происходит частичное разложение реагентов с уменьшением содержания хлора. Остается необходимость устройства системы притяжно-вытяжной вентиляции и соблюдения мер безопасности для обслуживающего персонала. Растворы хлорсодержаших реагентов коррозионно-активны и требуют оборудования и трубопроводов из нержавеющих материалов или с антикоррозийным покрытием.

Все большее распространение, особенно на небольших станциях водоподготовки, приобретают установки по производству активных хлорсодержаших реагентов электрохимическими методами. В России несколько предприятий предлагают установки типа «Санер», «Санатор», «Хлорэл-200» для производства гипохлорита натрия методом диафрагменного электролиза поваренной соли.

питьевой водоснабжение обеззараживание

2.2 Озонирование

Преимущество озона (О3) перед другими дезинфектантами заключается в присущих ему дезинфицирующих и окислительных свойствах, обусловленных выделением при контакте с органическими объектами активного атомарного кислорода, разрушающего ферментные системы микробных клеток и окисляющего некоторые соединения, которые придают воде неприятный запах (например, гуминовые основания). Кроме уникальной способности уничтожения бактерий, озон обладает высокой эффективностью в уничтожении спор, цист и многих других патогенных микробов. Исторически применение озона началось еще в 1898 г. во Франции, где впервые были созданы опытно-промышленные установки по подготовке питьевой воды.

Количество озона, необходимое для обеззараживания питьевой воды, зависит от степени загрязнения воды и составляет 1–6 мг/л при контакте в 8–15 мин; количество остаточного озона должно составлять не более 0,3–0,5 мг/л, т. к. более высокая доза придает воде специфический запах и вызывает коррозию водопроводных труб.

С гигиенической точки зрения озонирование воды – один из лучших способов обеззараживания питьевой воды. При высокой степени обеззараживания воды оно обеспечивает ее наилучшие органолептические показатели и отсутствие высокотоксичных и канцерогенных продуктов в очищенной воде.

Ограничениями для распространения технологии озонирования являются высокая стоимость оборудования, большой расход электроэнергии, значительные производственные расходы, а также необходимость высококвалифицированного оборудования. Последний факт обусловил использование озона лишь при централизованном водоснабжении. Кроме того, в процессе эксплуатации установлено, что в ряде случаев (если температура обрабатываемой природной воды превышает 22 °С) озонирование не позволяет достичь требуемых микробиологических показателей по причине отсутствия эффекта пролонгации дезинфицирующего воздействия

Метод озонирования воды технически сложен и наиболее дорогостоящ среди других методов обеззараживания питьевой воды.. Технологический процесс включает последовательные стадии очистки воздуха, его охлаждения и осушки, синтеза озона, смешения озоновоздушной смеси с обрабатываемой водой, отвода и деструкции остаточной озоновоздушной смеси, вывода ее в атмосферу. Все это ограничивает использование данного метода в повседневной жизни.

Другим существенным недостатком озонирования явялется токсичность озона. Предельно допустимое содержание этого газа в воздухе производственных помещений – 0,1 г/м3. К тому же существует опасность взрыва озоновоздушной смеси.

Существующие конструкции современных озонаторов представляют собой большое количество близко расположенных ячеек, образованных электродами, один из которых находится под высоким напряжением, а второй – заземлен. Между электродами с определенной периодичностью возникает электрический разряд, в результате которого в зоне действия ячеек из воздуха образуется озон. Полученной озоновоздушной смесью барботируют обрабатываемую воду. Подготовленная таким образом вода по вкусу, запаху и другим свойствам превосходит воду, обработанную хлором.

2.3 Другие реагентные способы дезинфекции воды

Применение тяжелых металлов (медь, серебро и др.) для обеззараживания питьевой воды основано на использовании их «олигодинамического» свойства – способности оказывать бактерицидное действие в малых концентрациях. Эти металлы могут вводиться в виде растворов солей либо методом электрохимического растворения. В обоих этих случаях возможен косвенный контроль их содержания в воде. Следует заметить, что ПДК ионов серебра и меди в питьевой воде достаточно жесткие, а требования к воде, сбрасываемой в рыбохозяйственные водоемы, еще выше.

К химическим способам обеззараживания питьевой воды относится также широко применявшееся в начале 20 в. обеззараживание соединениями брома и йода, обладающими более выраженными бактерицидными свойствами, чем хлор, но требующими и более сложной технологии. В современной практике для обеззараживания питьевой воды йодированием предлагается использовать специальные иониты, насыщенные йодом. При пропускании через них воды йод постепенно вымывается из ионита, обеспечивая необходимую дозу в воде. Такое решение приемлемо для малогабаритных индивидуальных установок. Существенным недостатком является изменение концентрации йода во время работы и отсутствие постоянного контроля его концентрации.

Применение активных углей и катионитов, насыщенных серебром, например, С-100 Ag или С-150 Ag фирмы « Purolite », преследует цели не «серебрения» воды, а предотвращения развития микроорганизмов при прекращении движения воды. При остановках создаются идеальные условиях для их размножения – большое количество органики, задержанное на поверхности частиц, их огромная площадь и повышенная температура. Наличие серебра в структуре этих частиц резко уменьшает вероятность обсеменения слоя загрузки. Серебросодержащие катиониты разработки ОАО НИИПМ – КУ-23СМ и КУ-23СП – содержат в себе значительно большее количество серебра и предназначены для обеззараживания воды в установках небольшой производительности.

3.1 Кипячение

Из физических способов обеззараживания воды наиболее распространенным и надежным (в частности, в домашних условиях) является кипячение.

При кипячении происходит уничтожение большинства бактерий, вирусов, бактериофагов, антибиотиков и других биологических объектов, которые часто содержатся в открытых водоисточниках, а как следствие и в системах центрального водоснабжения.

Кроме того, при кипячении воды удаляются растворенные в ней газы и уменьшается жесткость. Вкусовые качества воды при кипячении меняются мало. Правда для надежной дезинфекции рекомендуется кипятить воду в течение 15 – 20 минут, т.к. при кратковременном кипячении некоторые микроорганизмы, их споры, яйца гельминтов могут сохранить жизнеспособность (особенно если микроорганизмы адсорбированы на твердых частицах). Однако применение кипячения в промышленных масштабах, конечно же, не представляется возможным ввиду высокой стоимости метода.

3.2 Ультрафиолетовое излучение

Обработка УФ-излучением – перспективный промышленный способ дезинфекции воды. При этом применяется свет с длиной волны 254 нм (или близкой к ней), который называют бактерицидным. Дезинфицирующие свойства такого света обусловлены их действием на клеточный обмен и особенно на ферментные системы бактериальной клетки. При этом бактерицидный свет уничтожает не только вегетативные, но и споровые формы бактерий.

Современные установки УФ-обеззараживания имеют производительность от 1 до 50 000 м3/ч и представляют собой выполненную из нержавеющей стали камеру с размещенными внутри УФ-лампами, защищенными от контакта с водой прозрачными кварцевыми чехлами. Вода, проходя через камеру обеззараживания, непрерывно подвергается облучению ультрафиолетом, который убивает все находящиеся в ней микроорганизмы. Наибольший эффект обеззараживания питьевой воды достигается при расположении УФ-установок после всех других систем очистки, как можно ближе к месту конечного потребления.

Этот способ приемлем как в качестве альтернативы, так и дополнения к традиционным средствам дезинфекции, поскольку абсолютно безопасен и эффективен.

Важно отметить, что в отличие от окислительных способов при УФ-облучении не образуются вторичные токсины, и поэтому верхнего порога дозы ультрафиолетового облучения не существует. Увеличением дозы почти всегда можно добиться желаемого уровня обеззараживания.

Кроме того УФ-облучение не ухудшает органолептические свойства воды, поэтому может быть отнесено к экологически чистым методам ее обработки.

Вместе с тем, и этот способ имеет определенные недостатки. Подобно озонированию, УФ-обработка не обеспечивает пролонгированного действия. Именно отсутствие последействия делает проблематичным ее применение в случаях, когда временной интервал между воздействием на воду и ее потреблением достаточно велик, например в случае централизованного водоснабжения. Для индивидуального водоснабжения УФ-установки являются наиболее привлекательными.

Кроме того, возможны реактивация микроорганизмов и даже выработка новых штаммов, устойчивых к лучевому поражению.

Этот способ требует строжайшего соблюдения технологии,

Организация процесса УФ-обеззараживания требует больших капитальных вложений, чем хлорирование, но меньших, чем озонирование. Более низкие эксплуатационные расходы делают УФ-обеззараживание и хлорирование сопоставимыми в экономическом плане. Расход электроэнергии незначителен, а стоимость ежегодной замены ламп составляет не более 10% от цены установки.

Фактором, снижающим эффективность работы установок УФ-обеззараживания при длительной эксплуатации, является загрязнение кварцевых чехлов ламп отложениями органического и минерального состава. Крупные установки снабжаются автоматической системой очистки, осуществляющей промывку путем циркуляции через установку воды с добавлением пищевых кислот. В остальных случаях применяется механическая очистка.

Другим фактором, снижающим эффективность УФ-обеззараживания, является мутность исходной воды. Рассеивание лучей значительно ухудшает эффективность обработки воды.

3.3 Электроимпульсный способ

Достаточно новым способом обеззараживания воды является электроимпульсный способ – использование импульсивных электрических разрядов (ИЭР).

Сущность метода заключается в возникновении электрогидравлического удара, так называемого эффекта Л. А. Юткина.

Технологический процесс состоит из шести ступеней:

подача жидкости в рабочий объём при равномерном профиле распределения скорости (причём рабочий объём заполняют с воздушным промежутком, а равномерный профиль распределения жидкости помогает уменьшить энергоёмкость процесса),

зарядку накопителя электроэнергии в режиме постоянной мощности,

инициирование одного или серии электрических разрядов в жидкости при скорости нарастания переднего фронта напряжения не менее 1010 В/с (энергию дозируют путём отсчёта зарядов),

усиление эффекта разрушения микроорганизмов за счет формирования волн растяжения при отражении волн сжатия, образованных электрическим разрядом от свободной поверхности жидкости,

подавление или гашение ударных волн в подводящих и отводящих жидкость магистралях для исключения их разрушения,

отведение обеззараженной жидкости из рабочего объёма.

