domvpavlino.ru

Основные части спирального сверла и их назначение. Конструктивные элементы сверла. Технология изготовления сверл

Наиболее многочисленной является группа спиральных сверл.

Спиральное сверло (рис. 2.2) представляет собой цилиндрический стержень, рабочая часть которого снабжена двумя винтовыми спиральными канавками, предназначенными для отвода стружки и образования режущих элементов. Наклон канавок к оси сверла составляет 10–45º. Рабочий конец сверла имеет конусообразную форму. На образующих конуса лежат две симметрично расположенные относительно оси сверла режущие кромки. Хвостовик нужен для закрепления сверла. Спиральные сверла делают с цилиндрическими или коническими хвостовиками.

Рис.2.2 Спиральное сверло с коническим хвостовиком

По точности изготовления они делятся на:

    сверла общего назначения;

    сверла точного исполнения.

Размерный ряд спиральных сверл начинается с малоразмерных сверл диаметром от 0,1 до 1,5 мм по ГОСТ 8034 с утолщенным цилиндрическим хвостовиком. Вследствие малых размеров этих сверл оправдано их изготовление целиком из быстрорежущих сталей Р6М3 и Р6М5К5 с твердостью рабочей части до 60 – 62 НRC.

Для обработки труднообрабатываемых материалов изготавливают цельные твердосплавные сверла диаметром от 0,6 до 1,0 мм из сплавов ВК10М, ВК15М. Стойкость спиральных сверл с твердосплавной рабочей частью в 20-30 раз выше стойкости обычных быстрорежущих сверл. Начиная с диаметра 1,5 мм твердосплавные сверла выполняют сборными по ГОСТ 17273. Рабочую твердосплавную часть этих сверл припаивают к хвостовику из стали 45. По ГОСТ 10902 и ГОСТ 4010 спиральные сверла изготавливают из быстрорежущих сталей типа Р12, Р6М3, для обработки конструкционных сталей и для сверления труднообрабатываемых материалов. Такие сверла имеют твердость 63-65 HRC. Быстрорежущие сверла выполняются как с правым, так и с левым направлением винтовых канавок. Спиральные сверла диаметром более 8 мм в целях экономии изготавливают сварными с рабочей частью из быстрорежущей стали и хвостовиком из конструкционной стали. Сверла с пластинками из твердого сплава по ГОСТ 5756 закрепляют в корпусе пайкой. По ГОСТ 6647 выполняются сверла с внутренним подводом охлаждающей жидкости для сверления труднообрабатываемых материалов.

Перовые сверла

Перовые (рис. 2.1 г), или, как их еще называют, ложечные, сверла отличаются простотой конструкции (представляют собой заострённую пластинку с весьма несовершенной формой рабочей части). В зависимости от того, какова форма заточки режущих кромок, различают односторонние и двусторонние перовые сверла. Все они имеют плоскую режущую часть с двумя режущими кромками, расположенными симметрично относительно оси сверла и образующими угол резания в 45, 50, 75, 90º. Недостаток таких сверл состоит в том, что отсутствует автоматический отвод стружки при сверлении, что портит режущие кромки и вынуждает часто вынимать сверло из просверливаемого отверстия. Кроме того, перовые сверла в процессе работы теряют направление и уменьшаются в диаметре при переточке.

Кольцевые сверла

Сквозные отверстия диаметром свыше 80 мм получают сверлами кольцевого сверления (рис. 2.1 з). Ими вырезается только кольцевая полость, а в центре остается стержень, который удаляется после окончания сверления. В дальнейшем стержень можно использовать в качестве заготовки.

По конструкции и назначению сверла подразде­ляются на ряд видов: спиральные и специальные (перовые или плоские, для кольцевого сверления, ружейные, комбинированные с другими инструмен­тами, центровочные И Др.).

Для сверления отверстий чаще применяют спи­ральные сверла и реже специальные.

Сверла перовые представляют собой простой ре­жущий инструмент (рис. 94, а). Они применяются глав­ным образом в трещотках и ручных дрелях для свер­ления неответственных отверстий диаметром до 25 мм.

Сверла спиральные с цилиндрическим и коничес­ким хвостовиками (рис. 94, б, в) используются как для ручного сверления, так и при работе на станках (сверлильных, револьверных и др.).

