domvpavlino.ru

Подключение нескольких датчиков температуры ds18b20 к arduino. Считываем показания датчика DS18B20 (DS18S20). Dallas18B20 экстремальное тестирование

В ассортименте нашего магазина появился датчик температуры DALLAS 18B20 во влагозащищенном корпусе с широким диапазоном измеряемых температур от -55 до +125°С. Данные о влагозащищенности и максимальной температуре в +125 градусов сразу натолкнули на мысли об экстремальном тестировании в кипящей воде. Этим мы и займемся.

Компоненты для повторения (купить в Китае):

Данный датчик работает по шине 1-Wire.

Каждое такое устройство содержит уникальный 64-битный "ROM" код, состоящий из 8 битов, определяющих код серии, 48 бит уникального номера и 8 бит помехоустойчивого CRC кода.

Информация об измеренной температуре хранится в оперативной памяти датчика, которая состоит из 9 байт.

1 и 2 байты хранят информацию о температуре.

3 и 4 байты хранят соответственно верхний и нижний пределы температуры.

5 и 6 байты зарезервированы.

7 и 8 байты используются для сверхточного измерения температуры.

9 байт хранит помехоустойчивый CRC код предыдущих 8 байт.

Основные команды, используемые при работе с библиотекой:

search(addressArray)

Выполняет поиск следующего 1-Wire устройства, если устройство найдено, то в 8 байтный массив addressArray записывается его ROM код, иначе возвращает false.

reset_search()

Выполняет новый поиск с первого устройства.

reset()

Выполняет сброс шины, необходимо перед связью с датчиком.

select(addressArray)

Выполняет выбор устройства после сброса, передается ROM Код устройства.

write(byte)

Передает информационный байт на устройство

write(byte, 1)

read()

Считывает информационный байт с устройства

crc8(dataArray, length)

Вычисляет CRC код байтов из массива dataArray, длиной length

При помощи команды write, мы можем передавать управляющие команды на датчик в виде байтов, рассмотрим основные из них:

0x44 - провести измерение температуры и записать данные в оперативную память

0x4E - записать 3 байта в 3й, 4й и 5й байты оперативной памяти

0x48 - скопировать 3й и 4й байты оперативной памяти в EEPROM

0xB8 - скопировать данные из EEPROM В 3й и 4й байты оперативной памяти

Подключение к Arduino

Из датчика выходят три провода:

Красный: "+" питания.

Черный: "-" питания

Белый: Вывод выходного сигнала

Подключение датчика:

Красный: на + 5 Вольт Arduino.

Черный на любой из GND пинов--- Arduino.

Белый на любый цифровой вход Arduino (в примере D10).

Для работы датчика необходимо соединить сигнальный провод с проводом питания резистором номиналом 4.7 кОм.

Для начала рассмотрим самый полезный пример для работы с датчиком - вывод показаний температуры в монитор порта.