Кроме того, в частном случае возможно инициирование электрических разрядов в объеме, отделенном от рабочего объема средой, сохраняющей или увеличивающей амплитуду волн сжатия. Примером материала, являющегося средой, сохраняющей амплитуду волны на границе с водой, может быть пенополистирол.

В процессе обеззараживания питьевой воды электроимпульсным способом происходит большое количество явлений: мощные гидравлические процессы, образование ударных волн сверхвысокого давления, образование озона, явления кавитации, интенсивные ультразвуковые колебания, возникновение импульсивных магнетических и электрических полей, повышение температуры. Результатом всех этих явлений является уничтожение в воде практически всех патогенных микроорганизмов. Очень важно заметить, что вода, обработанная ИЭР, приобретает бактерицидные свойства, которые сохраняются до 4 мес.

Основным преимуществом электроимпульсного способа обеззараживания питьевой воды является экологическая чистота, а так же возможность использования в больших объемах жидкости.

Однако этот способ имеет ряд недостатков, в частности относительно высокую энергоемкость (0,2-1 кВтч/м3) и, как следствие – дороговизну.

Электрохимический метод.

Серийно производятся установки «Изумруд», «Сапфир», «Аквамин» и т.п. Их работа основана на пропускании воды через электрохимический диафрагменный реактор, разделенный ультрафильтрационной металлокерамической мембраной на катодную и анодную область. При подаче постоянного тока в катодной и анодной камерах происходит образование щелочного и кислого растворов, электролитическое образование активного хлора. В этих средах гибнут практически все микроорганизмы и происходит частичное разрушение органических загрязнений. Конструкция проточного электрохимического элемента хорошо отработана, и набором из различного числа таких элементов получают установки заданной производительности.

3.4 Обеззараживание ультразвуком

В некоторых случаях для обеззараживания воды используется ультразвук. Впервые этот метод был предложен в 1928 г. Механизм действия ультразвука до конца неясен. По этому поводу высказываются следующие предположения:

Ультразвук вызывает образование пустот в сильно завихренном пространстве, что ведет к разрыву клеточной стенки бактерии;

Ультразвук вызывает выделение растворенного в жидкости газа, а пузырьки газа, находящиеся в бактериальной клетке, вызывают ее разрыв.

Преимуществом использования ультразвука перед многими другими средствамиобеззараживания сточных водслужит его нечувствительность к таким факторам, как высокая мутность и цветность воды, характер и количество микроорганизмов, а также наличие в воде растворенных веществ.

Единственный фактор, который влияет на эффективностьобеззараживания сточных вод ультразвуком - это интенсивность ультразвуковых колебаний. Ультразвук - это звуковые колебание, частота которых находится значительно выше уровня слышимости. Частота ультразвука от 20000 до 1000000 Гц, следствием чего и является его способность губительным образом сказываться на состоянии микроорганизмов. Бактерицидное действие ультразвука разной частоты весьма значительно и зависит от интенсивности звуковых колебаний.

Обеззараживание и очистка водыультразвуком считается одним из новейших методов дезинфекции. Ультразвуковое воздействие на потенциально опасные микроорганизмы не часто применяется в фильтрахобеззараживания питьевой воды, однако его высокая эффективность позволяет говорить о перспективности этого метода обеззараживания воды, не смотря на его дороговизну.

3.5 Радиационное обеззараживание

Имеются предложения использования для обеззараживания воды гамма-излучения.

Гамма-установки типа РХУНД работают по следующей схеме: вода поступает в полость сетчатого цилиндра приёмно-разделительного аппарата, где твёрдые включения увлекаются вверх шнеком, отжимаются в диффузоре и направляются в бункер – сборник. Затем вода разбавляется условно чистой водой до определённой концентрации и подаётся в аппарат гамма-установки, в котором под действием гамма излучения изотопа Со60 происходит процесс обеззараживания.

Гамма-излучение оказывает угнетающее действие на активность микробных дегидраз (ферментов). При больших дозах гамма-излучения погибает большинство возбудителей таких опасных заболеваний как тиф, полиомиелит и др.

3.6 Другие физические методы

К физико-химическим методам обеззараживания воды следует отнести использование с этой целью ионообменных смол. G.Gillissen (1960) показал способность анионообменных смол освобождать жидкость от бактерий группы соli. Возможна регенерация смолы. У нас Е.В.Штанников (1965) установил возможность очистки воды от вирусов ионообменными полимерами. По мнению автора этот эффект связан как с сорбцией вируса, так и с его денатурацией за счет кислотной или особенно щелочной реакции. В другой работе Штанникова указывается на возможность обеззараживания воды ионактивными полимерами, где находится токсин ботулизма. Обеззараживание происходит за счет окисления токсина и его сорбции.

Помимо указанных выше физических факторов изучалась возможность обеззараживания воды токами высокой частоты, магнитной обработкой.

Во многих случаях наиболее эффективным оказывается комплексное применение реагентных и безреагентных методов обеззараживания воды. Сочетание УФ-обеззараживания с последующим хлорированием малыми дозами обеспечивает как высочайшую степень очистки, так и отсутствие вторичного биозагрязнения воды. Так, обработкой воды бассейнов УФ-облучением в сочетании с хлорированием достигается не только высокая степень обеззараживания, снижение пороговой концентрации хлора в воде, но и, как следствие, существенная экономия средств на расходе хлора и улучшение обстановки в самом бассейне.

Аналогично распространяется использование озонирования, при котором уничтожается микрофлора и часть органических загрязнений, с последующим щадящим хлорированием, обеспечивающим отсутствие вторичного биозагрязнения воды. При этом резко сокращается образование токсичных хлорорганических веществ.

Поскольку все микроорганизмы характеризуются определенными размерами, пропуская воду через фильтрующую перегородку с размерами пор меньшими, чем микроорганизмы, можно полностью очистить от них воду. Так, фильтрующие элементы, имеющие размер пор менее 1 микрона, согласно действующим ТИ 10-5031536-73-10 на безалкогольную продукцию, считаются обеспложивающими, т. е. стерилизующими. Хотя при этом из воды удаляются только бактерии, но не вирусы. Для более «тонких» процессов, когда недопустимо присутствие любых микроорганизмов, например, в микроэлектронике, применяют фильтры с порами размером не более 0,1–0,2 мкм.

Заключение

Защита водных ресурсов от истощения и загрязнения и их рациональное использование для нужд народного хозяйства – одна из наиболее важных проблем, требующих безотлагательного решения.

Предприятия, осуществляющие забор воды из водоисточников, ее очистку, по уровню решаемых задач и обороту денежных средств занимают одно из ведущих мест в регионе. А стало быть эффективность использования материальных ресурсов в данной отрасли так или иначе сказывается на общем уровне благосостояния и здоровья людей, проживающих на данной территории. Рациональное, т.е. организованное с соблюдением санитарных правил и нормативов, питьевое водоснабжение помогает избегать различных эпидемий, кишечных инфекций. Химический состав питьевой воды также немаловажен для здоровья человека.

В современных условиях обеззараживание стало чуть ли не единственным обязательным процессом в многоступенчатой системе очистки воды питьевого водоснабжения. Коагулирование и фильтрование воды через песок освобождают ее от суспендированных примесей и частично снижают ее бактериальную загрязненность. Но только обеззараживанием воды можно на 98% очистить воду от патогенных (болезнетворных) микроорганизмов.

Постоянное совершенствование методов и средств, с помощью которых осуществляется дезинфекция, вызвано двумя факторами: развитием у микроорганизмов резистентности не только к антибиотикам, но и дезинфицирующим средствам, а также несовершенством используемых дезинфицирующих средств. Следует учитывать и то, что возможно и вторичное загрязнение уже подготовленной воды при транспортировке её по трубам распределительной сети.

В связи с этим поиск и внедрение наиболее рационального способа обеззараживания воды из проблемы актуальной переходит в раздел социально значимых.

Постоянное совершенствование дезинфицирующих средств приведёт к созданию новых, эффективных и безопасных соединений. Уже сейчас разрабатываются новые дезинфицирующие средства на основе таких традиционных групп химических соединений, как спирты, альдегиды, фенолы, перекиси, ПАВ и хлорсодержащие вещества. Кроме того, постоянно разрабатывается возможность их соединения для создания композитного дезинфицирующего средства.

Обеззараживание является заключительным этапом подготовки воды питьевой кондиции и должно обеспечивать эпидемиологическую безопасность населения.

Питьевая вода – это важнейший фактор здоровья и благополучия человека.

Мировой и отечественный опыт доказывает, что при использовании передовых технологий и оборудования качество воды (практически независимо от исходных ее характеристик) начинает соответствовать самым строгим нормативным требованиям. Это позволяет не только эффективно использовать естественные источники, но и успешно применять схемы рециркуляции. Такой подход, несомненно, поможет снизить антропогенную нагрузку с окружающей среды и сберечь ее для потомков.

Проблема обеззараживания воды стоит сегодня тем более остро, что качество ее в природных источниках неуклонно ухудшается. В государственном докладе «Вода питьевая» отмечено, что около 70 % рек и озер страны утратили свое качество как источники водоснабжения, а приблизительно 30 % подземных источников подверглись природному или антропогенному загрязнению. Около 22 % проб питьевой воды, отбираемых из водопроводов, не отвечают гигиеническим требованиям по санитарно-химическим нормам, а более 12 % – по микробиологическим показателям.

