domvpavlino.ru

Определение прочности бетона методом отрыва. Метод отрыва со скалыванием. Процедура проведения исследований прочности бетона

Все документы, представленные в каталоге, не являются их официальным изданием и предназначены исключительно для ознакомительных целей. Электронные копии этих документов могут распространяться без всяких ограничений. Вы можете размещать информацию с этого сайта на любом другом сайте.

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО
СО 100% ГОСУДАРСТВЕННЫМ КАПИТАЛОМ

«КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКОЕ БЮРО БЕТОНА И ЖЕЛЕЗОБЕТОНА»
ОАО «КТБ ЖБ»

СТАНДАРТ ОРГАНИЗАЦИИ

БЕТОНЫ
ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ МЕТОДОМ ОТРЫВА СО СКАЛЫВАНИЕМ

СТО 02495307-005-2008

Москва 2008 г.

Предисловие

Цели и задачи разработки, использования стандартов организаций в РФ установлены Федеральным законом от 24 декабря 2002 г. № 184-ФЗ "О техническом регулировании", а правила разработки и оформления ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения" и ГОСТ Р 1.4-2004 "Стандартизация в Российской Федерации. Стандарты организаций. Общие положения".

Сведения о стандарте

1. РАЗРАБОТАН И ВНЕСЕН ОАО "Конструкторско-технологическое бюро бетона и железобетона". (Генеральный директор канд. техн. наук А.Н. Давидюк, гл. инженер Е.С. Фискинд, исполнители: Н.В. Волков, А.А. Гребеник)

3. УТВЕРЖДЕН и ВВЕДЕН В ДЕЙСТВИЕ приказом генерального директора ОАО "КТБ ЖБ" от 14 мая 2008 г. № 24-к.

4. ВВЕДЕН впервые.

ВВЕДЕНИЕ

Метод отрыва со скалыванием занимает в ряду неразрушающих методов определения прочности бетона особое место. Считаясь неразрушающим методом, метод отрыва со скалыванием по своей сущности является разрушающим методом, так как прочность бетона оценивается по усилию, необходимому для разрушения небольшого объема бетона, что позволяет наиболее точно оценить его фактическую прочность. Поэтому этот метод применяется не только для определения прочности бетона неизвестного состава, но и может служить для построения градуировочных зависимостей для других методов неразрушающего контроля.

В настоящем стандарте учтены особенности метода отрыва со скалыванием при проведении испытаний бетона в бетонных и железобетонных конструкциях и оценке прочности бетона этих конструкций.

СТАНДАРТ ОРГАНИЗАЦИИ

БЕТОНЫ ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ МЕТОДОМ ОТРЫВА СО СКАЛЫВАНИЕМ

TYPES OF CONCRETE STRENGTH DESIGN METHOD OF SEPARATION WITH SPELLING EFFECT

1. Область применения

Настоящий стандарт распространяется на тяжелые бетоны и конструкционные бетоны на легких заполнителях в монолитных и сборных бетонных и железобетонных изделиях, конструкциях и сооружениях (далее - конструкциях) и устанавливает метод испытания бетона и определения его прочности на сжатие путем местного разрушения бетона при вырыве из него специального анкерного устройства (далее - метод отрыва со скалыванием). Метод позволяет определить прочность на сжатие для бетонов в диапазоне прочностей от 5,0 до 100,0 МПа. При разработке стандарта использованы материалы ГОСТ 22690-88 .

2. Нормативные ссылки

В настоящем стандарте использованы следующие нормативные документы и инструкции:

4.3. Метод отрыва со скалыванием предназначен для определения прочности бетона в конструкциях: при натурных обследованиях; при освидетельствовании на этапах строительства, приемки, эксплуатации и реконструкции строительных объектов, а также при изготовлении сборных изделий на предприятиях производства ЖБИ.

4.4. Метод отрыва со скалыванием применяется для построения градуировочных зависимостей и корректировки в натурных условиях градуировочных зависимостей для других неразрушающих методов определения прочности бетона путем параллельных испытаний бетона на одних и тех же участках конструкций.

4.5. Результат определения прочности бетона методом отрыва со скалыванием не зависит от состояния поверхности испытываемого бетона (неровности, шероховатости, влажности, загрязненности, наличия покраски). В случае, если поверхность конструкции офактурена, необходимо на участках испытания снять слой штукатурки или другой облицовки на площади не менее 250×250 мм.

4.6. Испытания бетона в конструкции следует производить при положительной температуре бетона на участке испытания.

5. Средства контроля

I - рабочий стержень с анкерной головкой;

II - самозаанкеривающееся устройство с применением рифленых сегментных щек и разжимного конуса;

III - самозаанкеривающееся устройство с применением рифленых сегментных щек и полого разжимного конуса со стержнем для опирания прибора, используемого для вырывания анкерного устройства.

Типы и размеры анкерных устройств даны на рис. 1. Глубина заделки анкерных устройств и характер разрушения бетона - на рис. 2.

5.2. Анкерное устройство типа I предназначено для установки в процессе бетонирования.

Конструкция анкера типа II и III должна обеспечить предварительное (до приложения нагрузки) обжатие стенок шпура на глубине захвата и не допустить проскальзывания сегментных щек.

5.3. Допускается применение других типов анкерных устройств, обеспечивающих их надежное сцепление с бетоном конструкции, при условии определения коэффициента пропорциональности т 2 по пункту 7.9.

5.5. Марка стали анкерного устройства и его сечение должны быть приняты такими, чтобы напряжение в нем при испытании бетона не превышало 70% от предела текучести стали.

5.6. Приборы для вырыва анкерных устройств совместно с фрагментами бетона должны обеспечивать:

Направление усилия вырыва по оси анкера и равномерное возрастание нагрузки до отрыва фрагмента бетона или до заданного контрольного уровня Р=Р контр .;

Плавное нагружение анкерного устройства со скоростью возрастания нагрузки не более 3 кН/сек (для ГПНВ-5 -10 атм/сек) и не менее 1 кН/сек (для ГПНВ-5 - 10 атм за 3 сек);

Свободный вырыв бетона;

Измерение значения усилия вырыва с погрешностью не более ±2%.

5.7. При испытании бетона в строительной конструкции опоры прибора

должны отстоять от оси приложения нагрузки на расстояние не менее удвоенной глубины заделки анкера (2 h ) и иметь возможность регулирования по высоте.

5.8. Приборы должны проходить ведомственную поверку не реже одного раза в два года, а также после каждого ремонта или смены манометра. Результаты поверки оформляются документально.