Пример программного кода

#include OneWire ds(10); // подключен к 10 пину (резистор на 4.7к обязателен) void setup(void) { Serial.begin(9600); } void loop(void) { byte i; byte present = 0; byte type_s; byte data; byte addr; float celsius, fahrenheit; if (!ds.search(addr)) { Serial.println("No more addresses."); Serial.println(); ds.reset_search(); delay(250); return; } Serial.print("ROM ="); for(i = 0; i < 8; i++) { Serial.write(" "); Serial.print(addr[i], HEX); } if (OneWire::crc8(addr, 7) != addr) { Serial.println("CRC is not valid!"); return; } Serial.println(); // the first ROM byte indicates which chip switch (addr) { case 0x10: Serial.println(" Chip = DS18S20"); // or old DS1820 type_s = 1; break; case 0x28: Serial.println(" Chip = DS18B20"); type_s = 0; break; case 0x22: Serial.println(" Chip = DS1822"); type_s = 0; break; default: Serial.println("Device is not a DS18x20 family device."); return; } ds.reset(); ds.select(addr); ds.write(0x44, 1); // начало коммуникации delay(1000); present = ds.reset(); ds.select(addr); ds.write(0xBE); // читаем значение Serial.print(" Data = "); Serial.print(present, HEX); Serial.print(" "); for (i = 0; i < 9; i++) { // смотрим 9 байтов data[i] = ds.read(); Serial.print(data[i], HEX); Serial.print(" "); } Serial.print(" CRC="); Serial.print(OneWire::crc8(data, 8), HEX); Serial.println(); // Преобразуем получненный данные в температуру // Используем int16_t тип, т.к. он равен 16 битам // даже при компиляции под 32-х битный процессор int16_t raw = (data << 8) | data; if (type_s) { raw = raw << 3; if (data == 0x10) { raw = (raw & 0xFFF0) + 12 - data; } } else { byte cfg = (data & 0x60); if (cfg == 0x00) raw = raw & ~7; else if (cfg == 0x20) raw = raw & ~3; else if (cfg == 0x40) raw = raw & ~1; } celsius = (float)raw / 16.0; fahrenheit = celsius * 1.8 + 32.0; Serial.print(" Temperature = "); Serial.print(celsius); Serial.print(" Celsius, "); Serial.print(fahrenheit); Serial.println(" Fahrenheit"); }

Dallas18B20 экстремальное тестирование

Как уже говорилось, мы решили устроить датчику экстремальное тестирование, но просто опускать датчик в кипяток это не интересно. Поместим датчик в стакан и прокипятим. Для наглядности в монитор порта будут выводиться значения температуры. На прикрепленном ниже видео видно плавное нарастание температуры. Хочется отметить что температура воды при нормальном атмосферном давлении не может быть выше 100 °С. При тестировании датчика в кипящей воде, максимально зафиксированная нами температура составила 99.87°С. Тест можно считать успешным.

В схему было добавлено реле, для автоматического отключения кипятильника при температуре 99.5°С. Чтобы не резать провода на кипятильнике подключим через розетку, внутри которой находится вышеупомянутое реле.

Важно

Датчик температуры находится в металлическом корпусе, переход от металла на кабель заизолирован термоусадочной трубкой. На металле трубка прилегает очень плотно, на кабеле слабее, через это место может, хоть вероятность и мала, просочиться вода. С целью избежания данной ситуации мы советуем не погружать датчик в воду целиком. Если у вас все таки есть такая необходимость, мы рекомендуем заизолировать данный участок более тщательно.

Код примера

#include OneWire ds(10); // подключен к 10 пину (резистор на 4.7к обязателен) void setup(void) { Serial.begin(9600); pinMode(3, OUTPUT); // Включаем кипятильник digitalWrite(3, LOW); } void loop(void) { byte i; byte present = 0; byte type_s; byte data; byte addr; float celsius, fahrenheit; if (!ds.search(addr)) { Serial.println("No more addresses."); Serial.println(); ds.reset_search(); delay(250); return; } Serial.print("ROM ="); for(i = 0; i < 8; i++) { Serial.write(" "); Serial.print(addr[i], HEX); } if (OneWire::crc8(addr, 7) != addr) { Serial.println("CRC is not valid!"); return; } Serial.println(); // the first ROM byte indicates which chip switch (addr) { case 0x10: Serial.println(" Chip = DS18S20"); // or old DS1820 type_s = 1; break; case 0x28: Serial.println(" Chip = DS18B20"); type_s = 0; break; case 0x22: Serial.println(" Chip = DS1822"); type_s = 0; break; default: Serial.println("Device is not a DS18x20 family device."); return; } ds.reset(); ds.select(addr); ds.write(0x44, 1); // начало коммуникации delay(1000); present = ds.reset(); ds.select(addr); ds.write(0xBE); // читаем значение Serial.print(" Data = "); Serial.print(present, HEX); Serial.print(" "); for (i = 0; i < 9; i++) { // смотрим 9 байтов data[i] = ds.read(); Serial.print(data[i], HEX); Serial.print(" "); } Serial.print(" CRC="); Serial.print(OneWire::crc8(data, 8), HEX); Serial.println(); // Преобразуем получненный данные в температуру // Используем int16_t тип, т.к. он равен 16 битам // даже при компиляции под 32-х битный процессор int16_t raw = (data << 8) | data; if (type_s) { raw = raw << 3; if (data == 0x10) { raw = (raw & 0xFFF0) + 12 - data; } } else { byte cfg = (data & 0x60); if (cfg == 0x00) raw = raw & ~7; else if (cfg == 0x20) raw = raw & ~3; else if (cfg == 0x40) raw = raw & ~1; } celsius = (float)raw / 16.0; fahrenheit = celsius * 1.8 + 32.0; Serial.print(" Temperature = "); Serial.print(celsius); Serial.print(" Celsius, "); Serial.print(fahrenheit); Serial.println(" Fahrenheit"); // Если температура достигает температуры кипения (с погрешностью), отключаем кипятильник if (celsius > 99.5) { digitalWrite(3, HIGH); } }