Список литературы

1. Водоснабжение. Проектирование систем и сооружений: В 3-х т. – Т. 2. Очистка и кондиционирование природных вод / Научно-методическое руководство и общая редактора докт. техн. наук, проф. Журбы М.Г. Вологда-Москва: ВоГТУ, 2001. – 324 с.

2. Мазаев В.Т., Корлёв А.А., Шлепнина Т.Г. Коммунальная гигиена / Под ред. В.Т. Мазаева. – 2-е изд., испр. и доп. – М.: ГЭОТАР-Медиа, 2005. – 304 с.

3. Яковлев С.В, Воронов Ю.В. Водоотведение и очистка сточных вод / Учебник для вузов: – М.: АСВ, 2002 – 704 с.

Что подразумевается под термином «обеззараживание» питьевой воды? Как минимум, очищение питьевой воды от разного рода бактерий или вирусов, вызывающих заражение воды. Эта статья поможет раскрыть тему обеззараживания питьевой воды наиболее полно.


Из этой статьи вы узнаете:

    Какие методы обеззараживания питьевой воды существуют

    Как провести обеззараживание питьевой воды в домашних условиях

    В чем преимущества таблеток для обеззараживания воды

    Как провести обеззараживание воды в походных условиях

Методы обеззараживания питьевой воды

Требования к качеству питьевой воды постоянно повышаются. Это вызвано более «совершенными» источниками загрязнения. Если вода не очищена должным образом, то приготовленная на ней пища и напитки будут оказывать негативное влияние на наше здоровье. Потому обеззараживание питьевой воды является необходимым атрибутом современной жизни.

По-настоящему полезная питьевая вода должна содержать необходимую норму минералов и микроэлементов. Поэтому тотальное обеззараживание до уровня дистиллированной – не лучший выход из положения. Производители, выпускающие питьевую воду, не устают нам сообщать о новейших технологиях очистки, направляя немалые средства на рекламу своего продукта. Но какие критерии действительно важны для определения качества питьевой воды? Этих критериев немного, и они просты.

Вода для питья должна:

    выглядеть чистой (без лишних примесей и вредных микроорганизмов);

    быть вкусной и прозрачной.

Это базовый набор требований, который применим к любой питьевой воде. Конечно, есть случаи, когда необходимо применение специфических методов обеззараживания. Все чаще можно встретить такой термин, как «полезность воды». Его обычно употребляют, говоря о степени жесткости питьевой воды.

Каким бы ни было качество источника, у каждого производителя питьевой воды в процессе изготовления присутствует цикл обеззараживания.

По методу воздействия различают две группы средств для обеззараживания питьевой воды. Эти группы отображены в таблице ниже:

Самым известным и массово применяемым является обеззараживание питьевой воды хлором. Такая популярность обоснована его эффективностью, простотой внедрения и низкой стоимостью реагента.

Химические связи хлора, окисляясь в питьевой воде, оказывают губительное действие на вредоносные микроорганизмы.

Дезинфекция – не единственный эффект от хлорирования. Обеззараживание питьевой воды хлором влияет на органолептические показатели, останавливает размножение водорослей, способствует более долгому сроку службы фильтрующих элементов, очищает питьевую воду от различных форм марганца и железа, делает воду бесцветной.

Но хлорирование – далеко не идеальный способ обеззараживания. Специалисты давно бьют тревогу по поводу использования хлора для очищения питьевой воды. Результат соединений активного хлора с органикой может приводить к образованию крайне опасных для нашего здоровья тригалометанов. Эти вещества относят к канцерогенам, которые вызывают появление раковых образований в человеческом теле. Хлорированную воду нельзя кипятить, поскольку достаточная концентрация хлора может спровоцировать образование диоксина (мощнейший яд).

С соединениями хлора связывают развитие таких болезней:

    рак органов пищеварения и печени;

    нарушения работы сердца;

    повышенное давление;

    атеросклероз;

    разновидности аллергических реакций.

Минусы и опасность использования хлорированной воды заставляют искать оптимальные методы обеззараживания. Одним из этих методов может быть применение гипохлорита натрия для обеззараживания питьевой воды. Его получают в конечной точке потребления методом электролиза 2–4%-го раствора поваренной соли или минеральной воды, в которой концентрация хлорид-ионов будет не менее 50 мг/л.

Обеззараживание питьевой воды гипохлоритом натрия схоже по действию с растворенным хлором, но с более продолжительным антисептическим действием.

Несомненными преимуществами применения для обеззараживания питьевой воды являются:

    Безопасность для организма человека.

    Существенно меньший урон природе, чем при хлорировании.

Имеет этот способ обеззараживания и свои недостатки :

    Большой расход хлорида натрия. Конверсия соли не превышает 10–20 %. Остальное количество соли, вносимое в воду, лишь повышает ее концентрацию. Сэкономить на количестве соли не получится, поскольку автоматически увеличатся расходы на электроэнергию и на анодные материалы.

    Многие эксперты сходятся во мнении, что использование гипохлорита натрия для обеззараживания питьевой воды вместо хлорирования ведет к существенному увеличению риска образования тригалометанов. Процесс их образования слишком долгий, а концентрация напрямую зависит от уровня Ph (чем он выше, тем большее количество тригалометанов образуется).

Можно сделать вывод, что более разумным способом снижения уровня хлорсодержащих соединений является понижение концентрации органики еще до этапа хлорирования.


Есть и другие способы обеззараживания питьевой воды. Например, применение серебра в качестве очистителя. Такой метод хоть и эффективный, но достаточно дорогостоящий. В качестве альтернативы предлагался и метод озонирования питьевой воды. Но взаимодействие озона с другими растворенными в воде веществами, например, с фенолом, приводит к образованию еще более токсичных соединений, чем при хлорировании. Ко всему прочему, озон недолго сохраняет свои антисептические свойства, поскольку быстро разрушается.

Кроме химических, существуют и физические способы обеззараживания питьевой воды. Наиболее популярным из них является воздействие ультрафиолетом. Обеззараживание происходит путем воздействия на внутриклеточный обмен и ферментную систему клетки бактерии. Ультрафиолет избавляет воду от всех вегетативных и споровых бактериальных форм, не меняя при этом органолептических качеств питьевой воды. Способ не получил должного распространения, поскольку он более затратный, если сравнивать с хлорированием, и не обладает последействием.

Таблетки для обеззараживания питьевой воды

Каждому человеку, в зависимости от его массы, в день необходимо 2-3 л питьевой воды. Находясь в «цивилизации», у вас есть возможность прокипятить воду или купить бутылку уже очищенной минеральной воды. Вы не испытываете в данном случае никаких трудностей.

Но в экстренных ситуациях или в условиях похода, когда на кипячение питьевой воды нет времени, ситуация совершенно иная. Вода из рек, озер, родников или прудов не всегда годится к употреблению в сыром виде. Отходы промышленной и сельскохозяйственной отраслей, химические удобрения попадают в водоемы и даже в грунтовые воды, потому очистка такой воды обязательна.

Оптимальным решением в этой ситуации может стать использование специальных таблеток для обеззараживания питьевой воды. Использование таблеток позволяет пить воду из открытых водоемов и родников без предварительной обработки. Способ особенно актуален в походных условиях и на дачных участках. Обеззараживание происходит за счет действия диоксида йода или хлора (в составе таблеток), которые уничтожают все патогенные микроорганизмы в питьевой воде. Используя таблетки для обеззараживания, можно пить воду из рек и болот, не опасаясь за свое здоровье.

Таблетки для обеззараживания питьевой воды поставляются в удобных влагозащитных блистерах, обеспечивающих их долгую сохранность.

Для обеззараживания питьевой воды в полевых условиях используют таблетки, в состав которых входит натриевая соль дихлоризоциануровой кислоты. Одна таблетка может содержать 3,5; 8,5; 12,5; 17 мг этого вещества и, соответственно, 2; 5; 7,3 и 10 мг активного хлора. Как правило, одна таблетка рассчитана на литр воды.

Питьевая вода, не требующая тщательной очистки (из центрального водопровода, артезианской скважины или колодца (только бесцветная)), может быть обеззаражена таблеткой с 3,5 мг действующего вещества. Безопасность такой питьевой воды можно проверить по остаточному содержанию свободного хлора. Через полчаса после растворения таблетки его концентрация должна быть в пределах 0,3–0,5 мг/л.

Для питьевой воды, требующей более серьезной степени обеззараживания, применяют таблетки с 8,5; 12,5 и 17 мг действующего вещества и, соответственно, 5; 7,3 и 10 мг активного хлора. Воду с явными признаками помутнения или окрашивания следует предварительно процедить через фильтр из ткани. При этом количество остаточного содержания свободного хлора через полчаса после растворения действующего вещества должно находиться в пределах 1,4–1,6 мг/л.

Определить необходимую дозировку хлора можно методом тестового хлорирования. Он достаточно прост: в три емкости с питьевой водой объемом в один литр добавляют соответственно, по одной, две и три таблетки с количеством активного хлора 2 или 5 мг (в зависимости от исходного уровня загрязнения воды). После перемешивания воде дают отстояться в течение получаса и проверяют на наличие запаха хлора. Достаточно эффективной степенью обеззараживания считается такая, при которой питьевая вода имеет характерный запах хлора. Сильный запах хлора указывает на необходимость снижения концентрации действующего вещества.

Обеззараживание питьевой воды для индивидуальных нужд производят в плотно закрывающейся емкости (фляге, термосе и т. д.). После растворения таблетки в воде крышку завинчивают и тщательно взбалтывают воду. После этого крышка отвинчивается на пол-оборота и емкость несколько раз переворачивается. Это необходимо для того, чтобы действующее вещество, растворенное в питьевой воде, осело на резьбе крышки. Через полчаса после данной процедуры вода будет полностью пригодна для питья. Для очистки питьевой воды от избытка хлора и его соединений воду фильтруют при помощи активированного угля.

