domvpavlino.ru

Основные части спирального сверла и их назначение. Инструменты для обработки отверстий. Правила при сверлении металла

По конструкции и назначению сверла подразде­ляются на ряд видов: спиральные и специальные (перовые или плоские, для кольцевого сверления, ружейные, комбинированные с другими инструмен­тами, центровочные И Др.).

Для сверления отверстий чаще применяют спи­ральные сверла и реже специальные.

Сверла перовые представляют собой простой ре­жущий инструмент (рис. 94, а). Они применяются глав­ным образом в трещотках и ручных дрелях для свер­ления неответственных отверстий диаметром до 25 мм.

Сверла спиральные с цилиндрическим и коничес­ким хвостовиками (рис. 94, б, в) используются как для ручного сверления, так и при работе на станках (сверлильных, револьверных и др.).

Сверла для глубокого сверления используются на специальных станках для получения точных отверстий малого диаметра. Под глубоким сверлением обычно понимают сверление отверстий, длина которых пре­вышает их диаметр в 5 и более раз.

Центровые сверла (рис. 94, г) служат для получе­ния центровых углублений на обрабатываемых дета­лях.

Сверла комбинированные позволяют производить одновременную обработку одноосных отверстий (рис. 94, д), а также для одновременного сверления и зен - кования или развертывания отверстий (рис. 94, ё).

Для изготовления сверл, как правило, применя­ют следующие инструментальные материалы: углеро­дистую инструментальную сталь марок У10А и У12А, легированные стали: хромистую марки 9Х и хромок­ремнистую 9ХС; быстрорежущую сталь марок Р9 и

Спинка зуба "Передняя поверхность " Поперечная кромка

Рис. 95. Элементы спирального сверла

Р18, а также металлокерамические твердые сплавы марок ВК6, ВК8 и Т15К6.

Сверла из быстрорежущих сталей делают сварны­ми: рабочую часть - из быстрорежущей стали, а ос­тальную часть - из менее дорогой конструкционной стали. Наиболее распространенными являются спи­ральные сверла из быстрорежущих сталей.

Элементы и геометрические параметры спираль­ного сверла. Спиральное сверло имеет рабочую часть, шейку, хвостовик для крепления сверла в шпинделе станка и лапку, служащую упором при выбивании сверла из гнезда шпинделя (рис. 95, а). Рабочая часть, в свою очередь, разделяется на режущую и направ­ляющую.

Основной для процесса резания является режу­щая часть, на которой расположены все режущие элементы сверла. Она состоит из двух зубьев (перь­ев), образованных двумя канавками для отвода стружки (рис. 95, б); перемычки (сердцевины) - средней части сверла, соединяющей оба зуба (пера); двух передних поверхностей, по которым сбегает
стружка, и двух задних поверхностей; двух ленточек, служащих для направления сверла и уменьшения его трения а стенки отверстия; двух главных режущих кромок, образованных пересечением передних и зад­них поверхностей и выполняющих основную работу резания; поперечной кромки (перемычки), образо­ванной пересечением обеих задних поверхностей. На наружной поверхности сверла между краем ленточ­ки и канавкой расположена идущая по винтовой линии несколько углубленная часть, называемая спинкой зуба.

Уменьшение трения сверла о стенки просверли­ваемого отверстия достигается также тем, что рабо­чая часть сверла имеет обратный конус, т. е. диаметр сверла у режущей части больше, чем на другом кон­це, у хвостовика. Разность в величине этих диамет­ров составляет 0,03-0,12 мм на каждые 100 мм дли­ны сверла.

У сверл, оснащенных пластинками твердых спла­вов, обратная конусность принимается от 0,1 до 0,3 мм на каждые 100 мм длины.

К геометрическим параметрам режущей части сверла (рис. 96) относятся: угол при вершине свер­ла, угол наклона винтовой канавки, передний и зад­ний углы, угол наклона поперечной кромки (пере­мычки).

Угол при вершине сверла 2ф расположен между главными режущими кромками. Он оказывает боль­шое влияние на работу сверла. Величина этого угла выбирается в зависимости от твердости обрабатыва­емого материала и колеблется в пределах от 80 до 140°; для сталей, чугунов и твердых бронз 2ср = 116- 118°, для латуней и мягких бронз 2(р = 130°; для лег­ких сплавов дуралюмина, силумин, электрона и баб­бита 2ф = 140°; для красной меди 2ср = 125°; для эбонита и целлулоида 2<р = 80-90°.

