domvpavlino.ru

Ограничения для работы петли 4 20 ма. Интерфейсы токовой петли. Проектирование токовой системы

Юрий Курцевой (Maxim Integrated)

Высокоинтегрированный аналоговый формирователь сигнала токовой петли 4-20 мА MAX 12900 производства Maxim Integrated может конвертировать ШИМ сигнал микроконтроллера, который не обладает встроенным ЦАП, в сигнал петли 4 20мА для двух- , трех- или четырех проводных конфигураций .

Токовая петля 4…20 мА на сегодняшний день является одним из наиболее популярных методов передачи данных во многих отраслях промышленности. Благодаря своей устойчивости к помехам при передаче сигнала от передатчика к приемнику она идеально подходит для таких задач. Другое преимущество – относительная простота и бюджетность метода. Хотя, конечно, необходимость контроля за падением напряжения в некоторых участках цепи и за рядом других параметров часто приводит к усложнению схемы и увеличению стоимости решения. В таблице 1 обобщаются преимущества и недостатки метода передачи данных на основе токовой петли 4…20 мА.

Таблица 1. Преимущества и недостатки токовой петли 4…20 мА

Преимущества Недостатки
Основной стандарт во многих отраслях промышленности Одной токовой петле соответствует только один канал передачи данных
Возможность передачи значения только одной переменной
Простота в подключении и настройке Для одновременной работы нескольких каналов данных (для передачи значений нескольких переменных) требуется создать столько же токовых петель. Но использование большого количества проводов может приводить к проблемам с контурами заземления, если независимые петли не изолированы должным образом.
Сигнал не деградирует с увеличением дистанции Проблемы, связанные с изоляцией каналов, возрастают с увеличением количества каналов
Меньшая чувствительность к помехам
Отсутствие тока указывает на ошибку в канале передачи данных

Все датчики с интерфейсом 4…20 мА, в зависимости от конфигурации, могут быть разделены на три группы:

  1. двухпроводной (питаемый петлей) датчик 4…20 мА;
  2. трехпроводной датчик 4…20 мА;
  3. четырехпроводной датчик 4…20 мА.

Наиболее удобной конфигурацией является решение, питаемое петлей. Однако если сам датчик потребляет более 3…4 мА из бюджета петли 4…20 мА, то для его функционирования придется использовать дополнительный источник питания. При подключении таких датчиков придется использовать 4-проводную конфигурацию. 3-проводная конфигурация является упрощенной версией предыдущей, в которой объединен положительный вывод питания датчика с токовой петлей (рисунок 1б). На рисунке 1 показаны все описанные выше конфигурации. В таблице 2 приводятся преимущества и недостатки каждого из них.

Таблица 2. Преимущества и недостатки датчиков с разными схемами подключения

Конфигурация 2-проводная 3-проводная 4-проводная
Преимущества Не нужен локальный блок питания; малая стоимость; подходит для работы в агрессивных условиях Экономичнее варианта с четырьмя проводами; простота реализации; возможность использования устройств индикации и других устройств, требующих дополнительного питания; возможность использовать мощные выходы, реле Внешнее питание; возможность передавать переменный сигнал; изоляция цепи питания; возможность использования устройств индикации и других устройств, требующих дополнительного питания; возможность использовать мощные выходы, реле
Недостатки Падение напряжения на участках петли может вызвать проблемы; имеются ограничения по потреблению схемы Отсутствие изоляции петли питания; линии питания и петли нужно реализовывать с осторожностью Более высокая стоимость; больше проводов; неприменим в агрессивной среде эксплуатации

Применение MAX12900 в схемах датчиков с 2-, 3- или 4-проводными конфигурациями токовой петли

MAX12900 – это высокоинтегрированный аналоговый формирователь сигнала с ультрамалым потреблением для датчиков с передатчиком 2…20 мА. В его компактный корпус встроено 10 модулей:

  • LDO-преобразователь с широким входным диапазоном напряжений;
  • цепи обработки ШИМ-модулированных сигналов для двух входов;
  • два малопотребляющих операционных усилителя с малым дрейфом;
  • один операционный усилитель с малым дрейфом напряжения смещения и широкой полосой пропускания;
  • два диагностических компаратора;
  • контроллер включения с выходом индикации хорошего качества питания (power-good выход);
  • источник опорного напряжения с малым дрейфом.