Сверла для глубокого сверления используются на специальных станках для получения точных отверстий малого диаметра. Под глубоким сверлением обычно понимают сверление отверстий, длина которых пре­вышает их диаметр в 5 и более раз.

Центровые сверла (рис. 94, г) служат для получе­ния центровых углублений на обрабатываемых дета­лях.

Сверла комбинированные позволяют производить одновременную обработку одноосных отверстий (рис. 94, д), а также для одновременного сверления и зен - кования или развертывания отверстий (рис. 94, ё).

Для изготовления сверл, как правило, применя­ют следующие инструментальные материалы: углеро­дистую инструментальную сталь марок У10А и У12А, легированные стали: хромистую марки 9Х и хромок­ремнистую 9ХС; быстрорежущую сталь марок Р9 и

Спинка зуба "Передняя поверхность " Поперечная кромка

Рис. 95. Элементы спирального сверла

Р18, а также металлокерамические твердые сплавы марок ВК6, ВК8 и Т15К6.

Сверла из быстрорежущих сталей делают сварны­ми: рабочую часть - из быстрорежущей стали, а ос­тальную часть - из менее дорогой конструкционной стали. Наиболее распространенными являются спи­ральные сверла из быстрорежущих сталей.

Элементы и геометрические параметры спираль­ного сверла. Спиральное сверло имеет рабочую часть, шейку, хвостовик для крепления сверла в шпинделе станка и лапку, служащую упором при выбивании сверла из гнезда шпинделя (рис. 95, а). Рабочая часть, в свою очередь, разделяется на режущую и направ­ляющую.

Основной для процесса резания является режу­щая часть, на которой расположены все режущие элементы сверла. Она состоит из двух зубьев (перь­ев), образованных двумя канавками для отвода стружки (рис. 95, б); перемычки (сердцевины) - средней части сверла, соединяющей оба зуба (пера); двух передних поверхностей, по которым сбегает
стружка, и двух задних поверхностей; двух ленточек, служащих для направления сверла и уменьшения его трения а стенки отверстия; двух главных режущих кромок, образованных пересечением передних и зад­них поверхностей и выполняющих основную работу резания; поперечной кромки (перемычки), образо­ванной пересечением обеих задних поверхностей. На наружной поверхности сверла между краем ленточ­ки и канавкой расположена идущая по винтовой линии несколько углубленная часть, называемая спинкой зуба.

Уменьшение трения сверла о стенки просверли­ваемого отверстия достигается также тем, что рабо­чая часть сверла имеет обратный конус, т. е. диаметр сверла у режущей части больше, чем на другом кон­це, у хвостовика. Разность в величине этих диамет­ров составляет 0,03-0,12 мм на каждые 100 мм дли­ны сверла.

У сверл, оснащенных пластинками твердых спла­вов, обратная конусность принимается от 0,1 до 0,3 мм на каждые 100 мм длины.

К геометрическим параметрам режущей части сверла (рис. 96) относятся: угол при вершине свер­ла, угол наклона винтовой канавки, передний и зад­ний углы, угол наклона поперечной кромки (пере­мычки).

Угол при вершине сверла 2ф расположен между главными режущими кромками. Он оказывает боль­шое влияние на работу сверла. Величина этого угла выбирается в зависимости от твердости обрабатыва­емого материала и колеблется в пределах от 80 до 140°; для сталей, чугунов и твердых бронз 2ср = 116- 118°, для латуней и мягких бронз 2(р = 130°; для лег­ких сплавов дуралюмина, силумин, электрона и баб­бита 2ф = 140°; для красной меди 2ср = 125°; для эбонита и целлулоида 2<р = 80-90°.

Рис. 96. Геометрические параметры спирального сверла

В целях повышения стойкости сверл диаметром от 12 мм и выше применяют двойную заточку сверл; при этом главные режущие кромки имеют форму не пря­мой, Как при обычной заточке (рис. 96, а), а ломаной линии (рис. 96, б). Основной угол 2ф = 116-118° (для сталей и чугунов), а второй угол 2ф = 70-75°

Угол наклона винтовой канавки обозначается гре­ческой буквой со (омега) (рис. 96, а). С увеличением этого угла процесс резания облегчается, улучшается выход стружки. Однако сверло (особенно малого ди­аметра) с увеличением угла наклона винтовой ка­навки ослабляется. Поэтому у сверл малого диаметра этот угол делается меньшим, чем у сверл большого диаметра.