Рис. 96. Геометрические параметры спирального сверла

В целях повышения стойкости сверл диаметром от 12 мм и выше применяют двойную заточку сверл; при этом главные режущие кромки имеют форму не пря­мой, Как при обычной заточке (рис. 96, а), а ломаной линии (рис. 96, б). Основной угол 2ф = 116-118° (для сталей и чугунов), а второй угол 2ф = 70-75°

Угол наклона винтовой канавки обозначается гре­ческой буквой со (омега) (рис. 96, а). С увеличением этого угла процесс резания облегчается, улучшается выход стружки. Однако сверло (особенно малого ди­аметра) с увеличением угла наклона винтовой ка­навки ослабляется. Поэтому у сверл малого диаметра этот угол делается меньшим, чем у сверл большого диаметра.

Угол наклона винтовой канавки должен выбирать­ся в зависимости от свойств обрабатываемого метал­ла. Для обработки, например, красной меди и алю­миния этот угол нужно делать равным 35-40° а для обработки стали со = 25° и меньше.

Если рассечь спиральное сверло плоскостью, пер­пендикулярной главной режущей кромке, то мы уви­дим передний угол у (см. рис. 96, в, сечение Б-Б).

Передний угол у (гамма) в разных точках режу­щей кромки имеет разную величину: он больше у периферии сверла и заметно меньше у его оси. Так, если у наружного диаметра передний угол у = 25- 30°, то у перемычки он близок к 0° Непостоянство величины переднего угла относится к недостаткам спирального сверла и является одной из причин не­равномерного и быстрого его износа.

Задний угол сверла а (альфа) предусмотрен для уменьшения трения задней поверхности о поверхность резания. Этот угол рассматривается в плоскости А- А, параллельной оси сверла (рис. 96, в). Величина зад­него угла также изменяется по направлению от пе­риферии к центру сверла: у периферии он равен 8- 12°, а у оси а = 20-26°

Угол наклона поперечной кромки у (пси) для сверл диаметром от 1 до 12 мм колеблется от 47 до 50° (рис. 96, в), а для сверл диаметром свыше 12 мм V = 55°

Сверла, ос­нащенные плас­тинками твердых сплавов, по сравнению со сверлами, изго­товленными из сталей, имеют меньшую длину рабочей части, больший диа­метр сердцевины и меньший угол наклона винто­вой канавки. Эти сверла обладают высокой стойко­
стью и обеспечивают более высокую производитель­ность. Особенно эффективно применение сверл с пла­стинками твердых сплавов при сверлении и рас­сверливании чугуна, твердой стали, пластмасс, стек­ла, мрамора и других твердых материалов.

Сверла, оснащенные пластинками твердых спла­вов, выпускаются четырех типов: спиральные с ци­линдрическим хвостовиком (рис. 97, а); спиральные с коническим хвостовиком (рис. 97, б), с прямыми канавками и коническим хвостовиком (рис. 97, в) и с косыми канавками и цилиндрическим хвостовиком (рис. 97, г).

В процессе сверления под влиянием силы резания режущие поверхности сверла сжимают прилегающие к ним частицы металла. Когда давление, создаваемое сверлом, превышает силы сцепления частиц метал­ла, происходит отделение и образование элементов стружки.

При сверлении вязких металлов (сталь, медь, алю­миний и др.) отдельные элементы стружки, плотно сцепляясь между собой, образуют непрерывную стружку, завивающуюся в спираль. Такая стружка называется сливной. Если обрабатываемый металл хру­пок, как, например, чугун или бронза, то отдель­ные элементы стружки надламываются и отделяются друг от друга. Такая стружка, состоящая из отдель­ных разобщенных между собой элементов (чешуек) неправильной формы, носит название стружки над­лома.

В процессе сверления различаются следующие эле­менты резания: скорость резания, глубина резания, подача, толщина и ширина стружки (рис. 98).

Рис. 98. Элементы резания: а - при сверлении; б - при рассверливании

Главное рабочее движение сверла (вращательное) характеризуется скоростью резания.