Обеззараживание питьевой воды в домашних условиях

Самым популярным методом обеззараживания питьевой воды остается кипячение. Под воздействием температурной обработки вода проходит процесс обеззараживания, уничтожаются все болезнетворные микроорганизмы. Для этого питьевую воду кипятят в течение 15 минут, не закрывая крышки.

Несмотря на простоту метода, он имеет существенные недостатки :

    Хлор и его соединения полностью не удаляются из воды, преобразовываясь в опасное вещество – хлороформ (доказано, что он является причиной возникновения раковых заболеваний).

    На стенках емкости, в которой кипятится питьевая вода, оседают отложения солей (самый простой пример – накипь на стенках чайника). Таким образом, концентрация солей тяжелых металлов и нитратов в кипяченой воде может быть выше, чем в исходном варианте (до кипячения).

    С точки зрения полезности, кипяченая питьевая вода не представляет никакой ценности для нашего организма.

Еще один простой и доступный метод обеззараживания питьевой воды – обычное отстаивание. Достаточно дать воде отстояться в течение 8 часов, и все летучие соединения, в том числе и хлор, испарятся. Если время от времени перемешивать воду, процесс пойдет быстрее. Но этот метод не удаляет из питьевой воды соли тяжелых металлов, они лишь могут осесть на дно емкости. Поэтому используют только 2/3 части воды, оставляя 1/3 вместе с осадком в емкости для отстаивания.

Простой и эффективный метод обеззараживания питьевой воды – растворение в ней обычной поваренной соли. Пропорция, необходимая для фильтрации: одна столовая ложка соли на два литра воды. Через 20–25 минут вода очистится от солей тяжелых металлов и вредоносных микроорганизмов.

Главный недостаток такого способа очистки в том, что полученная вода непригодна для ежедневного употребления.


Нельзя не упомянуть о таком простом, но очень эффективном способе обеззараживания питьевой воды, как заморозка. Метод предельно прост: вода заливается в металлическую или пластиковую емкость (ни в коем случае не в стеклянную) и ставится в морозильную камеру. Не стоит заполнять емкость «до краев», поскольку вода при замерзании имеет свойство расширяться.

Поскольку чистая вода замерзает быстрее воды с примесями, следует контролировать процесс заморозки. Когда половина воды превратится в лед, оставшуюся воду, со всеми примесями солей, сливают. Получившийся лед растапливают нагреванием или естественным путем. Такая вода может использоваться как для приготовления пищи, так и для питья.

Стоит отметить особую полезность талой воды, выпитой непосредственно после размораживания. Такая вода имеет целебные свойства: активизирует восстановительные процессы в организме, придает силы, уменьшает неприятные ощущения при дерматите, стоматите, бронхиальной астме и аллергических реакциях.

Отличный способ обеззараживания питьевой воды – использование кремния. Метод выглядит следующим образом: маленький кусочек кремния (продается в аптеках) бросается в банку, наполненную водой, накрывается марлей и оставляется в освещенном, но удаленном от солнечных лучей месте. Вода становится очищенной по истечении 2-3 дней. Количество кремния должно соответствовать приблизительно 3–10 г на 1–5 литров воды. После приготовления воду аккуратно сливают, оставляя в посудине некоторое количество жидкости с осадком.

Еще одним народным средством для обеззараживания питьевой воды является шунгит. Для приготовления очищенной таким образом воды достаточно положить на три дня шунгитовый камень в емкость с водой. После приготовления воду сливают, оставляя в емкости осадок, как и в случае с кремниевой водой. Для ориентира, рекомендуют пропорцию: 100 г шунгита на 1 литр воды. Приблизительно раз в шесть месяцев, шунгитовый камень очищают от налета, при помощи жесткой губки или щетки.

Существует еще один эффективный способ обеззараживания питьевой воды в домашних условиях. Это обычный активированный уголь. Он является основным компонентом в фильтрующих системах для очистки воды от примесей и улучшения ее вкусовых качеств. Активированный уголь – отличный абсорбент. Он впитывает вредные компоненты, содержащиеся в воде и устраняет нехарактерные запахи.

Использовать такой метод обеззараживания достаточно просто. В марлю заворачивается активированный уголь и помещается в емкость с водой. Для эффективного обеззараживания достаточно одной таблетки на литр воды. Уже через 8 часов вы получите вкусную очищенную воду, готовую к употреблению.

Не стоит забывать и о таком действенном методе, как обеззараживание питьевой воды с помощью серебра. Этот благородный металл уничтожает все вредоносные микроорганизмы и нейтрализует химические соединения, нежелательные для нашего организма. В воду помещают любой серебряный предмет и оставляют его на 10–12 часов.

Эффективность бактерицидного действия серебра значительно выше, чем описанные ранее методы хлорирования и очищения активированным углем. Вопрос только в высокой стоимости серебра.

Существует немало народных методов обеззараживания питьевой воды. Среди них особо популярны:

    Обеззараживание при помощи гроздей рябины. Она помещается в воду и уже через 2-3 часа вы получаете абсолютно чистую жидкость, ничем не уступающую по качеству воде, обеззараженной методом серебрения или при помощи активированного угля.

    Известны и такие средства обеззараживания, как добавление в воду ивовой коры, шелухи лука, ветки можжевельника, листьев черемухи и другие. Они отлично зарекомендовали себя как простой способ получения очищенной воды. Для приготовления такой воды в среднем необходимо 12 часов.

    Выполнить обеззараживание питьевой воды можно и при помощи уксуса, вина или йода. Для эффективной очистки на литр воды добавляют чайную ложку уксуса или три капли йода (5%-ный раствор), или 300 мл белого сухого вина. Достаточно выстоять воду с одной из этих добавок в течение 2–6 часов, и вы получите пригодную к употреблению жидкость. Правда, этот метод не способен полностью освободить воду от соединений хлора и некоторых вредоносных микроорганизмов.

    Некоторые в качестве питьевой воды используют дистиллированную воду. Она не содержит абсолютно никаких примесей и микроорганизмов, но в ней нет и ничего полезного. А постоянное употребление такой воды приводит к вымыванию необходимых организму минералов.

    Нельзя не упомянуть и про такой метод очистки, как воздействие на воду магнитами. Приверженцы данной технологии опоясывают сосуд с водой кольцом из магнитов и через 3–5 ч получают очищенную, по их мнению, воду. Кто-то даже устанавливает магниты на водопроводную трубу. Даже теоретически такой метод способен очистить воду только от соединений железа, а на практике эффективность технологии не подтверждена.

Есть еще несколько способов обеззараживания питьевой воды в домашних условиях. Один из них – это использование фильтра-кувшина с кремниево-угольным фильтром в сменном картридже. Он способен удалить из воды соединения хлора, соли тяжелых металлов и вредоносные бактерии. Более дорогой способ обеззараживания воды – использование стационарных фильтров. Стоят они значительно дороже фильтров-кувшинов, да и расходные материалы обойдутся недешево, но на сегодняшний день, это один из самых надежных методов обеззараживания воды.

Обеззараживание питьевой воды в походных условиях подручными средствами

Сегодня практически невозможно найти природный источник воды, из которого можно безопасно пить воду без предварительной обработки (обеззараживания). Конечно, сейчас не XIX век и заражение какой-либо инфекцией вовсе не смертельно, но вред здоровью может быть нанесен серьезный.

В условиях, когда нет возможности пропустить воду через фильтр или использовать традиционные домашние методы, в ход идут подручные средства для обеззараживания питьевой воды:

  • Первичное очищение песком.

Такой фильтр легко изготовить из ненужной пластиковой бутылки. В дне проделывают несколько мелких отверстий и застилают его небольшим отрезом ткани. Поверх ткани насыпают песок на 2/3 всего объема емкости. Воду из источника набирают в бутылку, и она медленно вытекает из отверстий, оставляя в песке все примеси. Для более качественного обеззараживания процедуру требуется повторить несколько раз. По мере загрязнения песок нужно заменять.

Туристы часто применяют для обеззараживания древесный уголь. Его не нужно искать, он достается из остатков костра и всегда под рукой. Уголь дробят на мелкую фракцию и засыпают в емкость для очистки воды. Следует помнить, что для данного метода обеззараживания подойдет уголь, образовавшийся от сжигания лиственных пород деревьев. Уголь от хвойных пород может придать воде нехарактерный привкус.

  • Обеззараживание хлорированием.

Мы упоминали уже о методе хлорирования питьевой воды. Несомненный плюс данного метода в длительном воздействии соединений хлора на воду. Это предотвращает такие процессы в воде, как цветение, появление мутного осадка или посторонних запахов. Но хлор вместе с тем попадает в наш организм, постепенно отравляя его. Использование хлора в нужной концентрации делает его более безопасным, а простые методы дехлорирования позволяют свести вероятность попадания хлора в организм к минимуму.

В условиях, приближенных к экстремальным, можно применять гипохлорит натрия для обеззараживания питьевой воды. Для этого отлично подходит отбеливающее средство «Белизна». В ее составе содержится только раствор гипохлорита натрия. В концентрированном виде она достаточно опасна. Поэтому при работе с ней необходимо пользоваться перчатками и очками. Но в разбавленном виде «Белизна» может послужить отличным обеззараживающим средством.

По нормам, для эффективного хлорирования воды, взятой из открытых источников, нужно использовать от 1 до 3 мг активного хлора на литр воды. 4%-ная «Белизна» содержит от 20 до 50 г/л активного хлора. Значит, для одного литра воды понадобится 0,075 мл отбеливателя. Для простоты измерения на канистру воды (20 л) добавляют 1,5 мл «Белизны».

  • Обеззараживание природными средствами.

Хорошо, если в походе у вас под рукой оказались листья малины, ромашки, зверобоя, брусники или чистотела. Эти растения давно известны как отличные антисептики. Их можно просто бросить в кипящую воду, получив вкусный и полезный чай.