Угол наклона винтовой канавки должен выбирать­ся в зависимости от свойств обрабатываемого метал­ла. Для обработки, например, красной меди и алю­миния этот угол нужно делать равным 35-40° а для обработки стали со = 25° и меньше.

Если рассечь спиральное сверло плоскостью, пер­пендикулярной главной режущей кромке, то мы уви­дим передний угол у (см. рис. 96, в, сечение Б-Б).

Передний угол у (гамма) в разных точках режу­щей кромки имеет разную величину: он больше у периферии сверла и заметно меньше у его оси. Так, если у наружного диаметра передний угол у = 25- 30°, то у перемычки он близок к 0° Непостоянство величины переднего угла относится к недостаткам спирального сверла и является одной из причин не­равномерного и быстрого его износа.

Задний угол сверла а (альфа) предусмотрен для уменьшения трения задней поверхности о поверхность резания. Этот угол рассматривается в плоскости А- А, параллельной оси сверла (рис. 96, в). Величина зад­него угла также изменяется по направлению от пе­риферии к центру сверла: у периферии он равен 8- 12°, а у оси а = 20-26°

Угол наклона поперечной кромки у (пси) для сверл диаметром от 1 до 12 мм колеблется от 47 до 50° (рис. 96, в), а для сверл диаметром свыше 12 мм V = 55°

Сверла, ос­нащенные плас­тинками твердых сплавов, по сравнению со сверлами, изго­товленными из сталей, имеют меньшую длину рабочей части, больший диа­метр сердцевины и меньший угол наклона винто­вой канавки. Эти сверла обладают высокой стойко­
стью и обеспечивают более высокую производитель­ность. Особенно эффективно применение сверл с пла­стинками твердых сплавов при сверлении и рас­сверливании чугуна, твердой стали, пластмасс, стек­ла, мрамора и других твердых материалов.

Сверла, оснащенные пластинками твердых спла­вов, выпускаются четырех типов: спиральные с ци­линдрическим хвостовиком (рис. 97, а); спиральные с коническим хвостовиком (рис. 97, б), с прямыми канавками и коническим хвостовиком (рис. 97, в) и с косыми канавками и цилиндрическим хвостовиком (рис. 97, г).

В процессе сверления под влиянием силы резания режущие поверхности сверла сжимают прилегающие к ним частицы металла. Когда давление, создаваемое сверлом, превышает силы сцепления частиц метал­ла, происходит отделение и образование элементов стружки.

При сверлении вязких металлов (сталь, медь, алю­миний и др.) отдельные элементы стружки, плотно сцепляясь между собой, образуют непрерывную стружку, завивающуюся в спираль. Такая стружка называется сливной. Если обрабатываемый металл хру­пок, как, например, чугун или бронза, то отдель­ные элементы стружки надламываются и отделяются друг от друга. Такая стружка, состоящая из отдель­ных разобщенных между собой элементов (чешуек) неправильной формы, носит название стружки над­лома.

В процессе сверления различаются следующие эле­менты резания: скорость резания, глубина резания, подача, толщина и ширина стружки (рис. 98).

Рис. 98. Элементы резания: а - при сверлении; б - при рассверливании

Главное рабочее движение сверла (вращательное) характеризуется скоростью резания.

Скорость резания - это путь, проходимый в на­правлении главного движения наиболее удаленной от оси инструмента точкой режущей кромки в единицу времени. Принято скорость резания обозначать латин­ской буквой V и измерять в метрах в минуту. Если известны число оборотов сверла и его диаметр, не­трудно определить скорость резания. Она подсчиты­вается по общеизвестной формуле

V = -|00- м/мин

Где О - диаметр инструмента (сверла) в мм; п - число оборотов сверла в минуту; я - постоянное число, примерно равное 3,14. Если известны диаметр сверла и скорость резания, то число оборотов п мож­но вычислить по формуле

П = -- обмин тЮ

Подачей при сверлении называется перемещение сверла вдоль оси за один его оборот. Она обозначает­ся через 50 и измеряется в ии/об. Сверло имеет две главные режущие кромки. Следовательно, величина подачи на одну режущую кромку вычисляется по формуле

Правильный выбор подачи имеет большое значе­ние для увеличения стойкости инструмента. Величи­на подачи при сверлении и рассверливании зависит от заданной чистоты и точности обработки, твердо­сти обрабатываемого материала и прочности сверла.