Скорость резания - это путь, проходимый в на­правлении главного движения наиболее удаленной от оси инструмента точкой режущей кромки в единицу времени. Принято скорость резания обозначать латин­ской буквой V и измерять в метрах в минуту. Если известны число оборотов сверла и его диаметр, не­трудно определить скорость резания. Она подсчиты­вается по общеизвестной формуле

V = -|00- м/мин

Где О - диаметр инструмента (сверла) в мм; п - число оборотов сверла в минуту; я - постоянное число, примерно равное 3,14. Если известны диаметр сверла и скорость резания, то число оборотов п мож­но вычислить по формуле

П = -- обмин тЮ

Подачей при сверлении называется перемещение сверла вдоль оси за один его оборот. Она обозначает­ся через 50 и измеряется в ии/об. Сверло имеет две главные режущие кромки. Следовательно, величина подачи на одну режущую кромку вычисляется по формуле

Правильный выбор подачи имеет большое значе­ние для увеличения стойкости инструмента. Величи­на подачи при сверлении и рассверливании зависит от заданной чистоты и точности обработки, твердо­сти обрабатываемого материала и прочности сверла.

Глубиной резания / при сверлении отверстий яв­ляется расстояние от стенки отверстия до оси сверла (т. е. радиус сверла). Определяется глубина резания пу­тем деления диаметра просверливаемого отверстия пополам.

При рассверливании (рис. 98, б) глубина резания / определяется как половина разности между диамет­ром - О сверла и диаметром с1 ранее обработанного отверстия.

Толщина среза (стружки) а измеряется в направ­лении, перпендикулярном режущей кромке сверла. Ширина среза в измеряется вдоль режущей кромки и равна ее длине (рис. 98, а).

Площадь поперечного сечения стружки /, срезае­мая обеими режущими кромками сверла, определя­ется по формуле:

Где 5о - подача в мм/об; t - глубина резания в мм.

Таким образом, площадь поперечного сечения стружки становится больше с увеличением диамет­ра сверла, а для данного сверла - с увеличением подачи.

Обрабатываемый материал оказывает сопротивле­ние резанию и удалению стружки. Для осуществле­ния процесса резания к инструменту должны быть приложены сила подачи Р0, превосходящая силы со­противления материала осевому перемещению свер­ла, и крутящий момент Мкр, необходимый для пре­одоления момента сопротивления М и для обеспече­ния главного вращательного движения шпинделя и сверла.

Сила подачи Ро при сверлении и крутящий мо­мент зависят от диаметра сверла Д величины пода­чи и свойств обрабатываемого материала: например, при увеличении диаметра сверла и подачи они также увеличиваются.

Мощность, необходимая для резания при сверле­нии и рассверливании, складывается из мощности, потребляемой на вращение инструмента, и мощнос­ти, потребляемой на подачу инструмента. Однако мощность, необходимая для подачи сверла, чрезвы­чайно мала по сравнению о мощностью, расходуе­мой на вращение сверла в процессе резания, и для практических целей ее можно не учитывать.

Стойкостью сверла называется время его непре­рывной (машинной) работы до затупления, т. е. меж­ду двумя переточками. Стойкость сверла обычно из­меряется в минутах. На стойкость сверла влияют свой­ства обрабатываемого материала, материал сверла, углы заточки и форма режущих кромок, скорость резания, сечение стружки и охлаждение.

Увеличение твердости обрабатываемого материа­ла понижает стойкость сверла. Объясняется это тем, что твердый материал оказывает большее сопротив­ление сверлению; при этом возрастают сила трения и количество выделяемого тепла.

На стойкость сверла оказывают влияние также и его размеры: чем массивнее сверло, тем лучше отво­дит оно тепло от режущих кромок и, следовательно, тем больше его стойкость. Стойкость сверла значи­тельно возрастает при его охлаждении.

В процессе резания при сверлении выделяется большое количество тепла вследствие деформации металла, трения выходящей по канавкам сверла стружки, трения задней поверхности сверла об об­рабатываемую поверхность и т. п. Основная часть тепла уносится стружкой, а остальная распреде­ляется между деталью и инструментом. Для пре­дохранения от затупления и преждевременного износа при нагреве сверла в процессе резания применяют смазывающе-охлаждающую жидкость, которая отводит тепло от стружки, детали и инст­румента.

Смазочно-охлаждающая жидкость, смазывая тру­щиеся поверхности инструмента и детали, значитель­но уменьшает трение и облегчает тем самым про­цесс резания. При работе сверлами из ин­струментальных сталей смазывающе-охлаждающие жидкости применяются в процессе сверления сталей, стального литья, цветных металлов и сплавов, а так­же частично чутунов. Обычно подача жидкости про­изводится на переднюю поверхность режущего ин­струмента, в зону стружкообразования, в обильном количестве.