Рис 1 Анкерные устройства

1 - рабочий стержень , 2 - рабочий стержень с разжимным конусом , 3 - рабочий стержень с

полым разжимным конусом , 4 - опорный стержень , 5 - щеки сегментные рифленые


Рис 2 Глубина забелки анкерных устройств ( h ) и характер разрушения бетона при его испытании

Таблица 1

Условие твердения бетона

Тип анкерного устройства

Предполагаемая прочность бетона, МПа

Глубина заделки анкерного устройства, мм

Значение коэффициента m 2 для бетона

тяжелого

Естественное

Тепловая обработка

6. Подготовка испытаний

6.1. Выбирают тип и размер анкера, глубину заделки ( h ) и соответствующее нагружающее устройство, исходя из сведений о предполагаемой прочности бетона и о максимальном размере крупного заполнителя, соблюдая условия пунктов . и . и табл. 1.

6.2. Анкерные устройства типа I устанавливают в конструкции до их бетонирования или сразу после этого, а анкера типов II и III - в проделанные в конструкциях шпуры, заданного диаметра и глубины.

6.3. Если расположение арматуры неизвестно, то ее необходимо выявить с помощью магнитных приборов типа ИЗС (ГОСТ 22904-93).

6.4. Заделка анкерных устройств должна обеспечивать надежное сцепление анкера с бетоном конструкции. Глубина заделки ( h ) анкерных устройств различных типов, показанная на рис. 2, должна соответствовать величинам, приведенным в таблице 1.

6.5. Диаметр шпура в бетоне не должен превышать максимальный диаметр заглубляемой части анкерного устройства (см. рис. 1) более чем на 1 мм, а ось шпура должна быть перпендикулярна поверхности бетона и ее отклонение не должно превышать 1:20 глубины шпура. Для анкера типа III глубина шпура должна строго соответствовать требованиям инструкции к прибору.

Для устройства шпуров применяются ударно-вращательные инструменты. При малых объемах испытаний допускается ручная пробивка шпуров с помощью шлямбура. Стенки шпуров очищают от песка и пыли.

6.6. В зимних условиях перед испытанием бетон, имеющий отрицательную температуру, отогревают в месте испытания до положительной температуры и на глубину не менее 50 мм. Отогрев бетона может производиться тепловым излучением с помощью обогревателей, либо пламенных горелок (газовых и паяльных ламп). При этом прогрев бетона должен выполняться медленно, чтобы избежать появление трещин в бетоне от быстрого или чрезмерного нагрева. Температура прогревания должна быть не более 50°С - 70°С. Участки прогрева бетона рекомендуется принять диаметром в 1,5 раза превышающим диаметр площади, необходимой для проведения испытаний.

7. Проведение испытаний и определение прочности бетона в конструкциях

7.1. При установке анкеров типов II и III с помощью гайки-тяги обеспечивают предварительное (до приложения прибором нагрузки) обжатие стенок шпура сегментными щеками анкерных устройств. Для уменьшения возможности проскальзывания анкера при приложении нагрузки рекомендуется между рабочим стержнем разжимного конуса анкера и внутренней поверхностью рифленых сегментных щек прокладывать полоски фторопластовой пленки толщиной ~ 0,2 - 0,3 мм.

7.2. Прибор соединяют с анкерным устройством. Нагружающее устройство приводят в рабочее положение, силоизмеритель - в нулевое. С помощью регулируемых ножек выбирают начальный зазор, добиваясь соосности осей анкера и оси захвата нагружающего устройства.

7.3. При проведении испытания необходимо следить за тем, чтобы не происходило проскальзывание анкерного устройства во время приложения нагрузки. Для фиксации возможного проскальзывания анкера на начальной стадии процесса испытания следят за выступающей из бетона частью анкерного устройства, а также за возможным, в процессе нагружения, скачкообразным снижением давления в гидросистеме до момента вырыва анкерного устройства с бетоном.

7.4. Результаты испытания не учитывают, если:

а) анкерное устройство проскользнуло при испытании, и величина проскальзывания превысила 0,1 h Н ;

б) в зоне вырыва имеются зерна крупного заполнителя, наибольшие размеры которого превышают ограничения, установленные в п. .;

в)произошло одностороннее скалывание бетона в направлении ближайшего ребра (грани) изделия или конструкции;

д) наибольший и наименьший размеры вырванной части бетона, равные расстоянию от анкерного устройства до границ разрушения по поверхности конструкции, отличаются один от другого более чем в три раза.

7.5. Результаты испытаний, полученные с нарушениями, отмеченными в п.п. "г" и "д" пункта 7.4., могут рассматриваться только для ориентировочной оценки прочности бетона.

7.6. Если при контроле прочности бетона одной партии или конструкции получены единичные результаты, отличающиеся от других результатов в меньшую сторону более чем на 25%, то испытания на этом участке нужно повторить.

7.7. Прочность бетона на сжатие R в испытываемом участке определяется по усилию вырыва из конструкции анкерного устройства с фрагментом бетона. При этом прочность бетона R , МПа, вычисляют по формуле

R = m 1 m 2 m 3 Р (1)

где Р - усилие вырыва анкерного устройства, кН;

m 1 - коэффициент, учитывающий максимальный размер крупного заполнителя в зоне вырыва и принимаемый равным 1 при крупности заполнителя менее 50 мм и 1,1 при крупности 50 мм и более;

m 2 - коэффициент пропорциональности для перехода от усилия вырыва, кН, к прочности бетона на сжатие в МПа.

m 3 - коэффициент, учитывающий величину фактической глубины вырыва.

7.8. При испытании тяжелого бетона прочностью 10 МПа и более и легкого бетона прочностью более 5 МПа с заполнителем из керамзита или шлаковой пемзы в случае использования анкерных устройств, указанных в п. ., и соблюдения условий табл. 1, значения коэффициента пропорциональности m 2 принимают по этой же таблице.

7.9. Допускается устанавливать опытным путем в соответствии с п. 7.10. коэффициент пропорциональности m 2 для бетонов и анкерных устройств, не предусмотренных п. . и п. .

7.10. При испытании современных бетонов с прочностью > 50 МПа, а также при применении анкерных устройств отличных от типов I , II , III , рекомендуется коэффициент m 2 корректировать или устанавливать опытным путем. Для этого из бетона того же состава, приготовленного по той же технологии и при том же режиме твердения, что и подлежащие контролю конструкции, изготовляют не менее 15 серий образцов. Каждая серия должна состоять из трех образцов-кубов для испытания на прессе и трех образцов размерами 150×300×500 мм, предназначенных для осуществления двух вырывов. Для каждой серии определяют среднее значение прочности бетона R i и усилие вырыва P i . Значение коэффициента т 2 вычисляют по формуле

где n - количество серий.