Глубиной резания / при сверлении отверстий яв­ляется расстояние от стенки отверстия до оси сверла (т. е. радиус сверла). Определяется глубина резания пу­тем деления диаметра просверливаемого отверстия пополам.

При рассверливании (рис. 98, б) глубина резания / определяется как половина разности между диамет­ром - О сверла и диаметром с1 ранее обработанного отверстия.

Толщина среза (стружки) а измеряется в направ­лении, перпендикулярном режущей кромке сверла. Ширина среза в измеряется вдоль режущей кромки и равна ее длине (рис. 98, а).

Площадь поперечного сечения стружки /, срезае­мая обеими режущими кромками сверла, определя­ется по формуле:

Где 5о - подача в мм/об; t - глубина резания в мм.

Таким образом, площадь поперечного сечения стружки становится больше с увеличением диамет­ра сверла, а для данного сверла - с увеличением подачи.

Обрабатываемый материал оказывает сопротивле­ние резанию и удалению стружки. Для осуществле­ния процесса резания к инструменту должны быть приложены сила подачи Р0, превосходящая силы со­противления материала осевому перемещению свер­ла, и крутящий момент Мкр, необходимый для пре­одоления момента сопротивления М и для обеспече­ния главного вращательного движения шпинделя и сверла.

Сила подачи Ро при сверлении и крутящий мо­мент зависят от диаметра сверла Д величины пода­чи и свойств обрабатываемого материала: например, при увеличении диаметра сверла и подачи они также увеличиваются.

Мощность, необходимая для резания при сверле­нии и рассверливании, складывается из мощности, потребляемой на вращение инструмента, и мощнос­ти, потребляемой на подачу инструмента. Однако мощность, необходимая для подачи сверла, чрезвы­чайно мала по сравнению о мощностью, расходуе­мой на вращение сверла в процессе резания, и для практических целей ее можно не учитывать.

Стойкостью сверла называется время его непре­рывной (машинной) работы до затупления, т. е. меж­ду двумя переточками. Стойкость сверла обычно из­меряется в минутах. На стойкость сверла влияют свой­ства обрабатываемого материала, материал сверла, углы заточки и форма режущих кромок, скорость резания, сечение стружки и охлаждение.

Увеличение твердости обрабатываемого материа­ла понижает стойкость сверла. Объясняется это тем, что твердый материал оказывает большее сопротив­ление сверлению; при этом возрастают сила трения и количество выделяемого тепла.

На стойкость сверла оказывают влияние также и его размеры: чем массивнее сверло, тем лучше отво­дит оно тепло от режущих кромок и, следовательно, тем больше его стойкость. Стойкость сверла значи­тельно возрастает при его охлаждении.

В процессе резания при сверлении выделяется большое количество тепла вследствие деформации металла, трения выходящей по канавкам сверла стружки, трения задней поверхности сверла об об­рабатываемую поверхность и т. п. Основная часть тепла уносится стружкой, а остальная распреде­ляется между деталью и инструментом. Для пре­дохранения от затупления и преждевременного износа при нагреве сверла в процессе резания применяют смазывающе-охлаждающую жидкость, которая отводит тепло от стружки, детали и инст­румента.

Смазочно-охлаждающая жидкость, смазывая тру­щиеся поверхности инструмента и детали, значитель­но уменьшает трение и облегчает тем самым про­цесс резания. При работе сверлами из ин­струментальных сталей смазывающе-охлаждающие жидкости применяются в процессе сверления сталей, стального литья, цветных металлов и сплавов, а так­же частично чутунов. Обычно подача жидкости про­изводится на переднюю поверхность режущего ин­струмента, в зону стружкообразования, в обильном количестве.