К охлаждающим жидкостям, которыми пользуются при сверлении металлов, относятся мыльная и содо­вая вода, масляные эмульсии и др.

Выбор режимов резания при сверлении заклю­чается в определении такой подачи и скорости ре­зания, при которых процесс сверления детали ока­зывается наиболее производительным и эконо­мичным.

Спиральное сверло имеет следующие основные части (рисунок 25): режущая 3, направляющая 1 или калибрующая, хвостовик 5 и соединительная 4 (шейка). Режущая и направляющая части в совокупности составляют рабочую часть 2 сверла, снабженную двумя винтовыми канавками 8.

Режущая часть спирального сверла состоит из двух зубьев, которые в процессе сверления своими режущими кромками 9 врезаются в материал заготовки и срезают его в виде стружки, которая затем отводится по винтовым канавкам. Рабочая часть является основной частью сверла. Условия работы сверла определяются главным образом конструкцией режущей части сверла.

Передними поверхностями 10 сверла являются поверхности винтовых канавок, по которым сходит стружка. Задними поверхностями 11 сверла являются поверхности зуба сверла, обращенные к поверхности резания (по которой происходит отделение стружки от заготовки). Задние поверхности могут быть заточены как плоские, винтовые, конические или цилиндрические поверхности. Линия пересечения задних поверхностей обеих зубьев сверла образует поперечную режущую кромку 13, расположенную в центральной зоне сверла.

Направляющая часть сверла необходима для создания направления при работе инструмента. Поэтому она имеет две направляющие винтовые ленточки (спиральные фаски) 12, которые участвуют в оформлении (калибровании) поверхности обработанного отверстия. Кроме этого направляющая часть сверла служит запасом для переточек инструмента.

Рисунок 25 – Спиральное сверло

Хвостовик, который может быть конической (с лапкой 6) (рисунок 25, а ) или цилиндрической (с поводком 7 и без поводка) (рисунок 25, б ) формы, служит для закрепления сверла на станке. Он с помощью цилиндрической шейки соединяется с рабочей частью сверла. Наиболее часто рабочая часть сверла изготавливается из быстрорежущей стали, а хвостовик из стали 45. Рабочая часть и хвостовик соединяются сваркой. В промышленности используют также твердосплавные сверла. Режущая часть этих сверл оснащается пластинками твердого сплава. У твердосплавных сверл малого диаметра полностью вся рабочая часть может изготавливаться из твердого сплава.



Диаметры просверленных отверстий всегда больше диаметра сверла, которым они обработаны. Разность диаметров сверла и просверленного им отверстия называют разбивкой отверстия . Для стандартных сверл диаметром 10…20 мм разбивка составляет 0,15…0,25 мм. Причиной разбивки отверстий являются недостаточная точность заточки сверл и несоосность сверла и шпинделя сверлильного станка.

Для уменьшения разбивки и для предотвращения возможного защемления сверла в просверливаемом отверстии диаметр сверла в направлении от режущей части несколько уменьшается. Уменьшение диаметра принято называть обратной конусностью и определять разность Δ диаметров на расстоянии l 0 = 100 мм длины рабочей части.

3.1.2 Геометрические параметры

Углом наклона винтовой канавки ω (см. рисунок 25, в ) называется угол, образуемый осью сверла и касательной к вершине винтовой линии пересечения передней поверхности сверла с цилиндрической поверхностью, ось которой совпадает с осью сверла и диаметр, который равен диаметру сверла.

Режущие кромки наклонены к оси сверла и образуют между собой угол при вершине 2φ (главный угол в плане). С увеличением угла при вершине сверла уменьшается активная длина режущей кромки и увеличивается толщина среза, что приводит к увеличению усилий, действующих на единицу длины режущих кромок, и способствует повышению интенсивности износа сверла. Известно, что нормальная работа сверла может иметь место тогда, когда надежно обеспечивается вывод стружки по канавкам и не наблюдается ее защемление и пакетирование. Как показывают исследования, увеличение угла при вершине 2φ приводит к более плавному изменению передних углов вдоль режущей кромки, что благоприятно отражается на режущей способности сверла.

Задний угол α является важным элементом конструкции сверла, его размер в значительной мере влияет на стойкость инструмента.

Заточка спиральных сверл

Для удаления изношенных участков инструмента, образования новых лезвий и восстановления режущих свойств были разработаны всевозможные способы заточек стандартных сверл.

Форма заточки сверла выбирается в зависимости от свойств обрабатываемых материалов и диаметра инструмента. Основные формы заточек спиральных сверл приведены на рисунке 26.