Такой распространенный в природе минерал, как кремний тоже является отличным антисептиком. Он создает электрически заряженное поле и притягивает в свои коллоидные соединения вредоносные микроорганизмы. Добавление двух граммов кремния на литр воды позволяет получить безопасную для питья воду и около суток хранить ее в закрытой емкости.

  • Очистка воды с обеззараживанием промышленными средствами.

Большой популярностью у туристов пользуются переносные фильтры. С помощью таких фильтров можно без опаски пить воду практически из любого источника. Переносные фильтры способны удалить из воды все вредоносные микроорганизмы.

В продвинутых моделях портативных фильтров применяют современную трековую мембрану (полимерная пленка с 300 миллионов отверстий диаметром 0,2 мкм на 1 см² площади). Прототипом этой мембраны послужила обыкновенная живая клетка, получающая из множества таких мелких отверстий воду и полезные вещества.

Данные фильтры не требуют каких-либо расходных материалов (достаточно промыть скопившиеся остатки на мембране и фильтр вновь готов к эксплуатации). Уровень производительности фильтра можно повысить, состыковав картриджи между собой.

Если у вас возникли затруднения при выборе способа обеззараживания воды, вы можете обратиться к профессионалам. На российском рынке присутствует немало компаний, которые занимаются разработкой систем водоочистки. Самостоятельно, без помощи профессионала, выбрать тот или иной вид фильтра воды довольно сложно. И уж тем более не стоит пытаться смонтировать систему водоочистки самостоятельно, даже если вы прочитали несколько статей в Интернете и вам кажется, что вы во всем разобрались.

Надежнее обратиться в компанию по установке фильтров, которая предоставляет полный спектр услуг – консультацию специалиста, анализ воды из скважины или колодца, подбор подходящего оборудования, доставку и подключение системы. Кроме того, важно, чтобы компания предоставляла и сервисное обслуживание фильтров.

Наша компания Biokit предлагает широкий выбор систем обратного осмоса, фильтры для воды и другое оборудование, способное вернуть воде из-под крана ее естественные характеристики.

Специалисты нашей компании готовы помочь вам:

    подключить систему фильтрации самостоятельно;

    разобраться с процессом выбора фильтров для воды;

    подобрать сменные материалы;

    устранить неполадки или решить проблемы с привлечением специалистов-монтажников;

    найти ответы на интересующие вопросы в телефонном режиме.

Доверьте очистку воды системам от Biokit – пусть ваша семья будет здоровой!

Под обеззараживанием питьевой воды понимают мероприятия по уничтожению в воде бактерий и вирусов , вызывающих инфекционные заболевания. По способу воздействия на микроорганизмы методы обеззараживания воды подразделяются на химические, или реагентные; физические, или безреагентные, и комбинированные. В первом случае должный эффект достигается внесением в воду биологически активных химических соединений; безреагентные методы обеззараживания подразумевают обработку воды физическими воздействиями, а в комбинированных используются одновременно химическое и физическое воздействия.

К химическим способам обеззараживания питьевой воды относят ее обработку окислителями: хлором , озоном и т. п., а также ионами тяжелых металлов. К физическим – обеззараживание ультрафиолетовыми лучами, ультразвуком и т. д. Перед обеззараживанием вода обычно подвергается очистке фильтрацией и (или) коагуляцией, при которой удаляются взвешенные вещества, яйца гельминтов и значительная часть микроорганизмов.

Метод озонирования воды технически сложен и наиболее дорогостоящ. Технологический процесс включает последовательные стадии очистки воздуха, его охлаждения и осушки, синтеза озона, смешения озоновоздушной смеси с обрабатываемой водой, отвода и деструкции остаточной озоновоздушной смеси, вывода ее в атмосферу. Все это требует также дополнительного вспомогательного оборудования (озонаторы, компрессоры, установки осушки воздуха, холодильные агрегаты и т. д.), объемных строительно-монтажных работ.

Озон токсичен. Предельно допустимое содержание этого газа в воздухе производственных помещений 0,1 г/м 3 . К тому же существует опасность взрыва озоновоздушной смеси.

Следует отметить, что, хотя ряд зарубежных фирм предлагает автономные озонаторные установки для организации водоснабжения отдельного коттеджа или очистки воды в бассейне, кроме очень высокой стоимости таких устройств, требуется обеспечение их высококачественного обслуживания. Применение установки, предлагаемой одной из отечественных фирм, для автономного водоснабжения без всяких систем контроля содержания озона в воздухе и воде, может печально кончиться для ее владельцев. В этих условиях возможно применение дозирования в воду гипохлорита, получаемого в малогабаритном электролизере типа «Санатор», хотя и здесь требуется квалифицированное обслуживание.

Применение тяжелых металлов (медь, серебро и др.) для обеззараживания питьевой воды основано на использовании их «олигодинамического» свойства – способности оказывать бактерицидное действие в малых концентрациях. Эти металлы могут вводиться в виде растворов солей либо методом электрохимического растворения. В обоих этих случаях возможен косвенный контроль их содержания в воде. Следует заметить, что ПДК ионов серебра и меди в питьевой воде достаточно жесткие, а требования к воде, сбрасываемой в рыбохозяйственные водоемы, еще выше.

К химическим способам обеззараживания питьевой воды относится также широко применявшееся в начале 20 в. о беззараживание соединениями брома и йода, обладающими более выраженными бактерицидными свойствами, чем хлор, но требующими и более сложной технологии. В современной практике для обеззараживания питьевой воды йодированием предлагается использовать специальные иониты, насыщен ные йодом. При пропускании через них воды йод постепенно вымыва ется из ионита, обеспечивая необходимую дозу в воде. Такое решение приемлемо для малогабаритных индивидуальных установок. Существенным недостатком является изменение концентрации йода во время работы и отсутствие постоянного контроля его концентрации.

Применение активных углей и катионитов, насыщенных серебром , например, С-100 Ag или С-150 Ag фирмы « Purolite », преследует цели не «серебрения» воды, а предотвращения развития микроорганизмов при прекращении движения воды. При остановках создаются идеальные условиях для их размножения – большое количество органики, задержанное на поверхности частиц, их огромная площадь и повышенная температура. Наличие серебра в структуре этих частиц резко уменьшает вероятность обсеменения слоя загрузки. Серебросодержащие катиониты разработки ОАО НИИПМ – КУ-23СМ и КУ-23СП – содержат в себе значительно большее количество серебра и предназначены для обеззараживания воды в установках небольшой производительности.

Из физических способов обеззараживания питьевой воды наибольшее распространение получило обеззараживание воды ультрафиолетовыми лучами , бактерицидные свойства которых обусловлены действием на клеточный обмен и особенно на ферментные системы бактериальной клетки. Ультрафиолетовые лучи уничтожают не только вегетативные, но и споровые формы бактерий, и не изменяют органолептических свойств воды. В ажно отметить, что поскольку при УФ-облучении не образуются токсичные продукты, то не существует верхнего порога дозы. Увеличением дозы УФ-излучения почти всегда можно добиться желаемого уровня обеззараживания.

Основным недостатком метода является полное отсутствие последействия.

Организация процесса УФ-обеззараживания требует больших капитальных вложений, чем хлорирование, но меньших, чем озонирование. Более низкие эксплуатационные расходы делают УФ-обеззара­живание и хлорирование сопоставимыми в экономическом плане. Расход электроэнергии незначителен, а стоимость ежегодной замены ламп составляет не более 10% от цены установки. Для индивидуального водоснабжения УФ-установки являются наиболее привлекательными.

Фактором, снижающим эффективность работы установок УФ-обез­зараживания при длительной эксплуатации, является загрязнение кварцевых чехлов ламп отложениями органического и минерального состава. Крупные установки снабжаются автоматической системой очистки, осуществляющей промывку путем циркуляции через установку воды с добавлением пищевых кислот. В остальных случаях применяется механическая очистка.

Обеззараживание питьевой воды ультразвуком основано на способности его вызывать т. н. кавитацию – образование пустот, создающих большую разность давления, что ведет к разрыву клеточной оболочки и гибели бактериальной клетки. Бактерицидное действие ультразвука разной частоты весьма значительно и зависит от интенсивности звуковых колебаний.

Из физических способов индивидуального обеззараживания воды наиболее распространенным и надежным является кипячение, при котором, кроме уничтожения бактерий, вирусов, бактериофагов, антибиотиков и др. биологических объектов, часто содержащихся в открытых водоисточниках, удаляются растворенные в воде газы и уменьшается жесткость воды. Вкусовые качества воды при кипячении меняются мало.

Во многих случаях наиболее эффективным оказывается комплексное применение реагентных и безреагентных методов обеззараживания воды . Сочетание УФ-обеззараживания с последующим хлорированием малыми дозами обеспечивает как высочайшую степень очистки, так и отсутствие вторичного биозагрязнения воды. Так, обработкой воды бассейнов УФ-облучением в сочетании с хлорированием достигается не только высокая степень обеззараживания, снижение пороговой концентрации хлора в воде, но и, как следствие, существенная экономия средств на расходе хлора и улучшение обстановки в самом бассейне.

Аналогично распространяется использование озонирования, при котором уничтожается микрофлора и часть органических загрязнений, с последующим щадящим хлорированием, обеспечивающим отсутствие вторичного биозагрязнения воды. При этом резко сокращается образование токсичных хлорорганических веществ.

Поскольку все микроорганизмы характеризуются определенными размерами, пропуская воду через фильтрующую перегородку с размерами пор меньшими, чем микроорганизмы, можно полностью очистить от них воду. Так, фильтрующие элементы, имеющие размер пор менее 1 микрона, согласно действующим
ТИ 10-5031536-73-10 на безалкогольную продукцию, считаются обеспложивающими, т. е. стерилизующими. Хотя при этом из воды удаляются только бактерии, но не вирусы. Для более «тонких» процессов, когда недопустимо присутствие любых микроорганизмов, например, в микроэлектронике, применяют фильтры с порами размером не более 0,1–0,2 мкм.