К охлаждающим жидкостям, которыми пользуются при сверлении металлов, относятся мыльная и содо­вая вода, масляные эмульсии и др.

Выбор режимов резания при сверлении заклю­чается в определении такой подачи и скорости ре­зания, при которых процесс сверления детали ока­зывается наиболее производительным и эконо­мичным.

Рис. 1 Части сверла

Основные части сверла. Режущая часть (рис.1). Калибрующая (направляющая, транспортирующая) часть. Эти две части образуют рабочую часть сверла. Соединительная часть (шейка). Хвостовая часть.

Рабочая часть совместно с режущей и калибрующей частями образует две винтовые канавки и два зуба (пера), обеспечивающих процесс резания.

Калибрующая часть сверла, предназначенная для удаления стружки из зоны резания. Калибрующая часть по всей своей длине имеет ленточку и совместно с ней служит для направления сверла в отверстии.

Шейка у сверл служит для выхода шлифовального круга, а также для маркировки сверл.

Хвостовая часть бывает цилиндрической или конической с конусом Морзе. На конце хвостовой части имеется поводок или лапка.

Конструктивные элементы сверла

Сверло имеет сложную конструкцию и характеризуется диаметром и длиной сверла, шириной и высотой ленточки, диаметром спинки, центральным углом канавки, шириной зуба (пера) и диаметром (толщиной) сердцевины.

Диаметр сверла (d) . Выбор диаметра сверла зависит от технологического процесса получения данного отверстия.

Ленточка сверла. Обеспечивает направление сверла в процессе резания, уменьшает трение об поверхность отверстия и уменьшает теплообразование.

Ширина ленточки бывает от0,2–2 мм в зависимости от диаметра сверла. Ширину ленточки выбирают:

при обработке легких сплавов равной

f =1,2+0,2682 ln { d -18+[(d -18) 2 +1] 1/2 } ;

при обработке других материалов

f =(0,1…0,5) d 1/3 .

Высота ленточки обычно составляет 0,025 d мм.

Для уменьшения трения при работе на ленточках делают утонение по направлению к хвостовику, т.е. обратную конусность по диаметру на каждые 100 мм длины. Для быстрорежущих сверл обратная конусность по диаметру составляет 0,03-0,12 мм. Для твердосплавных сверл – 0,1-0,12 мм.

Сердцевина сверла влияет на прочность и жесткость, характеризуется диаметром сердцевины –d о . Величина диаметра сердцевины выбирается в зависимости от диаметра сверла. Для повышения жесткости и прочности сверла его сердцевина утолщается к хвостовику на 1,4-1,8 мм на каждые 100 мм длины.

Перемычка сверла оказывает влияние на процесс резания.

Режущие элементы сверла. Рабочая часть сверла (см. рис.) имеет шестьлезвий (режущих кромок). Двеглавные режущие кромки (1-2, 1’-2’). Двевспомогательных кромки (1-3, 1’-3’) расположенных на калибрующей части и служащие для направления сверла в процессе работы. Двепоперечные кромки (0-2, 0-2’) образующие перемычку. Все эти лезвия расположены на двух зубьях и имеют непрерывную пространственную режущую кромку, состоящую из пяти разнонаправленных отрезков (3-1, 1-2, 2-2’, 2’-1’, 1’-3’).

Геометрические параметры сверла

Угол при вершине сверла - 2 . Для быстрорежущих сверл 118-120 о, для твердосплавных 130-140 о. Угол влияет на производительность и стойкость сверла, на силы резания, длину режущей кромки и элементы сечения стружки.

Угол наклона поперечного лезвия (перемычки)-(=50-55 о ).

Угол наклона винтовых канавок сверла оказывает влияние на прочность, жесткость сверла и стружкоотвод.

Рекомендуется для хрупких материалов = 10-16 о, для обработки материалов средней прочности и вязкости -= 25-35 о, для обработки вязких материалов -= 35-45 о.

Угол наклона винтовой канавки в данном сечении х определяется по формуле

где r – радиус сверла;

r х – радиус сверла в рассматриваемой точке.

Шаг винтовых канавок р .

где D – диаметр сверла.

Диаметр сердцевины сверла – d o или К принимают равнымК =(0,125…0,145) D .