Нормальная без подточек (Н) – для сверл диаметром до 12 мм. Применяется для сверл универсального применения при обработке стали, стального литья, чугуна.

Нормальная с подточкой поперечной кромки (НП) – для обработки стального литья с σ в ≤ 500 МПа с неснятой коркой. Подточка поперечной кромки уменьшает ее длину, что улучшает условия резания.

Нормальная с подточкой поперечной кромки и ленточки (НПЛ) – для сверл диаметром 12…80 мм. Применяется для обработки стали, стального литья с σ в > 500 МПа со снятой коркой, чугуна с неснятой коркой. Подточка ленточки до ширины 0,1-0,2 мм на длине 3-4 мм уменьшает трение в наиболее напряженном участке сверла и улучшает условия резания.

Двойная с подточкой поперечной кромки (ДП) – для обработки стального литья с σ в ≥ 500 МПа и чугуна с неснятой коркой. Увеличивается длина режущей кромки, уменьшается толщина стружки, улучшается отвод теплоты, значительно увеличивается стойкость.

Двойная с подточкой поперечной кромки и ленточки (ДПЛ) – для сверл универсального применения при обработке стального литья с σ в >500 МПа и чугуна со снятой коркой.

Двойная с подточкой и срезанной поперечной кромкой (ДП-2)­­ – для обработки хрупких материалов.

Или станке, предназначенный для сверления отверстий в различных материалах. Сверла изготовляются из качественных твердых сталей, что позволяет их использовать для работы с и другими металлами, бетоном или камнем.

Виды

В зависимости от предназначения сверла делятся на категории по:
  • Металлу.
  • Дереву.
  • Камню и кирпичу.
  • Стеклу и плитке.

Они отличаются между собой по форме, а также углу заточки и режущей кромке. Большинство из них являются узкоспециализированными и не могут использоваться для других целей.

По металлу

Эти сверла подходят не только для сверления металлов, но также могут использоваться для работы с пластиком и древесиной. В зависимости от формы изготовления они бывают следующих разновидностей:

  • Спиральные.
  • Конические.
  • Корончатые.
  • Ступенчатые.
Спиральные

Спиральный тип представляет собой классическую конструкцию, которая знакома практически каждому. Инструмент состоит из трех частей – режущая кромка, рабочая поверхность и хвостовик. Режущая часть имеет острую заточку, именно она врезается в металл, образовывая отверстие. Рабочая поверхность представляет собой спираль, цель которой состоит в выведении стружки из отверстия. Хвостовая часть используется для фиксации инструмента в патроне дрели или станка.

Такой тип обычно изготавливают из быстрорежущей стали марки HSS, Р18 или Р6М5. Что касается стали Р18, то она встречается довольно редко и на данный момент производством инструментов из нее занимаются только некоторые предприятия, находящиеся на территории Белоруссии. Из нее получаются очень надежные сверла, которые отлично удерживают заточку.

Конические

Такое сверло обычно можно встретить зажатым в специализированный станок. Его рабочая часть представляет собой конус, вершина которого врезается в поверхность металла, образовывая тонкое отверстие. По мере углубления в материал происходит контакт с более широкой частью конуса, что обеспечивает расширение отверстия. Благодаря использованию данной конструкции, можно обеспечить сверление за один проход. К примеру, если использовать обычное спиральное сверло, то сначала нужно сделать отверстие тонким инструментом, а потом более толстым, постепенно доводя диаметр под требуемые параметры. Конусная форма позволяет избежать подобных неудобств, но к сожалению, она не подходит для слабых дрелей.

Корончатые

Корончатая конструкция представляет собой пустотелый цилиндр, на нижнем торце которого имеются острые зазубрины, напоминающие корону. Такой инструмент позволяет делать отверстия большого диаметра, начиная от 30 мм и более. Недостаток данной конструкции заключается в невозможности установки в патрон обычной дрели. Инструмент может быть использован для сверления листового металла толщиной до 10 мм. Обычно для изготовления корончатого инструмента используется сталь HSS. Также на рынке можно встретить сверла с твердосплавными напайками или алмазным напылением. Они позволяют работать не только с металлами и сплавами, но даже с бетоном.