Ключевое преимущество MAX12900 в том, что он может конвертировать ШИМ-сигнал микроконтроллера, который не обладает встроенным ЦАП, в сигнал петли 4…20мА для двух-, трех- или четырехпроводных конфигураций. Таким образом он является эквивалентом совокупности малопотребляющего ЦАП с высоким разрешением, обработчика ШИМ-сигнала, двух цепей обработки и активного фильтра с интегрированным малопотребляющим операционным усилителем. Две цепи обработки сигналов обеспечивают стабильную ШИМ-амплитуду, несмотря на колебания амплитуды сигнала, изменения температуры и напряжения питания. Усилитель с широкой полосой пропускания в сочетании с дискретным транзистором преобразует входное напряжение в выходной ток и позволяет использовать HART® и FOUNDATION Fieldbus H1 модуляцию сигнала. Благодаря ОУ с малым напряжением смещения и источнику опорного напряжения с низким дрейфом обеспечивается минимальный уровень ошибки в широком диапазоне температур. Малопотребляющий ОУ и компараторы являются блоками для создания продвинутых диагностических систем. Мониторинг шины питания, измерение выходного тока и детектирование разрыва цепи – вот некоторые примеры диагностических возможностей таких систем. Все это, наряду с высокой точностью и малым общим потреблением делает MAX12900 идеальным устройством для интеллектуальных датчиков с интерфейсом токовая петля.

Применение MAX12900 в качестве 2-проводного передатчика (питание через токовую петлю)

На рисунке 2 показана упрощенная блок-схема и модель того, как MAX12900 может быть сконфигурирован в качестве части датчика с питанием через петлю. Такая конфигурация требуется для систем, работающих в агрессивных средах, она должна соответствовать директиве ATEX Directive 94/9/EC и получить сертификат IECEx. Такая реализация схемы датчика возможна только в случаях, когда передатчик потребляет менее 4 мА. ШИМ-сигналы, генерируемые микроконтроллером, поступают на специальные цепи нормирования и обработки ШИМ-сигнала, встроенные в MAX12900. С использованием одного из встроенных операционных усилителей и внешней RC-цепи можно создать фильтр низких частот. Для конвертирования напряжения в ток используются внешние транзисторы.

На рисунке 3 показана реализация на уровне электрической принципиальной схемы двухпроводной токовой петли, питающей сенсор (обратите внимание, что весь выделенный бирюзовым цветом блок интегрирован в MAX12900).

Одни из наиболее распространенных датчиков такого типа – это датчики температуры. Давайте попробуем спроектировать передатчик датчика температуры на базе MAX12900 с применением прецизионной термопары и специализированного преобразователя сигнала термопары (MAX31856). MAX31856 обрабатывает сигнал с термопары и передает данные по интерфейсу SPI. Таким образом, чтобы считывать показания с датчика и генерировать ШИМ-сигналы для MAX12900, необходимо использовать микроконтроллер. В отладочном комплекте MAX12900EVKIT для этой задачи применяется микроконтроллер STM32L071 . Ключевой момент в такой схеме – оценить бюджет по потребляемой мощности для наихудших сценариев (максимальные потребления тока для всех рабочих значений температуры и напряжения). На основе этого можно принять решение о применении той или иной конфигурации токовой петли: двух-, трех- или четырехпроводной.

В соответствии с техническим описанием MAX12900EV, общее потребление малопотребляющего микроконтроллера и MAX12900 составляет 3,5 мА для худшего случая. MAX31856 потребляет максимум 2 мА при напряжении питания 3,3 В (таблица 3). Таким образом общее потребление превышает 4 мА, а это значит, что реализовать двухпроводной передатчик не представляется возможным.