7.11. Среднюю квадратическую погрешность ( S t ) определения прочности бетона для случаев, предусмотренных п. . и п.7.8., принимают равной: 4% - для анкеров с глубиной заделки 48 мм; 5% - для анкеров с глубиной заделки 35 мм; и 6% - для анкеров с глубиной заделки 30 мм.

Для легких бетонов средние квадратические погрешности нужно увеличить на 20%.

7.12. Величину фактической глубины вырыва h ф учитывают коэффициентом m 3 . Если при испытании отклонение h ф от нормированной глубины вырыва к н находится в пределах 5% (см. п. .), то коэффициент m 3 вычисляют по формуле

7.13. При испытании бетона в элементах круглого сечения и сферических элементах необходимо учитывать уменьшение (при выпуклой поверхности) или увеличение (при вогнутой) фактической глубины вырыва по сравнению с глубиной вырыва на плоской поверхности. Усилие вырыва на криволинейной поверхности умножается на коэффициент m 4 , равный квадрату отношения глубины номинальной h H (на плоской поверхности) к глубине фактической h ф на сферической поверхности или к глубине номинально - теоретической h н теор для цилиндрической поверхности. Глубина фактическая и глубина номинально - теоретическая зависят от радиуса кривизны поверхности и глубины заложения анкера и определяются графически или аналитически. Для цилиндрических поверхностей величина коэффициента m 4 определяется по формуле

7.14. Число и расположение контролируемых участков в конструкциях назначают с учетом:

Количества и вида подлежащих обследованию конструкций;

Задач контроля (определение фактического класса бетона, распалубочной или отпускной прочности, для построения градуировочных зависимостей и корректировки в натурных условиях градуировочных зависимостей для других косвенных методов неразрушающего определения прочности бетона и др.);

Вида конструкций (колонны, балки, плиты и др.);

Размещения захваток и порядка бетонирования конструкций.

7.15. Участки конструкций, предназначаемые для испытаний бетона, должны располагаться, по возможности, в зонах наименьших напряжений, вызываемых эксплуатационной нагрузкой или усилием обжатия предварительно напряженной арматурой.

7.16. Участки для испытания бетона должны располагаться так, чтобы в зону вырыва не попадала арматура, а бетон участка не имел видимых повреждений (отслоений, растрескивания, пористости и др.).

7.17. На участке испытания толщина конструкции должна превышать глубину установки анкерного устройства более чем в два раза. Расстояние от места установки анкера до ближайшей грани (края) конструкции или от технологического шва перерыва бетонирования должно превышать глубину заделки анкера не менее чем в три раза, а от места установки соседнего анкерного устройства - не менее чем в пять раз.

7.18. При обследовании сборных бетонных и железобетонных конструкций, а также монолитных конструкций в случае, когда нельзя выделить конструкции, относящиеся к одной партии, контроль прочности бетона проводят в соответствии с СП 13-102-2003 .

7.19. На предприятиях производства сборных бетонных и железобетонных конструкций и при приемке сборных конструкций на строительной площадке для контроля отпускной, передаточной или проектной прочности бетона на сжатие проводят испытания не менее трех участков в одной или нескольких конструкциях, относящихся к одной партии для каждого этапа набора прочности. В партию входят конструкции, изготовленные из бетона одного класса (марки) в одну смену.

7.20. В монолитных конструкциях при контроле методом отрыва со скалыванием распалубочной прочности бетона провопят испытание одной конструкции не менее чем в 3-х участках или по одному испытанию не менее чем в 3-х конструкциях, относящихся к одной партии бетона. При контроле бетона в проектном возрасте проводят испытание не менее чем 3-х конструкций по 2 участка в каждой или по одному участку не менее чем в 6-ти конструкциях, относящихся к одной партии бетона. В партию входят монолитные конструкции или часть конструкции, изготовленные (забетонированные) в течение одних суток.

7.21. При контроле отдельных конструкций число участков измерений прочности должно быть не менее 3-х в каждой конструкции.

7.22. При корректировке методом отрыва со скалыванием градуировочных зависимостей для других неразрушающих методов определения прочности бетона проводят не менее 3-х параллельных испытаний косвенным методом и методом отрыва со скалыванием в каждой партии бетона.

7.23. Прочность бетона в партии R m , МПа, вычисляют по формуле

где R i - единичное значение прочности бетона, МПа;

n - общее число единичных значений прочности бетона в партии.

За единичное значение прочности бетона принимают прочность бетона в контролируемом участке или среднюю прочность бетона конструкции. Указания по выбору единичного значения прочности при испытанииметодом отрыва со скалыванием приведено в приложении 2 ГОСТ 18105-86 .

7.24. Статистическая оценка класса бетона проводится в соответствии с настоящего стандарта.

8. Оформление результатов

8.1. Результаты испытаний оформляют документально, например, в виде j заключения.

8.2. В заключении приводят:

Данные об испытанных конструкциях с указанием проектного класса, даты бетонирования и проведения испытаний;

Данные о числе участков испытания бетона и их размещении;

- прочность бетона участков и среднюю прочность бетона партии (захватки) или конструкции, класс бетона.

8.3. Результаты испытаний представляют в табличной форме, в которой указывают вид конструкций, проектный класс бетона, возраст бетона каждого контролируемого участка.

Форма таблицы приведена в .

8.4. В заключении приводят обработку полученных результатов с указанием фактического класса бетона.

Приложение 1.
(рекомендуемое)
Оценка класса бетона

1. Условный класс бетона по прочности на сжатие определяют при контроле прочности бетона сборных и монолитных конструкций по формуле

где R m - средняя прочность бетона в МПа участка или группы конструкций по результатам испытания методом отрыва со скалыванием.

К T - коэффициент требуемой прочности, принимаемый по табл. 2 ГОСТ 18105-86 в зависимости от коэффициента вариации прочности бетона

V n = S m /R m

где S m - среднее квадратическое отклонение прочности.

В случае, когда за единичное значение прочности принимают прочность бетона контролируемого участка конструкции, коэффициент К T умножают на 0,95.