Ступенчатые

Ступенчатая конструкция является одним из последних изобретений в мире режущего инструмента. Она имеет универсальное применение, поскольку позволяет делать отверстия различного диаметра. Название типа связано с тем, что он представляет собой конус со ступеньками. Такое сверло может быть использовано только для работы с листовым металлом толщиной до 2 мм. Принцип действия заключается в том, что кончик инструмента врезается в материал, и когда он пробивается, то происходит контакт с более широкой частью конуса, которая просверливает углубление еще больше. Таким образом, чтобы получить требуемый диаметр нужно углубиться до нужной ступени.

По дереву

Часто для работы с деревом применяется стандартное спиральное сверло по металлу. Оно позволяет делать отверстие диаметром от 2 до 18 мм. Тем не менее, данный тип сильно ограничивает возможности деревообработки, поэтому было разработано и внедрено несколько особых типов сверл:

  • Спиральные по дереву.
  • Перовые.
  • Винтовые.
  • Кольцевые пилы.
  • Балеринки.
  • Форстнера.
Спиральные по дереву

Спиральные по дереву очень похожи на обычное сверло по металлу. Единственное отличие заключается в форме режущей кромки. Она напоминает трезубец. Острый зуб по центру позволяет провести точную фиксацию в месте сверления. Инструментальная сталь легко врезается в древесину. Особая конструкция позволяет получать очень качественное отверстие, без вырывания волокон, как это бывает при использовании инструмента по металлу.

Перовые

Перовое имеет плоскую конструкцию, на конце которой тоже имеется трезубец, как и в предыдущем типе. Оно обеспечивает большой диаметр сверления, при этом позволяет проводить установку в обычную дрель. Данный тип режет чистые края, без разорванных волокон древесины. Нужно отметить, что в случае сверление небольшого углубления в его центре останется бороздка от основного зуба. Такое сверло работает только на малых оборотах. Его часто используют с ручным коловоротом.

Винтовые

Винтовые сверла напоминают спиральные, но имеют более совершенную рабочую часть для отвода стружки. Они довольно длинные, поэтому позволяют делать глубокие отверстия. Их часто используют для сверления бруса и бревен. Зачастую такое сверло имеет специальную ручку, что позволяет работать даже без использования дрели, станка или коловорота. Заостренная часть инструмента напоминает шуруп, она врезается в древесину, поджимая режущую кромку к волокнам. Срез получается чистым и аккуратным, даже при работе с сырым деревом.

Кольцевые пилы

Этот инструмент представляет собой пустотелый цилиндр с пильными зубьями на торце и обычным выпирающим вперед спиральным сверлом. Он позволяет делать отверстия в досках, фанере и вагонке. Его обычно применяют для получения широких отверстий, необходимых для установки светильников. Инструмент подходит не только для древесины, но и для пенополистирола, ПВХ вагонки и сотового поликарбоната. Такие пилы для дрели могут быть использованы для врезания посадочного места при установке розетки в стене, конечно при условии, что она деревянная или из мягких блоков – пенобетон, глина и пр. Выборка центральной части может быть доделана с помощью стамески.

Балеринки

Балеринка – это регулируемое сверло по дереву. Оно позволяет делать широкие отверстия в фанере, ДСП, МДФ и OSB плитах. Его конструкция представляет собой крестовину, центр которой выполнен в виде спирального сверла. На плечах крестовины крепятся острые резцы, прорезающие листовой материал. Специальный ключ позволяет менять расстояние между резцами, тем самым регулируя диаметр получаемого отверстия.

Сверло Форстнера

Инструмент имеет цилиндрический хвостовик с двумя режущими кромками. Он применяется преимущественно в мебельном производстве. С его помощью можно сделать углубление большого диаметра для установки петлей на дверцы шкафчиков. В результате его применения получается аккуратное отверстие с плоским дном.

По бетону

Сверла по бетону также подходят для работы с камнем и кирпичом. Они бывают трех видов:
  • Спиральные.
  • Винтовые.
  • Корончатые.

Все они имеют специальные напайки, которые вгрызаются в камень, бетон и кирпич. Напайки могут изготовляться из победитовых пластин или представлять собой кристаллы искусственного алмаза.

Спиральные

Спиральные устанавливаются в . Они имеют практически идентичную конструкцию со сверлами для металла, за исключением напаек. Лучше всего они работают с бетоном и кирпичом. Глубина отверстия обычно не превышает 80-100 мм.

Винтовые

Винтовые тоже имеют напайки. Они являются более длинными, чем спиральными. Их используют в тех случаях, когда требуется пробить глубокое отверстие. Винты обеспечивают эффективное отведение пыли, что снижает вероятность застревания. Тем не менее, стоит все же периодически вытягивать перфоратор, чтобы проверить – нет ли пыли.