Таблица 3. Потребление компонентов датчика температуры

Применение MAX12900 в схеме трехпроводного передатчика

Исключив возможность использовать двухпроводное решение, посмотрим, какова возможность проектирования трехпроводной схемы. Первое, что следует иметь в виду – это возможность применения только одного положительного вывода питания и для передачи данных, и для питания схемы. Напряжение 24 В (от ПЛК) является слишком высоким для микроконтроллера и MAX31856, для работы которых требуется напряжение 3,3 В. Существует несколько подходов решения этой проблемы. Первый – это использовать для преобразования 24 В в 3,3 В DC/DC-преобразователь, например, MAX17550 , как это изображено на рисунке 4. MAX17550 является ультракомпактным синхронным понижающим DC/DC-преобразователем с высоким КПД и выходным током до 25 мА. Для изоляции датчика/МК ШИМ-интерфейса с MAX12900 используется цифровой двухканальный изолятор MAX12930 . На рисунке 4 компоненты в пунктирном квадрате находятся в изолированным домене питания с плавающей землей, которая отличается от земли ПЛК.

Другой подход к решению проблемы с питанием – использовать линейный преобразователь напряжения с ультрамалым током покоя MAX15006AATT+ , который может обеспечить напряжение 3,3 В с током нагрузки до 50 мА, как это показано на рисунке 5.

Вторая проблема, о которой нужно помнить при разработке таких датчиков – плавающая земля передатчика. Датчик сам по себе, микроконтроллер и MAX12900 – передатчик для обмена данными – должны иметь общую шину земли. В то же самое время потенциал этой земли является плавающим потенциалом по отношению к земле ПЛК. Состояние плавающей земли зависит от передаваемых данных и уровня нагрузки петли. Для решения этой проблемы применяются несколько подходов, например использование двухканального малопотребляющего MAX12930 (как показано на рисунке 4) для изоляции PWMA- и PWMB-входов от передатчика.

Альтернативный подход заключается в том, чтобы использовать активную схему, которая занимается постоянным мониторингом и управляет общим уровнем земли микроконтроллера и датчика. Такой вариант реализации становится возможным и удобным благодаря присутствию ОУ общего назначения, а именно – OP2, интегрированного в MAX12900. Для этой схемы также требуется использовать внешний n-канальный MOSFET-транзистор с малым напряжением управления Q3 и PNP-транзистор общего назначения Q4, чтобы согласовать падения напряжения на RLOAD и RSENSE.

Применение MAX12900 в схемах с четырехпроводным передатчиком

Мы рассмотрели, как MAX12900 может быть применен в двух- и трехпроводных передатчиках. Реализация четырехпроводного решения по сравнению с ними очень проста, поскольку для датчика и ПЛК имеются отдельные контуры питания и земли.

Заключение

Ультрамалопотребляющий аналоговый формирователь сигнала MAX12900 производства компании Maxim Integrated для передатчиков 4…20 мА предлагает непревзойденный уровень гибкости в различных приложениях и идеально подходит для использования в промышленных датчиках для систем контроля и автоматизации, сигналы которых необходимо преобразовать в сигнал токовой петли 4…20 мА.

При автоматизации технологических процессов используются различные датчики и исполнительные устройства. И те и другие так или иначе связаны с контроллерами или модулями ввода/вывода, которые получают от датчиков измеренные значения физических параметров и управляют исполнительными устройствами.

Представьте, что все устройства, присоединяемые к контроллеру имели бы различные интерфейсы — тогда производителям пришлось бы «плодить» огромное количество модулей ввода-вывода, а для того, чтобы заменить, например, неисправный датчик, нужно было бы искать точно такой же.

Именно поэтому, в системах промышленной автоматики принято унифицировать интерфейсы различных устройств.

В этой статье мы расскажем об унифицированных аналоговых сигналах. Поехали!

Унифицированные аналоговые сигналы

С аналоговыми сигналами мы имеем дело при измерении любых физических величин (температуры, влажности, давления и т.д.), а так же при непрерывном управлении исполнительными устройствами (регулирование скорости вращения двигателя с помощью преобразователя частоты; управление температурой с помощью нагревателя и т.д.).