Достаточно новыми способами обеззараживания воды являются электрохимический и электроимпульсный. Серийно производятся установки «Изумруд», «Сапфир», «Аквамин» и т. п. Их работа основана на пропускании воды через электрохимический диафрагменный реактор, разделенный ультрафильтрационной металлокерамической мембраной на катодную и анодную область. При подаче постоянного тока в катодной и анодной камерах происходит образование щелочного и кислого растворов, электролитическое образование активного хлора. В этих средах гибнут практически все микроорганизмы и происходит частичное разрушение органических загрязнений. Конструкция проточного электрохимического элемента хорошо отработана, и набором из различного числа таких элементов получают установки заданной производительности. Кроме того, их используют для получения дезинфицирующих растворов – католита и анолита, применяемых в медицинской практике. Что касается заявлений разработчиков об изменении структуры воды и ее чудодейственных свойствах, оставим это без комментариев.

При электроимпульсном воздействии производится электрический разряд в воде – электрогидравлический удар, т. н. эффект Л. А. Юткина. При разряде возникает ударная волна сверхвысокого давления, световое излучение и образуется озон. Эти факторы губительно действуют на биологические объекты в воде.

Обеззараживание воды необходимо для обеспечения ее приемлемого химического состава, органолептических свойств и соответствия санитарно-эпидемиологическим стандартам с целью последующего употребления или применения в производственных или бытовых целях.

Лучшие методы

На сегодняшний день науке известны многие способы и методы обеззараживания воды, которые отличаются не только технологией, применяемыми средствами и их эффективностью, но и возможностью проведения таких мероприятий как в лабораторных, так и в обычных полевых условиях. Современные методы обеззараживания воды предусматривают использование высокотехнологичных установок, различных химических веществ для уничтожения вредных микроорганизмов и бактерий.

Среди наиболее лучших и популярных методов обеззараживания воды следует выделить нижеперечисленные:

  • Термическая обработка воды (кипячение). Это наиболее простой и доступный метод обеспечения пригодности воды к употреблению и ее обеззараживанию;
  • Обработка воды ультразвуком. Довольно устаревший способ обеззараживания жидкости, но довольно эффективный;
  • Ультрафиолетовое обеззараживание воды (использование специальных ламп). В этом случае применяются установки и лампы, которые являются источниками УФ-лучей. Уровень эффективности такого метода довольно высокий, а очистка воды происходит в короткие сроки благодаря пагубному для бактерий действию ультрафиолетового излучения;
  • Обработка воды электрическими разрядами высокой мощности. Этот метод обеззараживания воды и уничтожения микроорганизмов, а также бактерий в ее составе, несет в себе большой уровень риска для человека, а проведение его в полевых условиях практически невозможно. Несмотря на это, данный способ считается одним из наиболее эффективных для получения питьевой воды, наряду с использованием ультрафиолета и гипохлорита натрия;
  • Обработка воды озоном, или так называемое озонирование. Это один из наиболее дорогих способов получения питьевой воды, но и один из самых эффективных. Для его проведения необходимо специальное оборудование, установки и надлежащие условия;
  • Обеззараживание воды при помощи специальных химических веществ, препаратов и добавок. Этот метод используется для обработки сточных вод и предусматривает использование гипохлорита натрия, йода, марганцовки, серебра, хлора, перекиси водорода и т. д. Эти вещества или соединения могут выпускаться в виде таблеток или брикетов, которые подвержены быстрому растворению в воде.

Современные методы обеззараживания сточных вод и питьевой воды стали гораздо эффективнее, а сама процедура получения питьевой воды стала проще и доступнее для рядовых граждан.

Обеззараживание серебром

Обеззараживание воды серебром считается одним из наиболее древних методов очищения воды, нейтрализации вредных микроорганизмов и бактерий. Ранее считалось, что серебро является лучшим средством от многих болезней. Очистка воды таким способом может быть осуществлена и в полевых условиях, для чего необходимо иметь серебро в чистом виде. Научно доказано, что серебро эффективно борется со многими болезнетворными микроорганизмами, однако, остается открытым вопрос о влиянии серебра на некоторые виды простейших бактерий.

Помимо этого, накопление серебра в организме человека может нанести определенный ущерб для него. Речь идет именно о продолжительном использовании серебра в качестве средства для очистки воды.

Постоянное поступление серебра в организм человека может стать причиной возникновения ряда заболеваний, поэтому перед тем, как обеззаразить воду при помощи серебра необходимо обратиться к врачу за консультацией о возможности использования такого метода очистки питьевой воды.

Более того, в соответствии с утвержденными санитарными нормами, серебро относится ко второму классу опасности, и это лишний раз подтверждает тот факт, что данное средство для обеззараживания воды не является самым оптимальным и безопасным.

Обеззараживание серебром дает видимые результаты при обработке проточной воды, однако, использование этого метода для обеззараживания сточных вод крайне неэффективно.

Химические способы

Химические способы обеззараживания воды предполагают использование химических препаратов и веществ, а также специальных установок для очистки воды. Целью этого метода является уменьшение риска заражения человеческого организма кишечной палочкой или другими болезнетворными микроорганизмами и бактериями, которые попадают вместе с водой. В этих целях могут использоваться такие химические вещества, как хлор, серебро, йод, озон, марганцовка, перекись водорода и т. д.

Одним из наиболее распространенных способов химической очистки воды является использование хлора. С хлорированием знакомы почти все жители городов и других населенных пунктов, которые подключены к централизованной системе водоснабжения. Насыщение воды хлором происходит благодаря работе специальных обогатительных установок.

Озон также успешно используется для очистки воды, однако, его использование нерационально для бытовых нужд из-за дороговизны этого метода.

Марганцовка, благодаря своим высоким бактерицидным свойствам, может применяться для индивидуальной очистки и обеззараживания воды, а ее эффективность давно доказана специалистами в этой области. Марганцовка поступает в продажу в виде обычных таблеток.

Перекись водорода используется для обеззараживания воды довольно давно, однако, в настоящее время лабораторные исследования не дали окончательного ответа относительно уровня эффективности использования перекиси водорода, и основания говорить, что это средство на данный момент лучшее, отсутствуют.

Обеззараживание гипохлоритом натрия

Одним из лучших и эффективных способов обеззараживания воды на станциях водоподготовки, а также сточных вод, является использование гипохлорита натрия. Это вещество отличается невысокой стоимостью, а весь метод – экологичностью и безопасностью для окружающей среды.

Основой этого способа обеззараживания сточных вод и питьевой воды является электролиз при растворении поваренной соли в проточном режиме. Промышленные выбросы при этом методе очистки электролизом минимальны и абсолютно безопасны.

Гипохлорит натрия имеет выраженный бактерицидный эффект, при котором уничтожаются вредоносные бактерии, вирусы и микроорганизмы в процессе электролиза.

Обеззараживание воды описываемым способом электролиза гипохлорита натрия осуществляется при помощи специальной установки. При этом дозирование и уровень подачи гипохлорита натрия осуществляется при помощи многофункциональных насосов.

Гипохлорит натрия, помимо обеззараживания питьевой воды в центральных сетях водоснабжения, может также применяться для очистки воды в бассейнах, водонапорных башнях, использоваться в медицинских целях, на предприятиях общественного питания и в промышленности.

Установка обеззараживания воды, использующая принцип электролиза гипохлорита натрия, применима как для очистки сточных вод, так и для обеззараживания питьевой воды различных объемов.

Средство для обеззараживания питьевой воды

Для обеззараживания питьевой воды используются различные химические и органические вещества, изготовленные в виде рассыпного материала или таблеток. Они могут использоваться в различных местах водоочистки, довольно мобильны и имеют небольшую стоимость. Таблетки для обеззараживания воды могут быть использованы как в локальных емкостях, так и динамичных источниках питьевой воды, например, ручьях, проточных колодцах, родниках и т. п.

Зачастую таблетки для обеззараживания воды имеют в своем составе такие компоненты, как сульфат натрия, соль, натриевая кислота, йод, хлор и кальций. Использование современных таблеток для очистки воды от бактерий и микроорганизмов не предполагает наличия специального оборудования или установки, что является неоспоримым преимуществом такой формы выпуска. Таблетка легко умещается в кармане или рюкзаке, она имеет небольшой вес и не причинит какие-либо неудобства при путешествии или походе.

В среднем действие таблетки при обеззараживании воды имеет продолжительность около 20-30 минут. По истечении этого времени таблетка полностью растворяется, а вода становится пригодной к употреблению и гарантировано очищена от бактерий и микроорганизмов. Таблетки для обеззараживания воды пользуются популярностью у владельцев бассейнов. С их помощью вода проходит эффективную очистку за короткий промежуток времени, а такой способ очистки не трудоемок.

Наиболее популярными и востребованными являются такие таблетки, как пантоцид, акватабс, аквабриз, аква-хлор и многие другие.

Обеззараживание воды в полевых условиях

Обеззараживание воды в полевых условиях актуально во время походов, путешествий или непредвиденных ситуациях. Существует множество способов очистки воды в критических условиях без наличия специального оборудования.

Конечно же, наиболее простым и эффективным методом является термическая обработка воды или кипячение. Для этого необходимо наличие посуды и огня. Тщательно прокипяченная вода в большинстве случаев не содержит вредных для здоровья человека бактерий или микроорганизмов.

Однако, разведение костра и кипячение воды не всегда возможны в полевых условиях ввиду всевозможных факторов. Кроме этого, даже кипячение не может на сто процентов гарантировать уничтожение всех вредных бактерий.

Для этого, при отсутствии таблеток, используются альтернативные методы очистки и обеззараживания воды. Наиболее популярным способом придания воде питьевых качеств является использование такого популярного средства для обеззараживания воды, как йод. При приготовлении раствора и определении соотношения долей следует помнить, что при очистке 1 литра воды необходимо приблизительно 10-12 мг йода.