Корончатые

По своей конструкции напоминают стандартную коронку для древесины. В центре имеется спиральное сверло, которое врезается в бетон, камень или кирпич, при этом основную работу по сверлению отверстия требуемой глубины выполняет коронка с напайками. Такие сверла тоже требуют ударного бурения, поэтому не подходят для обычной дрели.

По стеклу

Для сверления керамики и стекла используется всего два вида сверл – коронки и перовые. Коронки имеют алмазное напыления. Их диаметр от 13 до 80 мм. Алмазное напыление представляет собой приклеенные песчинки из искусственного минерала. Для использования коронки необходимо иметь качественную дрель или сверлильный станок. Важно, чтобы инструмент касался плавно, не создавая биения или неравномерного распределения давления.

Перовое сверло представляет собой классический стержень из металла, на конце которого установлено острое копье. Инструмент предлагается в небольшом диапазоне размеров 3-13 мм. Режущее перо выполняется из победита, в более редких случаях с других сплавов.

Для работы со стеклом нужно подойти ответственно к выбору сверлильных инструментов. В отличие от других материалов, ошибка с ним недопустима. Недостаточно ровная или неострая режущая часть может привести к трещине на стекле, керамике или кафеле, что будет непоправимым.

В зависимости от конструкции и назначения различают спиральные, перовые, для глубокого сверления, центровочные, с пластинками из твердых сплавов и другие сверла (рис.1).

Наиболее распространены спиральные сверла. Они имеют две главные режущие кромки, образованные пересечением передних винтовых поверхностей канавок сверла, по которым сходит стружка, с задними поверхностями, обращенными к поверхности резания; поперечную режущую кромку (перемычку), образованную пересечением обеих задних поверхностей, и две вспомогательные режущие кромки, образованные пересечением передних поверхностей с поверхностью ленточки.

Ленточка сверла представляет собой узкую полоску на его цилиндрической поверхности, расположенную вдоль винтовой канавки и предназначенную для направления сверла при резании.

Угол наклона винтовой канавки – угол между осью сверла и касательной к винтовой линии по наружному диаметру сверла (20-30°).

Угол наклона поперечной режущей кромки (перемычки) – острый угол между проекциями поперечной и главной режущих кромок на плоскость, перпендикулярную оси сверла (50-55°).

Угол режущей части (угол при вершине) – угол между главными режущими кромками при вершине сверла (118°).

Передний угол – угол между касательной к передней поверхности в рассматриваемой точке режущей кромки и нормально в той же точке к поверхности вращения режущей кромки вокруг оси сверла. По длине режущей кромки передний угол изменяется: наибольший у наружной поверхности сверла, где он практически равен углу наклона винтовой канавки, наименьшей у поперечной режущей кромки.

Задний угол – угол между касательной к задней поверхности в рассматриваемой точке режущей кромки и касательной в той же точке окружности ее вращения вокруг оси сверла. Задний угол сверла величина переменная: 8-14°на периферии сверла и 20-26° - ближе к центру.

Спиральные сверла изготавливают из быстрорежущей стали Р9, Р18 и стали 9ХС.

Хвостовик спирального сверла может быть цилиндрическим и коническим. Цилиндрический хвостовик (у сверл диаметром до 10 мм) служит для крепления сверла в трехкулачковом патроне или другом приспособлении, предназначенном для соединения сверл со шпинделем сверлильного станка. Конический хвостовик закрепляет непосредственно в шпинделе станка или в переходной втулке, если конус сверла не совпадает с конусом шпинделя.

У сверл диаметром 6-15,5 мм хвостовик изготавливается с конусом Морзе №1, у сверл с диаметрами 16-23,5 мм - №2, у сверл диаметрами 23,9-38,9 мм - №3, у сверл диаметрами 39-49,5 мм - №4 и т.д.

Лапка на конце хвостовика препятствует провертыванию сверла в шпинделе. Она служит также для выбивания сверла из шпинделя по окончании работы. Для этого в боковое отверстие шпинделя вставляют клин и ударяют по нему молотком. Клин давит на лапку, и сверло освобождается.