Для упрочнения инструмента диаметр К увеличивается к хвостовику сверла на 1,4 – 1,8 мм на 100 мм длины.

Диаметр спинки зуба сверла q выбирают по зависимостиq = (0,99…0,98) D .

Профиль стружечных канавок.

Угол стружечной канавки θ при обработке легких сплавов равен 116 о, других материалов 90…93 о.

Радиусы дуг , образующих профиль винтовой канавки сверла принимаются равнымиR к =(0,75…0,9) D , r к =(0,22…0,28) D , а центры дуг лежат на прямой, проходящей через центр поперечного сечения сверла.

Ширина пера. Различают ширину пера в нормальном к оси сечениюВ о и в сечении, нормальном направлению стружечной канавкиВ , которую указывают на чертеже инструмента. Ширину пераВ о определяют в нормальном к оси сверла сечении по формуле:

Передний угол главных режущих кромок . Угол является величиной переменной, наибольшее его значении на периферии сверла, а наименьшее – в центре. Угол может быть определен в нормальномN - N ( N ) сечении. Максимальное значение находится по формуле

Передние углы на поперечной режущей кромке имеют большие отрицательные значения (могут достигать -60 о). Меняются по длине кромки. Наибольшее значение в центре сверла.

Это приводит к следующему: режущая кромка не режет, а вдавливается в металл. На это тратится 65% осевой силы резания и 15% крутящего момента. Для уменьшения осевой силы уменьшают угол при вершине сверла, при этом крутящий момент возрастает и улучшаются его режущие свойства.

Задний угол главных режущих кромок - образуется на режущей части сверла на главных и поперечных режущих кромках. Является переменным и измеряется в нормальном и цилиндрическом сечениях.

Минимальное значение принимает на периферии сверла, максимальное – в центре. Эпюра углов показана на рисунке. Для сверл из быстрорежущих сталей принимается = 8-15 о. Для твердосплавных= 4-6 о.

Изменение передних и задних углов в процессе резания. В процессе резания передние и задние углы меняются и отличаются от углов заточки. Их называют кинематическими или действительными углами резания. Наибольшее значение при сверлении имеет кинематический задний угол.

Кинематический задний угол к изменяется вдоль главной режущей кромки сверла. Зависит от подачи и радиуса рассматриваемой точки режущего лезвия. Для обеспечения достаточного значения заднего угла в процессе резания его делают переменным вдоль режущей кромки. На периферии 8-14 о, а у сердцевины 20-25 о в зависимости от диаметра сверла.

Формы задней поверхности сверл. Различают одноплоскостные и двухплоскостные формы задней поверхности.

Оформление зад­ней поверхности по плоскости. Это наи­более простой одноплоскостной способ заточки сверл, при нем необходи­мо иметь задние углы не менее 20 - 25°. При этом способе заточки значения зад­него угла зависят от угла при вершине сверла2 и заднего угла на периферии.

Недостатком таких сверл является прямолинейная поперечная кромка, кото­рая при работебез кондуктора не обеспе­чивает правильного центрирования сверла.

К
двухплоскостной форме задней поверх­ности сверл относится коническая, цилиндрическая и винтовая форма задней поверхности.

Такая форма задней поверх­ности позволяет получить независимые значения заднего угла на периферии , угла при вершине2 и угла наклона поперечной кромки.

Коническая форма задней поверхности сверла является участком конической по­верхности.

Для образования задних углов вершина конуса смещается относительно оси сверла на вели­чину Н , равную или больше радиуса пере­мычки, иось конуса наклонена к продоль­ной оси сверла под углом.

Ци­линдрическая форма задней поверхности сверла является участком цилиндрической поверхности. Этот метод применяют редко.

Винтовая форма задней поверхности сверла является развертывающейся винто­вой поверхностью. Она позволяет полу­чить рациональное распределение значений задних углови более выпуклую поперечную кромку сверла, что улучшает самоцентрирование сверла при работе.

У таких сверл увеличиваются значения задних углов на поперечной режущей кромке, что приво­дит к уменьшению осевых нагрузок. Большим преимуществом винтовой заточки является возможность автоматизации процесса заточки.