Во всех перечисленных и им подобных случаях используются аналоговые (непрерывные) сигналы.

В контроллерном оборудовании в подавляющем большинстве случаев используются два типа аналоговых сигналов: токовый 4-20 мА и сигнал напряжения 0-10 В.

Унифицированный сигнал напряжения 0-10 В

При использовании этого типа сигнала для получения информации с датчика весь его (датчика) диапазон делится на диапазон напряжения 0-10 В. Например, датчик температуры имеет диапазоны -10…+70 °С. Тогда при -10 °С на выходе датчика будет 0 В, а при +70 °С — 10 В. Все промежуточные значения находятся из пропорции.

Это же верно для любого другого устройства. Например, если аналоговый выход частотного преобразователя настроен на передачу текущей скорости вращения двигателя — тогда 0 В у него на выходе означает, что двигатель остановлен, а 10 В, что двигатель крутится на максимальной частоте.

Управление сигналом 0-10 В

С помощью унифицированного сигнала напряжения можно не только получать данные о физических величинах, но и управлять устройствами. Например, можно привести в нужное положение, изменить скорость вращения электродвигателя через частотный преобразователь или мощность нагревателя.

Возьмём для примера электродвигатель, частотой вращения которого управляет частотный преобразователь.

Частоту вращения двигателя задаёт контроллер сигналом 0-10 В, приходящим на аналоговый вход частотника.Частота вращения двигателя двигателя может быть от 0 до 50 Гц. Тогда, если в соответствии с алгоритмом контроллер собирается раскрутить двигатель на 25 Гц, он должен подать на вход частотника 5В.

«Токовая петля»: унифицированный аналоговый сигнал 4-20 мА

Аналоговый сигнал 4-20 мА (ещё называют «токовая петля») так же как сигнал напряжения 0-10 В используется в автоматике для получения информации от датчиков и управления различными устройствами.

По сравнению с сигналом 0-10 В сигнал 4-20 мА имеет ряд преимуществ:

  • Во-первых, токовый сигнал можно передать на большие расстояния в сравнении с сигналом 0-10 В, в котором происходит падение напряжения на длинной линии, обусловленное сопротивлением проводников.
  • Во-вторых, легко диагностировать обрыв линии, т.к. рабочий диапазон сигнала начинается от 4 мА. Поэтому если на входе 0 мА — значит на линии обрыв.

Управление сигналом 4-20 мА

Управление различными устройствами с помощью токового сигнала ничем не отличается от управления с помощью сигнала напряжения. Только в данном случае нужен уже источник не напряжения, а тока.

Если устройство имеет управляющий вход 4-20 мА, то таким устройством может управлять контроллер или другое интеллектуальное устройство, имеющее соответствующий выход.

Например, мы хотим плавно открывать вентиль, имеющий электропривод со входом 4-20 мА. Если подать на вход сигнал тока 4 мА, тогда вентиль будет полностью закрыт, а если подать 20 мА — полностью открыт.

Активный и пассивный аналоговый выход 4-20 мА

Зачастую аналоговый выход датчика, контроллера или другого устройства — пассивный, то есть не может являться источником тока без внешнего питания. Поэтому при проектировании схемы автоматики нужно внимательно изучить характеристики аналоговых выходов используемых устройств, и если они пассивные — добавить в схему внешний источник питания для пропитки токовой петли.

На рисунке представлена схема подключения датчика с выходом 4-20 мА к измерителю-регулятору с соответствующим входом. Поскольку выход датчика пассивный — требуется его пропитка внешним блоком питания.

При измерении физической величины (температуры, влажности, загазованности, pH и др.) датчики преобразуют её значение в ток, напряжение, сопротивление, ёмкость и т.д. (в зависимости от принципа работы датчика). Для того, чтобы привести выходной сигнал датчика к унифицированному сигналу используют нормирующие преобразователи.

Нормирующий преобразователь — устройство, приводящее сигнал первичного преобразователя к унифицированному сигналу тока или напряжения.