Среднее квадратическое отклонение прочности бетона в конструкциях или партии конструкций в случае, когда за единичное значение прочности принимается прочность бетона на контролируемом участке, вычисляют по формуле

где R i - прочность бетона отдельного участка конструкции, испытанного методом отрыва со скалыванием.

n - количество участков.

В тех случаях, когда в качестве единицы прочности бетона может быть принята средняя прочность бетона конструкции, вычисленная как среднее арифметическое значение прочности контролируемых участков конструкций, среднее квадратическое отклонение прочности бетона S m вычисляют с учетом средних квадратических погрешностей градуировочной зависимости по формуле

где S T - средняя квадратическая погрешность градуировочной зависимости, МПа, метода отрыва со скалыванием и принимается: при анкерном устройстве с глубиной заделки 48 мм - 0,04 от средней прочности бетона R m ;

С глубиной заделки 35 мм - 0,05 от средней прочности;

С глубиной заделки 30 мм - 0,06 от средней прочности;

Р - число контролируемых участков в конструкции;

n - число проконтролированных конструкций в партии.

2. При обследовании конструкций класс бетона по прочности на сжатие определяется по формуле

где R m - средняя прочность бетона по результатам испытаний.

t a - коэффициент Стьюдента (см. таблицу 2).

V - коэффициент вариации прочности бетона, определяемый по формуле (7).

Значение коэффициента Стьюдента t a при обеспеченности 0,95

(одностороннее ограничение).

Таблица 2

Число испытаний

Число испытаний

Определение прочности бетона является очень важным фактором. Эксплуатационные параметры данного материала зависят именно от этого качества. Прочностью является способность противостоять внешним агрессивным средам и механическим силам. При строительстве и обследовании конструкций из железобетона прочность на сжатие — самый контролируемый параметр.

Дефектоскоп предназначен для определения времени распространения ультразвуковых колебаний в бетоне. Удобен для определения качества бетона строящихся и эксплуатируемых зданий и там, где затруднен двусторонний доступ к проверяемым сооружениям.

Существует огромное количество методов контроля, которые используются на практике. Самый достоверный — определение по испытанию конструкции после того, как набрана проектная прочность. Способ испытания контрольных образцов дает возможность сделать оценку качества смеси, но не прочности в конструкции. Вызвано это невозможностью обеспечить аналогичные условия набора прочности (нагрев, вибрирование) для бетонных кубиков и бетона в конструкции. Способы контроля по классификации ГОСТ 18105-2010 делятся на 3 группы.

Методы определения прочности:

  1. Разрушающие.
  2. Прямые неразрушающие.
  3. Косвенные неразрушающие.

К первой группе относят метод контрольных образцов, а также метод определения прочности вследствие испытания тех образцов, которые были отобраны из конструкций. Последний способ является базовым и его считают более достоверным и точным. Но при испытании его используют очень редко. Самыми главными причинами являются значительное нарушение целостности конструкции и большая стоимость исследований.

Именно по показателю прочности при сжатии определяется класс бетона. Кубики раздавливают гидравлическим прессом, а он выдает результат.

Зачастую используются методы неразрушающего контроля. Но большая часть работ делается косвенными методами. На сегодня самыми распространенными выступают ультразвуковой способ по ГОСТ 17624-87, метод ударного импульса и метод упругого отскока по ГОСТ 22690-88. При использовании этих методов очень редко соблюдают требования стандартов по построению градуировочных зависимостей. Некоторые просто не знают таких требований. Остальные знают, но не понимают величину ошибки результатов измерений при использовании зависимости, прилагаемой к прибору, вместо зависимости, которая построена на исследуемом бетоне.

Существуют мастера, которые знают об указанных требованиях норм, но не обращают на них внимания и ориентируются на финансовую выгоду и на то, что заказчик ничего не понимает в данном вопросе.

О факторах, которые влияют на неправильное измерение прочности без построения градуировочных зависимостей, существует достаточно информации.

В таблице 1 показаны данные о максимальной погрешности измерений разными методами.

Название способа

Диапазон использования, МПа

Погрешность измерения

Пластической деформации

Ударного импульса

Упругого отскока

Нет данных

Отрыва со скалыванием

Нет данных

Скалывания ребра

Нет данных

Ультразвуковой

В дополнение к проблеме использования несоответствующих зависимостей добавляется еще одна, которая возникает при обследовании. По требованиям СП 13-102-2003 снабжение выборки параллельных исследований бетона прямым и косвенным методами на более 30 участках необходимо, но недостаточно, чтобы построить и использовать градуировочную зависимость.

Нужно, чтобы зависимость, которая получена парным корреляционно-регрессивным анализом, имела достаточно высокий коэффициент корреляции (больше 0,7) и низкое среднеквадратическое отклонение (меньше 15% средней прочности). Для того чтоб это условие было выполнено, точность измерений двух контролируемых параметров должна быть высокой, а прочность, который строит зависимость, должна меняться в достаточно широком диапазоне.

В приборе установлен молоток, который вдавливает шарик в бетон и по его отскоку определяется прочность бетона, показатели высвечиваются на дисплее.

Когда выполняется исследование конструкций, данные условия соблюдаются редко. Первым моментом является то, что базовый метод испытания часто сопровождается большой погрешностью. Вторым — то, что из-за неоднородности бетона прочность поверхностного слоя может не совпадать с прочностью того же участка на некоторой глубине. Если бетонирование имеет хорошее качество и бетон соответствует проектному классу, в пределах одного объекта редко встречаются однотипные конструкции с прочностью, которая изменяется в широком диапазоне. К примеру, от В20 до В60. Поэтому зависимость нужно строить по выборке измерений с небольшим изменением параметра, который исследуется.

Если не нарушать требования действующих норм для определения прочности при исследовании, нужно применять прямые неразрушающие либо разрушающие методы контроля.

Теперь подробнее о прямых методах контроля. К ним относят 3 метода по ГОСТ 22690-88:

  • метод отрыва;
  • метод отрыва со скалыванием;
  • метод скалывания ребра.

Список необходимых инструментов:

  • прибор для метода отрыва с диском для приклеивания;
  • анкеры;
  • дюбели;
  • электронный блок;
  • датчики;
  • эталонный металлический стержень.

График увеличения прочности во времени: линия А — вакуумной обработка; линия В — естественное твердение; С — увеличение прочности (в %) бетона после вакуумной обработки.

Определение прочности методом отрыва

Этот метод основан на измерении максимального усилия, которое необходимо для отрыва сегмента конструкции. Отрывающая нагрузка применяется к ровной поверхности конструкции, которая испытывается благодаря приклеиванию стального диска, который имеет тягу для соединения с прибором. Для приклеивания можно использовать разнообразные клеи на эпоксидной основе. В ГОСТ 22690-88 рекомендуют клеи ЭД20 и ЭД16 с цементным наполнением.