В зависимости от конструкции и назначения различают спиральные, перовые, для глубокого сверления, центровочные, с пластинками из твердых сплавов и другие сверла (рис.1).

Наиболее распространены спиральные сверла. Они имеют две главные режущие кромки, образованные пересечением передних винтовых поверхностей канавок сверла, по которым сходит стружка, с задними поверхностями, обращенными к поверхности резания; поперечную режущую кромку (перемычку), образованную пересечением обеих задних поверхностей, и две вспомогательные режущие кромки, образованные пересечением передних поверхностей с поверхностью ленточки.

Ленточка сверла представляет собой узкую полоску на его цилиндрической поверхности, расположенную вдоль винтовой канавки и предназначенную для направления сверла при резании.

Угол наклона винтовой канавки – угол между осью сверла и касательной к винтовой линии по наружному диаметру сверла (20-30°).

Угол наклона поперечной режущей кромки (перемычки) – острый угол между проекциями поперечной и главной режущих кромок на плоскость, перпендикулярную оси сверла (50-55°).

Угол режущей части (угол при вершине) – угол между главными режущими кромками при вершине сверла (118°).

Передний угол – угол между касательной к передней поверхности в рассматриваемой точке режущей кромки и нормально в той же точке к поверхности вращения режущей кромки вокруг оси сверла. По длине режущей кромки передний угол изменяется: наибольший у наружной поверхности сверла, где он практически равен углу наклона винтовой канавки, наименьшей у поперечной режущей кромки.

Задний угол – угол между касательной к задней поверхности в рассматриваемой точке режущей кромки и касательной в той же точке окружности ее вращения вокруг оси сверла. Задний угол сверла величина переменная: 8-14°на периферии сверла и 20-26° - ближе к центру.

Спиральные сверла изготавливают из быстрорежущей стали Р9, Р18 и стали 9ХС.

Хвостовик спирального сверла может быть цилиндрическим и коническим. Цилиндрический хвостовик (у сверл диаметром до 10 мм) служит для крепления сверла в трехкулачковом патроне или другом приспособлении, предназначенном для соединения сверл со шпинделем сверлильного станка. Конический хвостовик закрепляет непосредственно в шпинделе станка или в переходной втулке, если конус сверла не совпадает с конусом шпинделя.

У сверл диаметром 6-15,5 мм хвостовик изготавливается с конусом Морзе №1, у сверл с диаметрами 16-23,5 мм - №2, у сверл диаметрами 23,9-38,9 мм - №3, у сверл диаметрами 39-49,5 мм - №4 и т.д.

Лапка на конце хвостовика препятствует провертыванию сверла в шпинделе. Она служит также для выбивания сверла из шпинделя по окончании работы. Для этого в боковое отверстие шпинделя вставляют клин и ударяют по нему молотком. Клин давит на лапку, и сверло освобождается.

Спиральное сверло имеет следующие основные части (рисунок 25): режущая 3, направляющая 1 или калибрующая, хвостовик 5 и соединительная 4 (шейка). Режущая и направляющая части в совокупности составляют рабочую часть 2 сверла, снабженную двумя винтовыми канавками 8.

Режущая часть спирального сверла состоит из двух зубьев, которые в процессе сверления своими режущими кромками 9 врезаются в материал заготовки и срезают его в виде стружки, которая затем отводится по винтовым канавкам. Рабочая часть является основной частью сверла. Условия работы сверла определяются главным образом конструкцией режущей части сверла.

Передними поверхностями 10 сверла являются поверхности винтовых канавок, по которым сходит стружка. Задними поверхностями 11 сверла являются поверхности зуба сверла, обращенные к поверхности резания (по которой происходит отделение стружки от заготовки). Задние поверхности могут быть заточены как плоские, винтовые, конические или цилиндрические поверхности. Линия пересечения задних поверхностей обеих зубьев сверла образует поперечную режущую кромку 13, расположенную в центральной зоне сверла.

Направляющая часть сверла необходима для создания направления при работе инструмента. Поэтому она имеет две направляющие винтовые ленточки (спиральные фаски) 12, которые участвуют в оформлении (калибровании) поверхности обработанного отверстия. Кроме этого направляющая часть сверла служит запасом для переточек инструмента.