Очень важно не превысить его долю, поскольку попадание большего количества йода в организм человека может привести к ухудшению самочувствия и другим негативным явлениям. Раствор должен настаиваться не менее 30 минут. Для того чтобы извлечь из раствора оставшийся йод, можно воспользоваться обычными хвойными иголками, которые его успешно поглотят.

Как обеззаразить воду с помощью таблеток

Обеззараживание воды с помощью таблеток считается одним из самых современных методов очистки. Таблетки имеют ряд преимуществ, по сравнению с иными способами обеззараживания питьевой воды, которые выражаются в доступности, эффективности и дешевизне. Использование таблеток позволяет уничтожить все вредоносные микроорганизмы и бактерии в достаточно большом объеме воды.

Для обеззараживания жидкости достаточно поместить в нее одну или несколько таблеток на определенное время, которое указывается на упаковке. Обычно оно составляет от 30 минут до 1 часа. Во многом подобные показатели разнятся в зависимости от производителей и состава. Средний промежуток времени между помещением таблетки в воду и пригодности ее к употреблению составляет 30 минут. За это время погибает большинство известных бактерий, а процесс очистки считается завершенным.

Для очистки питьевой воды применяются таблетки небольших размеров, а для обслуживания бассейнов, колодцев и больших резервуаров используются таблетки больших диаметров. Зачастую они помещаются в специальные контейнеры. Таблетки имеют слабый запах хлора.

Следует подчеркнуть, что таблетки могут использоваться только для обеззараживания прозрачной воды, для очистки сточных вод такой способ неприемлем. Средний срок хранения большинства таблеток составляет от 3 до 5 лет, поэтому запасаться ими впрок не рекомендуется.

Многие производители современных таблеток для обеззараживания воды рекомендуют использовать, при возможности, теплую воду. Это обеспечит быстрое растворение таблетки и возможность употребления питьевой воды. Обеззараживающие таблетки для воды продаются в специализированных магазинах.

Установка обеззараживания воды

Современные установки обеззараживания воды предусматривают использование ультрафиолета. Этот способ считается одним из наиболее простых, доступных и эффективных очистки как питьевой воды, так и сточных вод. Обеззараживание ультрафиолетовым излучением не требует дополнительного нагрева или наличия реагентов.

УФ-лучи обладают наибольшими бактерицидными свойствами при длине волны 240 – 280 нм. Ультрафиолет способен уничтожить вредоносные бактерии за короткий промежуток времени, при этом вода без дополнительной обработки может подаваться к непосредственным источникам потребления.

Для отдельной области применения используются специальные установки генерирования УФ-лучей с индивидуальными техническими характеристиками в зависимости от объема обрабатываемой воды. Обеззараживание сточных вод и питьевой воды при помощи ультрафиолета было признано во многих странах как один из наиболее эффективных и рациональных способов очистки.

Многие установки ультрафиолетового обеззараживания воды оснащены современными средствами контроля и управления. Это позволяет качественно работать без постоянного контроля со стороны оператора, осуществлять удаленное управление устройством.

По своей производительности обеззараживание сточных вод зависит от мощности установки и сферы ее применения. Так, наиболее востребованными в быту являются установки с производительностью от 0,25 куб. м. за час работы до 10 куб. м. Модели этого оборудования для промышленных целей могут иметь производительность до 400 куб.м. питьевой воды и 200 куб. м. сточных вод.

  1. Обеззараживание воды в конкретной ситуации требует тщательного изучения условий проведения такого мероприятия, наличия или отсутствия внешних факторов, которые могут повлиять на процесс очистки воды от бактерий или вредоносных микроорганизмов.
  2. Лучшие специалисты в этой области не смогут дать конкретный совет или консультацию без предварительного изучения всех обстоятельств, места забора воды, расположения источника и т. п. Обеззараживание носит комплексный характер и требует участия профильного специалиста. Исключением в данном случае может быть только использование универсальных таблеток для обеззараживания воды.
  3. Для того чтобы узнать, как можно обеззараживать воду, предназначенную для питья, а также ознакомиться с наиболее эффективными средствами, достаточно обратиться к материалам по этому вопросу на страницы тематических сайтов. Многие источники предоставляют подробное описание средств и методов обеззараживания, фото и видео пособия, консультации экспертов и научных сотрудников.
  4. Например, при использовании химических средств для очистки воды, важно обращать внимание на четкое соблюдение пропорций и не допустить передозировку. Такие средства, как йод, марганцовка, серебро и особенно хлор, могут негативно повлиять на здоровье человека. Перекись водорода безвредна, однако, для получения качественного результата необходимо избегать дефицита этого вещества в обрабатываемой воде.
  5. Использование гипохлорита натрия при электролизе больше подходит для промышленных целей, поэтому такой способ обеззараживания воды требует участие и контроль со стороны квалифицированных специалистов.
  6. Для обеззараживания воды в небольших количествах для употребления или приготовления пищи в домашних или полевых условиях рационально использовать простые подручные средства и способы. К ним можно отнести перекись водорода, серебро, марганцовку, йод. Обслуживание домашних бассейнов можно обеспечить при помощи специальных таблеток. Удобны в использовании дома лампы с ультрафиолетовым излучением, с помощью которых ультрафиолетовое обеззараживание воды не уступает по качеству другим способам.
  7. Безусловно, когда речь идет об очистке воды в домашних условиях подразумевается, прежде всего, питьевая вода. Обеззараживание сточных вод в быту бессмысленно и практикуется только в промышленных масштабах. Следует помнить, что воздействие УФ-лучей нежелательно для человека, поэтому на время осуществления процедуры желательно покинуть помещение.

Под понятиями дезинфекции и обеззараживания питьевой воды принято понимать ряд комплексных мероприятий, которые направлены на уничтожение различных вирусов, бактерий, а так же полное или частичное удаление из жидкости химических примесей и других, опасных для здоровья организма веществ. Дезинфекция воды может осуществляться как на специальных инженерно-технических сооружениях в промышленных масштабах, так и для локального обеззараживания в целях быстрого употребления. В данной статье мы рассмотрим основные методы обеззараживания питьевой воды и коротко опишем их особенности.

Перед тем как обеззаразить воду, при выборе средства для обеззараживания воды следует понимать, что полная очистка воды от всех бактерий, минералов сделает ее непригодной для употребления в пищу. Поэтому, выбирая способ для дезинфекции воды, нужно подходить внимательно. Существует несколько способов воздействия на вредоносные для человека микроорганизмы:

  • Химические методы обеззараживания воды (реагентные);
  • Физические методы (безреагентные);
  • Комбинированные методы воздействия на микроорганизмы.

Химический метод включает в себя использование различных реагентов-коагулянтов, добавляемых в воду для обеззараживания. А также к данному методу относится: хлорирование, озонирование, применение серебра, кремния, гипохлорита натрия и других веществ, способных как минимум остановить размножение бактерий, и максимум – полностью от них избавиться.

Физическое, безреагентное воздействие производится с применением уф обеззараживания воды, электроимпульсным и другими способами.

Комбинированные методы включают и химическое и физическое воздействие попеременно. Данные методы считаются наиболее эффективными при обеззараживании и очистке от различных примесей, содержащихся в воде.

Обеззараживание воды химическими способами

При использовании химического метода обеззараживания крайне важно уметь определять или знать точную дозировку, а также необходимое время воздействия вещества на воду.

Необходимая доза определяется как пробным обеззараживанием, так и расчетными методами. Как переизбыток, так и недостаток вещества, способен сделать воду непригодной для использования.

Пример неверной дозировки: Слишком малая доза озона способна убить только часть бактерий и, образовав особые химические соединения, создаст идеальную среду для размножения ранее спящих бактерий.

Для создания длительного эффекта уничтожения микроорганизмов после дезинфекции, как правило, дозу реагента берут с избытком. Однако, такой избыток не должен быть опасным для людей, поскольку большинство реагентов довольно токсичны.

Хлорирование воды

Хлор и его производные до сих пор применяются на территории нашей страны для обеззараживания воды, несмотря на наличие множества современных методов очистки. Данный реагент показывает хорошие характеристики, в плане дезинфицирования, даже при минимальном избытке. Так, при концентрации остаточного хлора в размете 0,5 мг/л, рост патогенных микроорганизмов в соде не происходит.

Однако этот реагент имеет ряд существенных минусов: высокая степень токсичности, мутагенности, канцерогенности. И даже последующая очистка воды активированным углем не способна полностью удалить образовавшиеся хлорные соединения. А если такие воды идут в сток и попадают в грунтовые или речные воды вниз по течению, то степень пагубного воздействия на природу довольно велик.

Использование хлора, в большей степени связано с дешевизной и доступностью этого реагента, и высокой степенью эффективности в отношении патогенной флоры, роста водорослей, ряда грибков. Под его воздействием разрушается сероводород, удаляется железо, марганец. Он обладает способностью обесцвечивать, благодаря чему хлор является основным компонентом большинства отбеливателей.

Диоксид хлора обладает большей степенью воздействия на вирусы и бактерии, чем обычный хлор, однако загрязняет окружающую среду гораздо меньше. Но, этот реагент довольно дорогостоящий и требует приготовления непосредственно на месте применения.

Хлор образовывает, так называемые тригалометаны (производные метана), которые обладают сильным канцерогенным воздействием на организм человека, приводя к росту раковых клеток. А при кипячении воды, под воздействие высоких температур, происходит образование диоксина – очень сильного яда.

В результате исследования ученых из разных стран показали, что сам хлор и его производные могут вызывать всевозможные нарушения и болезни внутренних органов людей со стороны: ЖКТ, сердечно-сосудистой системы, печени, почек. Разрушают белок в организме, вызывают атеросклероз, гипертонию, всевозможные виды аллергических проявлений. Пагубно воздействуют на кожу и волосы.