На сегодняшний день можно использовать современные двухкомпонентные клеи, производство которых хорошо налажено. В литературе, посвященной испытанию, методика испытания подразумевает приклеивание диска к участку исследования без дополнительных мер по ограничению зоны отрыва. Площадь отрыва непостоянная и ее необходимо определять после каждого испытания. В заграничной практике перед исследованием участок отрыва ограничивается бороздой, которая создается кольцевыми сверлами. В таком случае площадь отрыва является постоянной и известной. Именно это увеличивает точность измерений.

После отрыва фрагмента и после определения усилия определяют прочность бетона на растяжение (Rbt). По ней с помощью пересчета по эмпирической зависимости можно определить прочность на сжатие (R). Можно воспользоваться такой формулой:

Rbt = 0,5∛(R^2)

Для метода отрыва можно применять разные приборы, которые используют для метода отрыва со скалыванием. Это ПОС-50МГ4, ОНИКС-ОС, ПИБ и старые аналоги — ГПНВ-5, ГПНС-5. Чтобы провести испытание, необходимо наличие захватного устройства, которое соответствует тяге, расположенной на диске.

Способ отрыва со скалыванием

Устанавливают анкерное устройство после отвердения бетона в высверленное отверстие, а потом его вырывают с куском

Такой метод имеет много общего с методом, который описан выше. Главное различие — это способ крепления к материалу. Для приложения отрывающего усилия используют лепестковые анкеры разных размеров. При исследовании конструкций анкеры укладываются в шпур, пробуренный на участке измерения. Точно так же, как и при методе отрыва, измеряется разрушающее усилие (P). Переход к прочности на сжатие делается по указанной в ГОСТ 22690 зависимости:

где m1 — коэффициент, который учитывает максимальный размер большого заполнителя, а m2 — коэффициент перехода к прочности на сжатие, который зависит от вида бетона и условий затвердевания.

В России этот метод наиболее распространен вследствие своей универсальности (табл.1), относительной легкости и возможности испытания на любом участке конструкции. Главные ограничения для его применения: густое армирование и толщина исследуемой конструкции. Эта толщина должна быть больше, чем удвоенная длина анкера. Для выполнения исследований нужно использовать прибор для метода отрыва с диском для приклеивания к бетону.

По сравнению с методом отрыва в данном случае не обязательно наличие ровной поверхности. Важное условие: кривизна поверхности должна быть достаточной, чтобы установить прибор на тягу анкера.

Надо ударить по поверхности не менее 5 раз, а затем по размерам отпечатков и с помощью тарировочной таблицы определяется прочность.

Скалывание ребра

Последний прямой метод неразрушающего контроля — метод скалывания ребра. Главное его отличие заключается в том, что прочность определяется по усилию (P), которое необходимо для скалывания участка конструкции, расположенному на ребре с внешней стороны.

Недавно была разработана конструкция прибора, позволяющая установить его на исследуемый элемент с наличием одного внешнего ребра. Укрепление осуществляется к одной поверхности испытываемого элемента с помощью анкера с дюбелем. Это новшество несколько расширило диапазон применения прибора. Но вместе с этим и аннулировало главное преимущество метода скалывания, заключавшееся в отсутствии нужды сверления и потребности в источнике электроэнергии.

Прочность на сжатие с использованием метода скалывания ребра определяют по нормированной зависимости:

R = 0,058 * m * (30P + P2),

где m — коэффициент, который учитывает крупность заполнителя.

Ультразвуковое определение

Действие приборов ультразвукового контроля основано на связи, существующей между скоростью распространения ультразвуковых волн по материалу и его прочностью. В зависимости от способа прозвучивания различают две градуировочные зависимости:

  • скорость распространения волн — прочность;
  • время распространения волн ультразвука — прочность бетона.

Показания данного прибора неразрушающего метода используют для корректировки показаний приборов, действующих методом ударного импульса и ультразвуковым методом.

Метод сквозного прозвучивания в поперечном направлении используется для сборных линейных конструкций. Ультразвуковые преобразователи при таких исследованиях инсталлируются с двух противоположных сторон контролируемой конструкции.

Поверхностным прозвучиванием исследуют ребристые, плоские, многопустотные плиты перекрытия, стеновые панели. Волновой преобразователь инсталлируется с одной стороны конструкции.

Чтобы получить надежный акустический контакт между испытуемой конструкцией и рабочей поверхностью ультразвукового преобразователя, используют вязкие контактные материалы типа солидола. Можно установить «сухой контакт» с использованием конусных насадок и протекторов. Ультразвуковые преобразователи устанавливаются на расстоянии не меньше 3 см от края конструкции.

Приборы для ультразвукового контроля прочности состоят из электронного блока и датчиков. Датчики бывают раздельными или объединенными для поверхностного прозвучивания.

Определение прочности молотком Кашкарова

Испытания молотком Кашкарова необходимо выполнять в соответствии с ГОСТ 22690.2-77. Метод применяется для того, чтобы определить прочность в диапазоне 5-50 МПа. В местах исследования поверхность конструкции должна быть ровной. Если поверхность шероховатая и есть краска, то она зачищается металлической щеткой.

По подготовленной поверхности наносится удар средней силы. Его необходимо наносить перпендикулярно к испытываемой поверхности. В результате удара получаются одновременно 2 отпечатка — на поверхности бетона и на эталонном металлическом стержне. После каждого последующего удара эталонный металлический стержень перемещают в отверстие корпуса молотка не меньше чем на 10 мм, чтобы отпечатки были на одной линии. Удары наносят через листы копировальной белой бумаги. Отпечатки на бумаге и эталонном стержне вымеряют угловым масштабом с точностью до 0,1 мм.

Для каждой выполненной серии отпечатков одной области делают сумму диаметров всех полученных отпечатков отдельно на бетоне и на эталонном стержне. За косвенную характеристику прочности бетона принимают среднюю величину отношения измеренных отпечатков в одной области на бетоне и эталонном стержне.

Прочность бетона — важнейшая характеристика, которая применяется при проектировании и расчете конструкций для строительства различных сооружений. Она задается маркой М (в кг/см²) или классом В (в МПа) и выражает максимальное давление сжатия, которое выдерживает материал без разрушения.