Рисунок 25 – Спиральное сверло

Хвостовик, который может быть конической (с лапкой 6) (рисунок 25, а ) или цилиндрической (с поводком 7 и без поводка) (рисунок 25, б ) формы, служит для закрепления сверла на станке. Он с помощью цилиндрической шейки соединяется с рабочей частью сверла. Наиболее часто рабочая часть сверла изготавливается из быстрорежущей стали, а хвостовик из стали 45. Рабочая часть и хвостовик соединяются сваркой. В промышленности используют также твердосплавные сверла. Режущая часть этих сверл оснащается пластинками твердого сплава. У твердосплавных сверл малого диаметра полностью вся рабочая часть может изготавливаться из твердого сплава.



Диаметры просверленных отверстий всегда больше диаметра сверла, которым они обработаны. Разность диаметров сверла и просверленного им отверстия называют разбивкой отверстия . Для стандартных сверл диаметром 10…20 мм разбивка составляет 0,15…0,25 мм. Причиной разбивки отверстий являются недостаточная точность заточки сверл и несоосность сверла и шпинделя сверлильного станка.

Для уменьшения разбивки и для предотвращения возможного защемления сверла в просверливаемом отверстии диаметр сверла в направлении от режущей части несколько уменьшается. Уменьшение диаметра принято называть обратной конусностью и определять разность Δ диаметров на расстоянии l 0 = 100 мм длины рабочей части.

3.1.2 Геометрические параметры

Углом наклона винтовой канавки ω (см. рисунок 25, в ) называется угол, образуемый осью сверла и касательной к вершине винтовой линии пересечения передней поверхности сверла с цилиндрической поверхностью, ось которой совпадает с осью сверла и диаметр, который равен диаметру сверла.

Режущие кромки наклонены к оси сверла и образуют между собой угол при вершине 2φ (главный угол в плане). С увеличением угла при вершине сверла уменьшается активная длина режущей кромки и увеличивается толщина среза, что приводит к увеличению усилий, действующих на единицу длины режущих кромок, и способствует повышению интенсивности износа сверла. Известно, что нормальная работа сверла может иметь место тогда, когда надежно обеспечивается вывод стружки по канавкам и не наблюдается ее защемление и пакетирование. Как показывают исследования, увеличение угла при вершине 2φ приводит к более плавному изменению передних углов вдоль режущей кромки, что благоприятно отражается на режущей способности сверла.

Задний угол α является важным элементом конструкции сверла, его размер в значительной мере влияет на стойкость инструмента.

Заточка спиральных сверл

Для удаления изношенных участков инструмента, образования новых лезвий и восстановления режущих свойств были разработаны всевозможные способы заточек стандартных сверл.

Форма заточки сверла выбирается в зависимости от свойств обрабатываемых материалов и диаметра инструмента. Основные формы заточек спиральных сверл приведены на рисунке 26.

Нормальная без подточек (Н) – для сверл диаметром до 12 мм. Применяется для сверл универсального применения при обработке стали, стального литья, чугуна.

Нормальная с подточкой поперечной кромки (НП) – для обработки стального литья с σ в ≤ 500 МПа с неснятой коркой. Подточка поперечной кромки уменьшает ее длину, что улучшает условия резания.

Нормальная с подточкой поперечной кромки и ленточки (НПЛ) – для сверл диаметром 12…80 мм. Применяется для обработки стали, стального литья с σ в > 500 МПа со снятой коркой, чугуна с неснятой коркой. Подточка ленточки до ширины 0,1-0,2 мм на длине 3-4 мм уменьшает трение в наиболее напряженном участке сверла и улучшает условия резания.

Двойная с подточкой поперечной кромки (ДП) – для обработки стального литья с σ в ≥ 500 МПа и чугуна с неснятой коркой. Увеличивается длина режущей кромки, уменьшается толщина стружки, улучшается отвод теплоты, значительно увеличивается стойкость.

Двойная с подточкой поперечной кромки и ленточки (ДПЛ) – для сверл универсального применения при обработке стального литья с σ в >500 МПа и чугуна со снятой коркой.

Двойная с подточкой и срезанной поперечной кромкой (ДП-2)­­ – для обработки хрупких материалов.

Загрузка...