Так выглядит датчик температуры с нормирующим преобразователем:

Благодаря устойчивости к электромагнитным помехам, создаваемым электромоторами, контакторами, реле и другими источниками, управляющие токовые петли, особенно, популярная петля 4-20 мА, применяются во многих промышленных приложениях. У стандартных технологических контроллеров часто есть выходы 4-20 мА (иногда 0-20 мА), используемые для управления скоростью, давлением, температурой и другими параметрами в системах с замкнутым контуром регулирования.

Сделать схему приемника сигнала 4-20 мА не очень сложно. Существует несколько доступных компонентов, разработанных специально для этой цели. Однако цена этих компонентов, приобретаемых в небольших количествах, оказалась несколько выше, чем я ожидал (свыше $10).

В поисках более дешевой альтернативы я обнаружил выпускаемую микросхему . Это исключительно универсальный дифференциальный усилитель с единичным усилением и широким диапазоном напряжений питания. Используя сдвоенную версию усилителя (INA2134) и совсем немного точных резисторов, я сделал схему приемника 4-20 мА, которая стоит меньше $2.60.

Схема на Рисунке 1 моделировалась в MultiSim 8 с использованием микросхемы INA134. (Переназначение выводов для INA2134 никаких трудностей не вызывает). Моделирование выполнялось для источника переменного тока со средним значением 12 мА, изменяющегося с частотой 10 Гц, пиковая амплитуда которого 8 мА обеспечивала размах выходного сигнала от 4 мА до 20 мА. Здесь можно использовать любое разумное значение частоты, но в типичных системах петля 4-20 мА обычно управляет медленными процессами.

Одна из секций INA2134 используется для смещения выходного напряжения. Показанные на схеме однопроцентные резисторы и прецизионные внутренние резисторы с лазерной подгонкой микросхемы INA2134 обеспечивают достаточно точное смещение +2 В. Схема работает от одного источника питания 24 В, и это смещение ей необходимо, чтобы выходное напряжение не опускалось слишком близко к шине земли. (В технической документации указано, что выходное напряжение должно быть на 2 В выше напряжения отрицательной шины питания и на 2 В ниже напряжения положительной шины).

На резисторе 150 Ом с допуском 1%, включенном между входами усилителя, падает 0.6 В при токе 4 мА и 3 В при токе 20 мА. С учетом смещения 2 В это дает диапазон выходных напряжений то 2.6 В до 5 В (Рисунок 2). В моем устройстве это напряжение оцифровывается аналого-цифровым преобразователем (АЦП). Выход АЦП подключен к небольшому микроконтроллеру, управляющему процессом преобразования.

Обратите внимание, что при изменении входного тока от 0 мА до 20 мА выходное напряжение меняется в диапазоне от 2.0 В до 5.0 В. Простой заменой резисторов разработчики могут выбрать другой выходной диапазон, подходящий для конкретного приложения. Напряжение источника питания можно увеличить до 36 В. В случае двуполярного питания (до ±18 В) смещение не требуется, и в схеме можно использовать одиночный усилитель INA134 с одним входным резистором, благодаря чему ее стоимость становится меньше $1.60.

Калибратор токовой петли РЗУ-420 предназначен для задания унифицированных сигналов тока 4…20 мА в процессе испытания систем автоматики, а также для контроля величины тока и напряжения. Питание токового контура может осуществляться как от испытываемой системы, так и от прибора.

Исполнение прибора - переносное, с автономным питанием от батарей. Возможно также питание прибора от сети 220 В с применением внешнего сетевого адаптера.

Прибор имеет интуитивно понятный интерфейс и прост в использовании. Широкая функциональность РЗУ-420, эргономичность и невысокая стоимость делают его незаменимым для наладчика АСУ ТП при проведении пуско-наладочных работ. Использование РЗУ-420 позволяет существенно сократить время пуско-наладки.

Калибратор токовой петли РЗУ-420 прошел всестороннее тестирование в условиях реальной работы и получил положительные оценки во всех технических проверках и тестах.