При определении марочной прочности бетона строительные организации и изготовители конструкций должны руководствоваться требованиями нормативных документов — ГОСТ 22690-88, 28570, 18105-2010, 10180-2012. Они регламентируют методику проведения испытаний, обработку результатов.

Затвердевшая в условиях строительной площадки бетонная смесь может давать отличные от лабораторных результаты. Помимо качества цемента и заполнителей на характеристику влияют:

  • условия транспортировки;
  • способ укладки в опалубку;
  • размеры и форма конструкции;
  • вид напряженного состояния;
  • влажность, температура воздуха на всем протяжении твердения смеси;
  • уход за монолитом после заливки.

Качество смеси и ее прочностные характеристики ухудшаются, если при производстве работ совершались грубые нарушения технологии:

  • доставка производилась не в миксере;
  • время в пути превысило допустимое;
  • при заливке смесь не уплотнялась вибраторами или трамбовками;
  • при монтаже была слишком низкая или высокая температура, ветер;
  • после укладки в опалубку не поддерживались оптимальные условия твердения.

Неправильная транспортировка приводит к схватыванию, расслоению и потере подвижности смеси. Без уплотнения в толще конструкции остаются пузырьки воздуха, которые ухудшают качество монолита.

При температуре 15°-25°С и высокой влажности в первые 7-15 суток бетон достигает прочности 70%. Если условия не выдерживаются, то сроки затягиваются. Опасно как охлаждение смеси, так и ее пересушивание. Зимой опалубку утепляют или прогревают, летом поверхность монолита увлажняют, накрывают пленкой.

На заводах ЖБИ осуществляют пропаривание или автоклавную обработку конструкций, чтобы уменьшить время набора прочности. Процесс занимает от 8 до 12 часов.

Чтобы определить, насколько характеристики конструкции соответствуют проектным, а также при обследованиях и мониторинге технического состояния зданий проводят проверку прочности бетона. Она включает лабораторные испытания образцов, неразрушающие прямые и косвенные методы исследования объектов.

Факторы, влияющие на погрешность измерений при контроле и оценке прочности бетона:

  • неравномерность состава;
  • дефекты поверхности;
  • влажность материала;
  • армирование;
  • коррозия, промасливание, карбонизация внешнего слоя;
  • неисправности прибора — износ пружины, слабую зарядка аккумуляторной батареи.

Самый информативный способ проверки бетонных конструкций — изъятие образцов из тела монолита с последующим их испытанием. Такой метод сводит к минимуму ошибки, но достаточно дорог и трудоемок. Поэтому чаще пользуются более доступными исследованиями с помощью приборов, измеряющих зависимые от прочности характеристики — твердость, усилие на отрыв или скол, длину волны. Зная их, можно с помощью переходных формул вычислить искомую величину.

Требования к проверке

С точки зрения заказчика наиболее предпочтительно проводить испытания неразрушающими методами контроля фактической прочности бетона. Сегодня созданы приборы, которые позволяют быстро получить результаты без бурения, высверливания или вырубки образца, портящих целостность конструкции.

Для осуществления контроля и оценки прочности бетона рассматривают три показателя:

  • точность измерений;
  • стоимость оборудования;
  • трудоемкость.

Наиболее дорогими являются испытания кернов на лабораторном прессе и отрыв со скалыванием. Исследования по величине ударного импульса, упругого отскока, пластических деформаций или с помощью ультразвука имеют меньшую затратную часть. Но применять их рекомендуется после установления градуировочной зависимости между косвенной характеристикой и фактической прочностью.

Параметры смеси могут существенно отличаться от тех, при которых была построена градуировочная зависимость. Чтобы определить достоверную прочность бетона на сжатие, проводят обязательные испытания кубиков на прессе или определяют усилие на отрыв со скалыванием.

Если пренебречь этой операцией, неизбежны большие погрешности при контроле и оценке прочности бетона. Ошибки могут достигать 15-75 %.

Целесообразно пользоваться косвенными методами при оценке технического состояния конструкции, когда необходимо выявить зоны неоднородности материала. Тогда правила контроля допускают применение неточного относительного показателя.

Как определить прочность бетона?

В производстве материалов и строительстве применяются методы для испытания бетона на прочность:

  • разрушающие;
  • неразрушающие прямые;
  • неразрушающие косвенные.

Они позволяют с той или иной точностью проводить контроль и оценку фактической прочности бетона в лабораториях, на площадках или в уже построенных сооружениях.

Разрушающие методы

Из готовой смонтированной конструкции выпиливают или выбуривают образцы, которые затем разрушают на прессе. После каждого испытания фиксируют значения максимальных сжимающих усилий, выполняют статистическую обработку.

Этот метод, хотя и дает объективные сведения, часто не приемлем из-за дороговизны, трудоемкости и причинения локальных дефектов.

На производстве исследования проводят на сериях образцов, заготовленных с соблюдением требований ГОСТ 10180-2012 из рабочей бетонной смеси. Кубики или цилиндры выдерживают в условиях, максимально приближенным к заводским, затем испытывают на прессе.

Неразрушающие прямые

Неразрушающие методы контроля прочности бетона предполагают испытания материала без повреждений конструкции. Механическое взаимодействие прибора с поверхностью производится:

  • при отрыве;
  • отрыве со скалыванием;
  • скалывании ребра.

При испытаниях методом отрыва на поверхность монолита приклеивают эпоксидным составом стальной диск. Затем специальным устройством (ПОС-50МГ4, ГПНВ-5, ПИВ и другими) отрывают его вместе с фрагментом конструкции. Полученная величина усилия переводится с помощью формул в искомый показатель.

При отрыве со скалыванием прибор крепится не к диску, а в полость бетона. В пробуренные шпуры вкладывают лепестковые анкеры, затем извлекают часть материала, фиксируют разрушающее усилие. Для определения марочной характеристики применяют переводные коэффициенты.

Метод скалывания ребра применим к конструкциям, имеющим внешние углы — балки, перекрытия, колонны. Прибор (ГПНС-4) закрепляют к выступающему сегменту при помощи анкера с дюбелем, плавно нагружают. В момент разрушения фиксируют усилие и глубину скола. Прочность находят по формуле, где учитывается крупность заполнителя.

Внимание! Способ не применяют при толщине защитного слоя менее 20 мм.

Неразрушающие косвенные методы

Уточнение марки материала неразрушающими косвенными методами проводится без внедрения приборов в тело конструкции, установки анкеров или других трудоемких операций. Применяют:

  • исследование ультразвуком;
  • метод ударного импульса;
  • метод упругого отскока;
  • пластической деформации.