#include

OneWire ds(10); // Подключаем датчик к 10 цифровому пину

void setup(void) {
Serial.begin(9600);
pinMode(3, OUTPUT);
// Включаем кипятильник
digitalWrite(3, LOW);
}

void loop(void) {
byte i;
byte type_s;
byte data;
byte addr;
float celsius, fahrenheit;

// Ищем алрес датчика
if (!ds.search(addr)) {
Serial.println("No more addresses.");
Serial.println();
ds.reset_search();
delay(250);
return;
}

// Проверяем не было ли помех при передаче
if (OneWire::crc8(addr, 7) != addr) {
Serial.println("CRC is not valid!");
return;
}
Serial.println();

// Определяем серию датчика
switch (addr) {
case 0x10:
Serial.println(" Chip = DS18S20");
type_s = 1;
break;
case 0x28:
Serial.println(" Chip = DS18B20");
type_s = 0;
break;
case 0x22:
Serial.println(" Chip = DS1822");
type_s = 0;
break;
default:
Serial.println("Device is not a DS18x20 family device.");
return;
}

ds.reset();
ds.select(addr);
ds.write(0xBE); // Считываем оперативную память датчика

for (i = 0; i < 9; i++) {
data[i] = ds.read(); // Заполняем массив считанными данными
}

// Данные о температуре содержатся в первых двух байтах, переведем их в одно значение и преобразуем в шестнадцатиразрядное число
int16_t raw = (data << 8) | data;
if (type_s) {
raw = raw << 3;
if (data == 0x10) {
raw = (raw & 0xFFF0) + 12 - data;
}
}
else {
byte cfg = (data & 0x60);
if (cfg == 0x00) raw = raw & ~7;
else if (cfg == 0x20) raw = raw & ~3;
else if (cfg == 0x40) raw = raw & ~1;
}
celsius = (float)raw / 16.0;
fahrenheit = celsius * 1.8 + 32.0;
Serial.print("Temp = ");
Serial.print(celsius);
Serial.print(" C, ");
Serial.print(fahrenheit);
Serial.println(" F");

// Если температура достигает температуры кипения (с погрешностью), отключаем кипятильник
if (celsius > 99.5)
{
digitalWrite(3, HIGH);
}
}

Купить в России

DS18B20 - это цифровой датчик температуры. Датчик очень прост в использовании.

Во-первых, он цифровой, а во вторых - у него всего лишь один контакт, с которого мы получаем полезный сигнал. То есть, вы можете подключить к одному Arduino одновременно огромное количество этих сенсоров. Пинов будет более чем достаточно. Мало того, вы даже можете подключить несколько сенсоров к одному пину на Arduino! Но обо всем по порядку.