Озонирование воды

Озонирование, путем разложения частиц озона в воде, образует атомарный кислород. В результате разрушается ферментная система клетки микробов. Кроме этого окисляется часть соединений, что вызывает довольно неприятный запах, ускоряется коррозия металла (в том числе кухонной утвари, водопроводных систем и т.д.). Поэтому, при применении озона, нужна точная дозировка.

При этом, данный метод считается самым лучшим из химических, обеспечивающих максимально быстрое и безопасное для окружающей среды и человека обеззараживание воды.

Для этого метода нужна специальная дорогостоящая аппаратура, большой расход электроэнергии, а также высококвалифицированное обслуживание. Все это делает данный дорогостоящий способ дезинфекции применимым, в основном, в централизованном водоснабжении.

Связано это с тем, что озон опасен в процессе производства, взрывоопасен и токсичен. Поэтому крайне важно высококлассное профессиональное обслуживание такого оборудования или установок.

Кроме того, последние исследования показали, что одного только озонирования недостаточно для качественной дезинфекции воды, так как после его воздействия начинается разложение фенольных групп гуминовых веществ. Эти вещества способствуют активации ранее «спящих» микроорганизмов.

Транспортируется вода, обработанная озоном, в специальных емкостях из отдельных видов пластмассы, асбестоцемента, бетона и др. Пред тем, как пустить такую воду по трубам и другим металлическим емкостям, необходимо выждать период распада озона.

Антисептики, полимерные реагенты

Обеззараживание полимерными реагентами, относящимися к полимерным антисептикам – это отдельный способ очистки воды. Биолаг – самый известный из этого класса реагентов. В сравнении с озоном и хлором Биолаг имеет ряд преимуществ:

  • Не наносит вреда здоровью;
  • Не оказывает местного раздражения на кожу и слизистую;
  • Не вызывает аллергических реакций;
  • После очистки у воды отсутствует вкус, запах и цвет;
  • Не портит ткань (купальных костюмов);
  • Не оказывает коррозийного действия на металлические поверхности;
  • Обладает долговременным эффектом дезинфекции.

Другие реагенты

Дезинфекция с помощью реагентов требует определенных специфических знаний, так как в данном методе важна тонность дозировки и других расчетов. Используются разнообразные соединения тяжелых металлов, таких как йод, бром и др. Такой метод выделяют отдельно, как олигодинамическое обеззараживание воды.

При использовании благородных металлов для очистки воды, например с помощью серебра, происходит не полное обеззараживание, а временное сдерживание роста числа бактерий. Кроме того при данном методе крайне важно соблюдать дозировку, так как серебро имеет свойство накапливаться в человеческом организме и очень медленно и тяжело выводится.

Другие, более редко встречающиеся реагенты, такие как сильные окислители (гипохлорит натрия), применяются в тех случаях, когда показатели воды часто изменяются и крайне не стабильны. Примером нестабильности воды может служить наличие в ней органических веществ, планктона. По химико-бактерицидным свойствам гипохлорит натрия подобен хлору, но при этом не так вреден для человеческого организма и окружающей среды, обладает длительным бактерицидным действием. Получают данный реагент путем электролиза 2-4% раствора хлорида натрия (поваренной соли) или минерализованных вод.

Недостатком данного метода считается то, что на удаление соли из воды уходит гораздо больше энергетических затрат, чем на хлорирование. Однако неоспоримым преимуществом можно назвать безопасность для человека и окружающей среды.

Обеззараживание воды физическими методами

К физическим методам относят воздействие ультразвуком, обеззараживание воды ультрафиолетом и другими методами. При этом проводится предварительная фильтрация, коагуляция воды, с целью удаления взвесей, яиц гельминтов и различных микроорганизмов.

Очистка УФ-лучами

Для уф обеззараживания воды высчитывают объем жидкости, чтобы рассчитать необходимые затраты энергии. Для обеспечения эффективности необходимо рассчитать мощность излучения и время воздействия, а также учесть степень зараженности биоорганизмами (число микробов на 1 мл воды).

Определяют наличие БГКП (индикаторные бактерии, относящиеся к группе кишечной палочки). Данные бактерии присутствуют в воде, загрязненной фекальными массами, и обладают крайне высокой сопротивляемостью к любым процессам обеззараживания. По нормам СанПиН 2.1.4.1074-01, максимально допустимое число колифомных бактерий не должно быть больше 50 на 100 мл жидкости.

Обеззараживание ультрафиолетом эффективнее воздействует на различные биоорганизмы, чем хлор. А с методом озонирования, по эффективности очистки, уф обеззараживание примерно равно по эффективности.

Лучи ультрафиолета воздействуют на ферментные системы клеток бактерий и на клеточный обмен. УФ-лучи способны уничтожить вегетативные и споровые бактерии, в борьбе с которыми другие методы мало эффективны. При этом не изменяется вкус, цвет и запах воды, не образуются токсические вещества, не возможна передозировка воздействия.

Однако данный метод имеет свой недостаток – отсутствие последействия. При этом имеется неоспоримый плюс - небольшие установки индивидуального пользования по себестоимости процесса стоят в одном ряду с хлорированием, и дешевле, чем озонирование. Что делает данный метод применимым для использования в частных домах.

Чтобы этот обеззараживающий метод сохранял свою эффективность, нужно следить за чистотой кварцевых ламп, на которых могут скапливаться минеральные солевые отложения. Чтобы решить эту проблему в воду добавляют пищевую кислоту (уксус, лимонную), и данный раствор запускают в циркуляцию по системе. В частности уксус очень хорошо справляется с проблемой солевых отложений. Также можно применить механическую очистку поверхности ламп.

Стоит отметить, что обработка воды с помощью ультрафиолета проводится только после предварительной очистки воды от способных экранировать лучи веществ. Длина волн излучения может колебаться от 200 до 295 нм, однако наиболее часто используется оптимальная величина – 260 нм, при которой активно разрушается цитоплазма клеток. Срок службы одной УФ-лампы составляет порядка несколько тысяч часов непрерывной работы.

На сегодняшний день, ультрафиолетовое излучение – это самый эффективный дезинфицирующий воду способ.

Обработка воды ультразвуком

Обработка воды при помощи ультразвука основано на физическом явлении –кавитации, то есть способности образовывать пустоты, создающие разницу в давлении. Такой диссонанс ведет к гибели бактерий в результате разрыва клеточных оболочек. Этот эффект зависит от степени интенсивности звуковых колебаний.Установки по очистке ультразвуком требуют квалифицированного обслуживания и довольно дорогостоящие.

Магнитострикционные или пьезоэлектрические установки создают частоту звука в 48 000 Гц. При более низких частотах рост бактерий не только не останавливается, но и усиливается, поэтому точность настройки и качественное обслуживание такого оборудования обязательны. Воды кипячением

Обеззараживание воды кипячением

Кипячение – самый популярный и распространенный бытовой способ дезинфекции воды в ходе которого (в зависимости от длительности процесса) погибает огромное количество болезнетворных организмов: бактерии, бактериофаги, вирусы и др. Также устраняются газы, растворенные в воде, уменьшается жесткость (рН), при этом вкусовые качества практически не изменяются.

Комплексные методы очистки воды

Комплексный подход к очистке включает в себя и реагентные методы, и безреагентные методы. Продезинфицировать воду можно, например, сначала УФ-лучами, а затем, обеззараженный объем жидкости, обработать хлором. В результате устраняются вредоносные микроорганизмы, и исключается вторичное заражение.

Комбинированные методы экономят средства, затрачиваемые на реагенты, и улучшают состояние воды.

Подобным образом продезинфицировать воду можно сначала озоном, а затем провести хлорирование. В этом случае, содержание в воде токсичных соединений содержащих хлор резко снижается.

Фильтрование показывает хорошие результаты только в случае, когда обеззараживаемый объем воды проходит через ячейки, меньшие по размеру, чем микроорганизмы. А если учесть, что большинство бактерий имеют размер около 1 микрона, а вирусы еще меньшими габаритами, то, чтобы обеззараживать воду, фильтрующие элементы должны иметь поры 0,1-0,2 мкм.

Системы типа «Пурифайер», включают в себя сразу несколько систем очистки воды с довольно эффективной системой фильтрации. Такое оборудование имеет широкий спектр применения и пользуется популярностью, как в домашних условиях, так и в офисных помещениях.

Новые системы обеззараживания воды

Относительно новые средства обеззараживания воды: электроимпульсный и электрохимический метод. Суть заключается в том, что воду пропускают через диафрагменный электрохимический реактор, который разделен металлокерамической мембраной. Эта мембрана способна проводить ультрафильтрацию на катодную и анодную область. После подачи тока в анодные и катодные камеры, образуется щелочной и кислый растворы, и, как следствие, электролитическое образование, так называемый активный хлор. Такое средство для обеззараживания воды способно обеспечитьбыструю гибель почти всех вредоносных микроорганизмов.

Метод электроимпульсного воздействия способен обеззараживать электрическим зарядом, после которого возникает ударная волна сверхвысокого давления и световое излучение. В результате образовывается озон, который оказывает губительное действие на микроорганизмы.

Новые способы очистки достаточно дорогостоящие и не применимы в бытовых домашних условия ввиду сложности протекающих процессов и необходимости постоянного квалифицированного обслуживания.

Обратите внимание! Санитарные нормы не подразумевают полного уничтожения всех микроорганизмов, содержащихся в воде. Требуется удаление и обезвреживание только опасных для человека бактерий, вирусов и других включений, способных вызывать нарушения со стороны здоровья. Полностью стерильная вода так же не менее вредна для человека, как и зараженная бактериями.

Прежде чем проводить дезинфекцию и делать выбор того или иного способа очистки, необходимо предварительно сделать анализ на степень загрязнения воды: минеральными, биологическими соединениями и микроорганизмами. По результатам анализа подбирается оптимальный вариант качественной дезинфекции и очистки воды.

Загрузка...