При ультразвуковом методе определения прочности бетона сравнивают скорость распространения продольных волн в готовой конструкции и эталонном образце. Прибор УГВ-1 устанавливают на ровную поверхность без повреждений. Прозванивают участки согласно программе испытаний.

Данные обрабатывают, исключая выпадающие значения. Современные приборы оснащены электронными базами, проводящими первичные расчеты. Погрешность при акустических исследованиях при соблюдении требований ГОСТ 17624-2012 не превышает 5%.

При определении прочности методом ударного импульса используют энергию удара металлического бойка сферической формы о поверхность бетона. Пьезоэлектрическое или магнитострикционное устройство преобразует ее в электрический импульс, амплитуда и время которого функционально связаны с прочностью бетона.

Прибор компактен, прост в применении, выдает результаты в удобном виде — единицах измерения нужной характеристики.

При определении марки бетона методом обратного отскока прибор — склерометр — фиксирует величину обратного движения бойка после удара о поверхность конструкции или прижатой к ней металлической пластины. Таким образом устанавливается твердость материала, связанная с прочностью функциональной зависимостью.

Метод пластических деформаций предполагает измерение на бетоне размеров следа после удара металлическим шариком и сравнение его с эталонным отпечатком. Способ разработан давно. Наиболее часто на практике используется молоток Кашкарова, в корпус которого вставляют сменный стальной стержень с известными характеристиками.

По поверхности конструкции наносят серию ударов. Прочность материала определяется из соотношения полученных диаметров отпечатков на стержне и бетоне.

Заключение

Для контроля и оценки прочности бетона целесообразно пользоваться неразрушающими методами испытаний. Они более доступны и недороги по сравнению с лабораторными исследованиями образцов. Главное условие получения точных значений — построение градуировочной зависимости приборов. Необходимо также устранить факторы, искажающие результаты измерений.

Метод отрыва со скалыванием - один из самых распространённых и надёжных методов оценки прочности бетонных конструкций.

Метод относится к прямым, неразрушающим методам испытаний и позволяет сразу же, на месте, оценить прочность бетонной конструкции, как в промежуточном возрасте, так и при достижении проектного возраста бетона.

Суть метода состоит в просверливании отверстия в бетоне, закреплении в этом отверстии специального анкера (в случае если используется анкер второго и третьего типов) и последующего отрыва этого анкера из бетона специальным прибором с замером усилия вырыва. При правильном проведении испытания на месте отрыва остаётся правильной формы воронка, глубиной в середине равной рабочей высоте анкера.

При отрыве анкера на шкале прибора отображается соответствующее усилие. Проведя несколько замеров (минимум три испытания для плоских конструкций; для вытянутых горизонтальных конструкции одно испытание на четыре погонных метра длины, но не менее трёх испытаний), можно пересчитать результаты испытаний по специальной формуле и сделать вывод о классе бетона на сжатие (ГОСТ 18105 схемы В, Г).

Метод отрыва со скалывание пользуется заслуженной популярностью среди методов контроля прочности бетона, как самостоятельный метод, так и дублирующий другие методы испытаний. Он намного быстрее и дешевле выбуривания кернов, он незаменим в случаях когда не изготовлены образцы-кубы или требуется провести параллельные испытания.

Кроме того, согласно ГОСТ 18105 требуется сплошной контроль бетонных конструкций. И метод отрыва со скалыванием наиболее подходящий для этого метод контроля прочности.

При контроле прочности бетона методом отрыва со скалыванием следует руководствоваться указаниями ГОСТ 22690 .

16 и 24 что это за цифры.

Для метода отрыва со скалыванием используют анкеры трёх типов.

Отличие анкера первого типа от остальных заключается в том, что он замоноличивается в конструкцию при укладке бетонной смеси его отрыв производится в проектном (или промежуточном) возрасте таким же прибором, что и анкеры второго и третьего типов, в остальном же испытания не отличаются.

Анкеры второго типа бывает двух размеров: ø16х25мм и ø24х48мм.

Анкер размером ø24х48мм используется в случае, если ориентировочная прочность бетона в конструкции 5-100МПа.

Анкер размером ø16х25мм используется в случае, если ориентировочная прочность бетона в конструкции 40-100МПа. Использование анкера ø16мм для испытания низкомарочных бетонов недопустимо без построения градуировочной зависимости.

На фотографии представлен анкер второго типа со специальной гайкой, замеряющей проскальзывание анкера.

Чтобы провести испытания правильно и получить максимально точные данные нужно обратить внимание на следующие моменты:

  1. Перед просверливанием отверстия для анкера, следует прибором для поиска арматуры найти и обозначить сетку армирования (чтобы буром не попадать в арматуру), если на пути бура попадается армирующая сетка сверлить нужно в середину ячейки.
  2. Сверлить отверстие нужно, отступив от края плоской конструкции не менее 0,5м.
  3. Отверстие сверлиться строго перпендикулярно бетонной поверхности.
  4. Не следует сверлить конструкции в местах максимального напряжения.
  5. Количество точек испытания определяется следующим образом: три точки испытания на одну плоскую конструкцию (стена, плита перекрытия, ростверк), залитую в одну захватку. Одна точка на 4 погонных метра вытянутой конструкции (колонна, ригель), так же залитую в одну захватку, но не менее трёх точек. Под одной захваткой следует понимать заливку бетонной смеси с одного бетонного узла, одного класса бетона в одни рабочие сутки без перерыва в бетонировании до образования холодного шва. Т.е. если меняется класс бетона, дата бетонирования или завод поставщик смеси, это получается новая захватка, требующая испытания на прочность.
  6. Просверленное отверстие следует тщательно очистить от бетонной пыли. Только после этого нужно поместить собранный анкер в отверстие и максимально хорошо закрутить его гаечным ключом до максимального раскрытия.
  7. При вырыве из бетона анкер должен цепляться за бетон не менее чем 9/10 своей длины погруженной в толщу бетона. Длину сцепления хорошо видно в воронке вырыва после испытания и можно померить линейкой. Если таким замером выясняется, что анкер цепляется менее 9/10 своей длины, это значит, что слизана нарезка губок анкера и губки надо менять на новые.
  8. Если при проведении отрыва анкер начал проскальзывать и вылезать наружу, нужно замерять длину проскальзывания, эта длина вносится в корректировку результатов испытания. Для замера проскальзывания пользуются специальной гайкой (см. фото выше).

Примеры приборов, используемых для испытаний:

Кроме представленных двух, могут использоваться многие другие модели.