Сверление является одним из самых распространённых методов получе­ния отверстия. Режущим инструментом служит сверло, с помощью которого получают отверстие в сплошном материале или увеличивают диаметр ранее просверленного отверстия (рассверливание). Движение резания при свер­лении - вращательное, движение подачи - поступательное. Режущая часть сверла изготовляется из инструментальных сталей (Р18, P12, P6M5 и др.) и из твердых сплавов. По конструкции различают свёрла: спиральные, с прямыми канавками, перовые, для глубоких отверстий, для кольцевого сверления, центровочные и специальные комбинированные. К конструктив­ным элементам относятся: диаметр сверла D , угол режущей части (угол при вершине), угол наклона винтовой канавки w, геометрические пара­метры режущей части сверла, т.е. соответственно передний g и задний a углы и угол резания d, толщина сердцевины d (или диаметр сердцевины), толщина пера (зуба) b , ширина ленточки f , обратная конусность j 1 , форма режущей кромки и профиль канавки сверла, длина рабочей части l o , общая длина сверла L .


Рис. 5.10. Передний и задний углы сверла

Наибольшее значение угол g имеет на периферии сверла, где в плос­кости, параллельной оси сверла, он равен углу наклона винтовой канавки w. Наименьшее значение угол g имеет у вершины сверла. На поперечной кромке угол g имеет отрицательное значение, что создаёт угол резания больше 90°, а, следовательно, и тяжелые условия работы. Такое резкое из­менение переднего угла вдоль всей длины режущей кромки является боль­шим недостатком сверла, так как это вызывает более сложные условия об­разования стружки. На периферии сверла, где небольшая скорость резания и наибольшее тепловыделение, необходимо было бы иметь и наибольшее те­ло зуба сверла. Большой же передний угол уменьшает угол заострения, что приводит к более быстрому нагреву этой части сверла, а, следова­тельно, и к наибольшему износу.

Задний угол a - угол между касательной к задней поверхности в рассматриваемой точке режущей кромки и касательной в той же точке к окружности ее вращения вокруг оси сверла. Этот угол принято рассматри­вать в плоскости, касательной к цилиндрической поверхности, на которой лежит рассматриваемая точка режущей кромки.

Для точки, находящейся на периферии сверла, задний угол в нормаль­ной плоскости Б-Б может быть определён по формуле

tga н =tga sinj (5.15)

Действительное значение заднего угла во время работы иное по срав­нению с тем углом, который мы получили при заточке и измерили в стати­ческом состоянии. Это объясняется тем, что сверло во время работы не только вращается, но и перемещается вдоль оси. Траекторией движения точки будет не окружность (как это принимают при измерении угла), а некоторая винтовая линия, шаг которой равен подаче свёрла в миллимет­рах за один его оборот. Таким образом, поверхность резания, образуе­мая всей режущей кромкой, представляет собой винтовую поверхность, касательная к которой и будет действительной плоскостью резания.


Рис. 5.12. Углы режущих кромок сверла в процессе резания

Он меньше угла, измеренного в статическом состоянии, на некоторую величину m:

a’= a - m (5.16)

tgm =s /pD (5.17)

Чем меньше диаметр окружности, на которой находится рассматривае­мая точка режущей кромки, и чем больше подача s тем больше угол m и меньше действительный задний угол a’.

Действительный же передний угол в процессе резания g’ соответс­твенно будет больше угла g измеренного после заточки в статическом состоянии:

g’=g +m (5.18)

Чтобы обеспечить достаточную величину заднего угла в процессе ре­зания в точках режущей кромки, близко расположенных к оси сверла, а также для получения более или менее одинакового угла заострения зуба вдоль всей длины режущей кромки, задний угол заточки делается: на пе­риферии 8 -14°, у сердцевины 20 - 27°, задний угол на ленточках сверла 0°.

Кроме переднего и заднего углов, сверло характеризуется углом наклона винтовой канавки w, углом наклона поперечной кромки y, углом при вершине 2j, углом обратной конусности j 1 . Угол w = 18-30°, y=55°, j 1 = 2-3°, у свёрл из инструментальных сталей 2j = 60-140°.

Спиральное сверло имеет ряд особенностей, отрицательно влияющих на протекание процесса стружкообразования при сверлении:

а) уменьшение переднего утла, в различных точках режущих кромок по мере приближения рассматриваемой точки к оси сверла,

б) неблагоприятные условия резания у поперечной кромки (так как
угол резания здесь больше 90°),

в) отсутствие заднего угла у ленточек сверла, что создает большое
трение об обработанную поверхность.

Для облегчения процесса стружкообразования и повышения режущих свойств сверла производят двойную заточку сверла и подточку перемычки и ленточки.

Загрузка...