Возможности РЗУ-420

  • Одновременное отображение на дисплее задания тока с точностью до тысячной доли мА и отображение выходного задания в процентах от шкалы 4…20 мА с точностью до десятой доли процента.
  • Диапазон задания тока: 0…25 мА (по шкале с линейной зависимостью).
  • РЗУ-420 имеет возможность измерять такие параметры токовой петли, как ток I и напряжение U.
  • Прибор может работать как от внешнего источника питания, так и от встроенного. Переключение режимов производится нажатием клавиши на панели прибора с постоянным отображением выбранного режима питания на дисплее.
  • Прибор позволяет производить как плавное задание тока с дискретностью 0,1 % шкалы, так и пошаговое задание тока каждые 1 мА. Также РЗУ-420 позволяет генерировать сигнал 4…20 мА в режиме функционального задания : меандр, пила, треугольник, синусоида. Переключение режима задания производится клавишей на лицевой панели прибора с постоянным отображением выбранного режима на дисплее.
  • Прибор имеет индикацию обрыва токовой петли. При обрыве токовой петли загорается сообщение «обрыв» на ЖК-индикаторе.
  • Прибор имеет индикацию состояния батареи питания, постоянно отображаемую на дисплее, что позволяет рассчитать предполагаемое время работы от данного комплекта батарей.
  • Дисплей прибора оснащен подсветкой для возможности работы в условиях с недостаточной освещенностью.
  • Максимальная основная погрешность задания/измерения составляет всего ±0,1 %.
  • Корпус прибора выполнен из ударопрочного пластика с уровнем пылевлагозащиты IP20.
  • Имеется сертификат средства измерения.

Нижний Новгород

Данная статья является продолжением серии публикаций в журнале ИСУП, посвященных нормирующим *, **, *** ****. Статья «Преобразование подобного в подобное в системах измерения и управления» (ИСУП. 2012. № 1) была посвящена нормирующим , которые преобразуют унифицированные сигналы на входе в унифицированные сигналы на выходе.

Почему именно сигнал 4…20 мА?

Широкое распространение токового унифицированного сигнала 4…20 мА объясняется следующими причинами:
- на передачу токовых сигналов не оказывает влияния сопротивление соединительных проводов, поэтому требования к диаметру и длине соединительных проводов, а значит, и стоимость, снижаются;
- токовый сигнал работает на низкоомную (по сравнению с сопротивлением источника сигнала) нагрузку, поэтому наведенные электромагнитные помехи в токовых цепях малы по сравнению с аналогичными цепями, в которых используются сигналы напряжения;
- обрыв линии передачи токового сигнала 4…20 мА однозначно и легко определяется измерительными системами по нулевому уровню тока в цепи (в нормальных условиях он должен быть не меньше 4 мА);
- токовый сигнал 4…20 мА позволяет не только передавать полезный информационный сигнал, но и обеспечивать электропитание самого нормирующего преобразователя: минимально допустимого уровня 4 мА достаточно для питания современных электронных устройств.

Характеристики преобразователей токовой петли 4…20 мА

Рассмотрим основные характеристики и особенности, которые необходимо учитывать при выборе . В качестве примера приведем нормирующие преобразователи НПСИ-ГРТП, выпускаемые научно-производственной фирмой «КонтрАвт» (рис. 2).


Рис. 2. Внешний вид НПСИ-ГРТП - выпускаемых НПФ «КонтрАвт» преобразователей с гальваническим разделением 1, 2, 4 каналов токовой петли

Предназначены для выполнения всего лишь двух основных функций:
- измерение активного токового сигнала 4…20 мА и преобразование его в такой же активный токовый сигнал 4…20 мА с коэффициентом преобразования 1 и с высоким быстродействием;
- гальваническое разделение входных и выходных сигналов токовой петли.

Основная погрешность преобразования НПСИ-ГРТП составляет 0,1 %, температурная стабильность - 0,005 % / °C. Рабочий диапазон температур - от -40 до +70 °C. Напряжение изоляции - 1500 В. Быстродействие - 5 мс.