В предлагаемой статье рассмотрены основные методы неразрушающего контроля прочности бетона, применяемые при обследовании конструкций зданий и сооружений. Приведены результаты экспериментов по сопоставлению данных, получаемых неразрушающими методами контроля и испытанием образцов. Показывается преимущество метода отрыва со скалыванием перед другими методами контроля прочности. Описываются мероприятия, без выполнения которых применение косвенных неразрушающих методов контроля недопустимо.

Требуется построить градуировочную зависимость?

Мы выполним все расчеты и поможем построить индивидуальную градуировочную зависимость. Напишите нам, заполните форму ниже.

Форма заявки

Прочность бетона на сжатие является одним из наиболее часто контролируемых параметров при строительстве и обследовании железобетонных конструкций. Имеется большое число методов контроля, применяемых на практике. Более достоверным, сточки зрения авторов, является определение прочности не по контрольным образцам (), изготовляемым из бетонной смеси, а по испытанию бетона конструкции после набора им проектной прочности. Метод испытания контрольных образцов позволяет оценить качество бетонной смеси, но не прочность бетона конструкции. Это вызвано тем, что невозможно обеспечить идентичные условия набора прочности (вибрирование, прогрев и др.) для бетона в конструкции и бетонных кубиков образцов.

Методы контроля по классификации разделены на три группы:

  1. Разрушающие;
  2. Прямые неразрушающие;
  3. Косвенные неразрушающие.

К методам первой группы относится упомянутый метод контрольных образцов, а также метод определения прочности путем испытания образцов, отобранных из конструкций. Последний является базовым и считается наиболее точным и достоверным. Однако при обследовании к нему прибегают довольно редко. Основными причинами этого являются существенное нарушение целостности конструкций и высокая стоимость исследований.

Таблица 1. Характеристики методов неразрушающего контроля прочности бетона.

Наименование метода Диапазон применения*, МПа Погрешность измерения**
1 Пластической деформации 5 ... 50 ± 30 ... 40%
2 Упругого отскока 5 ... 50 ± 50%
3 Ударного импульса 10 ... 70 ± 50%
4 Отрыва 5 ... 60 нет данных
5 Отрыва со скалыванием 5 ... 100 нет данных
6 Скалывания ребра 10 ... 70 нет данных
7 Ультразвуковой 10 ... 40 ± 30 ... 50%
* по требованием ГОСТ 17624 и ГОСТ 22690;
** по данным источника без построения частной градуировочной зависимости

В основном применяются методы неразрушающего контроля. При этом большая часть работ выполняется косвенными методами. Среди них наиболее распространенными на сегодняшний день являются ультразвуковой метод по , методы ударного импульса и упругого отскока по . Однако при использовании указанных методов редко соблюдаются требования стандартов по построению частных градуировочных зависимостей. Некоторые исполнители не знают этих требований. Другие знают, но не понимают, насколько велика ошибка результатов измерений при использовании зависимостей, заложенных или прилагаемых к прибору, вместо зависимости, построенной на конкретном исследуемом бетоне. Есть «специалисты», которые знают об указанных требованиях норм,но пренебрегают ими, ориентируясь на финансовую выгоду и неосведомленность заказчика в данном вопросе.

Про факторы, влияющие на ошибку измерения прочности без построения частных градуировочных зависимостей, написано много работ, в том числе приведенные в списке литературы . В табл. 1 представлены данные по максимальной погрешности измерений различными методами, приведенные в монографии по неразрушающему контролю бетона .

В дополнение к обозначенной проблеме использования несоответствующих («ложных») зависимостей обозначим еще одну, возникающую при обследовании. Согласно требованиям обеспечение выборки измерений (параллельных испытаний бетона косвенным и прямым методом) на более чем 30 участках является необходимым, но не достаточным для построения и использования градуировочной зависимости. Необходимо, чтобы полученная парным корреляционнорегрессионным анализом зависимость имела высокий коэффициент корреляции (более 0,7) и низкое СКО (менее 15% от средней прочности). Чтобы данное условие выполнялось, точность измерений обоих контролируемых параметров (например, скорость ультразвуковых волн и прочность бетона) должна быть достаточно высокой, а прочность бетона, по которому строится зависимость, должна изменяться в широком диапазоне.

При обследовании конструкций указанные условия выполняются редко. Во-первых, даже базовый метод испытания образцов нередко сопровождается высокой погрешностью. Во-вторых, за счет неоднородности бетона и других факторов прочность в поверхностном слое (исследуемая косвенным методом) может не соответствовать прочности того же участка на некоторой глубине (при использовании прямых методов). И наконец, при нормальном качестве бетонирования и соответствии класса бетона проектному в пределах одного объекта редко можно встретить однотипные конструкции с прочностью, изменяющейся в широком диапазоне (например, от В20 до В60). Таким образом, зависимость приходится строить по выборке измерений с малым изменением исследуемого параметра.


Рис. 1 . Зависимость между прочностью бетона и скоростью ультразвуковых волн

В качестве наглядного примера вышеуказанной проблемы рассмотрим градуировочную зависимость, представленную на рис.1. Линейная регрессионная зависимость построена по результатам ультразвуковых измерений и испытаний на прессе образцов бетона. Несмотря на большой разброс результатов измерений, зависимость имеет коэффициент корреляции 0,72, что допустимо по требованиям . При аппроксимации функциями, отличными от линейной (степенной, логарифмической и пр.) коэффициент корреляции был менее указанного. Если бы диапазон исследуемой прочности бетона был меньше, например от 30 до 40 МПа (область, выделенная красным цветом), то совокупность результатов измерений превратилась бы в «облако», представленное в правой части рис. 1. Данное облако точек характеризуется отсутствием связи между измеряемым и искомым параметрами, что подтверждается максимальным коэффициентом корреляции 0,36. Иными словами, градуировочную зависимость здесь не построить.

Также необходимо отметить, что на рядовых объектах количество участков измерения прочности для построения градуировочной зависимости сопоставимо с общим количеством измеряемых участков. В данном случае прочность бетона может быть определена по результатам только прямых измерений, а в градуировочной зависимости и использовании косвенных методов контроля уже не будет смысла.

Таким образом, без нарушения требований действующих норм для определения прочности бетона при обследовании в любом случае необходимо в том или ином объеме использовать прямые неразрушающие либо разрушающие методы контроля . Учитывая это, а также обозначенные выше проблемы, далее более подробно рассмотрим прямые методы контроля.

Загрузка...