Варианты подключения к источникам активных и пассивных сигналов показаны на рис. 3 и 4. В последнем случае требуется дополнительный источник питания.



Рис. 3. Подключение преобразователей НПСИ-ГРТП к активному источнику


Рис. 4. Подключение преобразователей НПСИ-ГРТП к пассивному источнику с применением дополнительного блока питания БП

В системах измерения, где необходимо разделение входных сигналов, источником входного сигнала, как правило, являются измерительные датчики (ИД), а приемниками - вторичные измерительные приборы (ИП) (регуляторы, контроллеры, регистраторы и пр.).

В системах управления, где требуется разделение выходных сигналов, источниками являются управляющие устройства (УУ) (регуляторы, контроллеры, регистраторы и пр.), а приемниками - исполнительные устройства (ИУ) с токовым управлением (мембранные исполнительные механизмы (МИМ), тиристорные регуляторы, частотные преобразователи и пр.).

Примечательно, что для преобразователя НПСИ-ГРТП, выпускаемого , не требуется отдельное питание. Он запитывается от входного активного источника тока 4…20 мА. При этом на выходе также формируется активный сигнал 4…20 мА, и дополнительного источника в выходных цепях не требуется. Поэтому решение на базе разделителей токовой петли, которое используется в НПСИ-ГРТП, является весьма экономичным.

Выпускаются три модификации преобразователя: . Они различаются по количеству каналов (1, 2, 4 соответственно) и конструктивному исполнению (рис. 2). Одноканальный преобразователь размещен в малогабаритном узком корпусе шириной всего 8,5 мм (габариты 91,5 × 62,5 × 8,5 мм), двухканальный и четырехканальный - в корпусе шириной 22,5 мм (габариты 115 × 105 × 22,5 мм). Преобразователи с гальванической развязкой применяются в системах с десятками и сотнями сигналов, для этих систем размещение такого количества преобразователей в конструктивных оболочках (шкафах) становится важнейшей проблемой. Ключевым фактором здесь является ширина одного канала преобразования вдоль DIN-рельса. в 1-, 2‑ и 4‑канальном исполнениях имеют предельно малую «ширину канала»: 8,5, 11,25 и 5,63 мм соответственно.

Следует обратить внимание, что в многоканальных модификациях НПСИ-ГРПТ2 и НПСИ-ГРТП4 все каналы полностью не связаны между собой. С этой точки зрения работоспособность одного из каналов никак не влияет на работу других каналов. Вот почему один из аргументов против многоканальных преобразователей - «сгорает один канал, а перестает работать весь многоканальный прибор, и это резко понижает безопасность и устойчивость системы» - не работает. Зато такое важное положительное свойство многоканальных систем, как более низкая «цена канала», проявляется в полной мере. Двух- и четырехканальные модификации преобразователей снабжены винтовыми разъемными соединителями, которые облегчают их монтаж, техническое обслуживание и ремонт (замену).

В ряде задач требуется подать сигнал 4…20 мА на несколько гальванически изолированных приемников. Для этого можно применить как одноканальные преобразователи НПСИ-ГРТП1, так и многоканальные НПСИ-ГРТП2 и НПСИ-ГРТП4. Схемы соединения приведены на рис. 5.



Рис. 5. Применение одноканальных и двухканальных преобразователей для размножения сигнала «1 в 2»

Для удобства монтажа и обслуживания подключение внешних соединений в одноканальной модификации производится пружинными клеммными соединителями, а в двух- и четырехканальных - разъемными винтовыми соединителями.



Рис. 6. Подключение внешних линий с помощью разъемных клеммных соединителей

Таким образом, новую линейку преобразователей для разделения токовой петли 4…20 мА, представленную НПФ «КонтрАвт», можно вполне обоснованно назвать компактным и экономичным решением, способным конкурировать по совокупности характеристик с соответствующими импортными аналогами. Преобразователи предоставляются в опытную эксплуатацию, поэтому пользователь имеет возможность опробовать устройства в работе, оценить их характеристики и принять взвешенное решение о целесообразности их применения.
____________________________

Загрузка...