DS18B20 имеет различные форм-факторы. Так что выбор, какой именно использовать, остается за вами. Доступно три варианта: 8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92. Серфинг по eBay или Aliexpress показывает, что китайцы предлагают версию TO-92 во влагозащищенном корпусе. То есть, вы можете смело окунать подобное чудо в воду, использовать под дождем и т.д. и т.п. Эти сенсоры изготавливаются с тремя выходными контактами (черный - GND, красный - Vdd и белый - Data).

Различные форм-факторы датчиков DS18B20 приведены на рисунке ниже.

Модель DS18B20 во влагозащищенном корпусе:


DS18B20 удобен в использовании. Запитать его можно через контакт data (в таком случае вы используете всего два контакта из трех для подключения!). Сенсор работает в диапазоне напряжений от 3.0 В до 5.5 В и измеряет температуру в диапазоне от -55°C до +125°C (от -67°F до +257°F) с точностью ±0.5°C (от -10°C до +85°C).

Еще одна крутая фича: вы можете подключить параллельно вплоть до 127 датчиков! и считывать показания температуры с каждого отдельно. Не совсем понятно, в каком проекте подобное может понадобится, но подключить два сенсора и контролировать температуру в холодильнике и морозильной камере можно. При этом вы оставите свободными кучу пинов на Arduino... В общем, фича приятная.

Что вам понадобится для контроля температуры с помощью Arduino и DS18B20

Программное обеспечение

  • Естественно, вам необходима Arduino IDE;
  • Библиотека OneWire library, которая значительно облегчает работу с Arduino и датчиком DS18B20;
  • Скетч...

Загружаем скетч на Arduino

Скетч, который представлен ниже, есть в библиотеке OneWire, в категории examples. Перейдите в “File” - “Examples” - “OneWire” и выберите пример “DS18x20_Temperature”. Код программы представлен ниже.

Данный пример использует библиотеку OneWire Library, для того, чтобы собрать данные со всех подключенных датчиков температуры DS28B20 (как подключить несколько сенсоров описано в конце статьи) и отобразить их в окне серийного монитора Arduino IDE.

В окне серийного монитора вы увидите примерно следующее:

ROM = 28 88 84 82 5 0 0 6A

No more addresses.

ROM = 28 88 84 82 5 0 0 6A

Data = 1 56 1 4B 46 7F FF A 10 D1 CRC=D1

Temperature = 21.37 Celsius, 70.47 Fahrenheit

No more addresses.

ROM = 28 88 84 82 5 0 0 6A

Data = 1 56 1 4B 46 7F FF A 10 D1 CRC=D1

Temperature = 21.37 Celsius, 70.47 Fahrenheit

No more addresses.

Убедитесь, что вы указали корректные пины!

В строке 10, где указано “OneWire ds(2);” устанавливается пин, к которому подключен контакт data с сенсора.

В этом примере использован пин 2, но значения пина по умолчанию в примере OneWire стоит на 10. Можно использовать и его.

#include <OneWire.h>

// пример использования библиотеки OneWire DS18S20, DS18B20, DS1822

OneWire ds(2); // на пине 10 (нужен резистор 4.7 КОм)

void setup(void) {

Serial.begin(9600);

void loop(void) {

byte present = 0;

float celsius, fahrenheit;

if (!ds.search(addr)) {

Serial.println("No more addresses.");

Serial.println();

ds.reset_search();

Serial.print("ROM =");

Serial.write(" ");

Serial.print(addr[i], HEX);

if (OneWire::crc8(addr, 7) != addr) {

Serial.println("CRC is not valid!");

Serial.println();

// первый байт определяет чип

Serial.println(" Chip = DS18S20"); // или более старый DS1820

Serial.println(" Chip = DS18B20");

Serial.println(" Chip = DS1822");

Serial.println("Device is not a DS18x20 family device.");

ds.select(addr);

delay(1000); // 750 может быть достаточно, а может быть и не хватит

// мы могли бы использовать тут ds.depower(), но reset позаботится об этом

present = ds.reset();

ds.select(addr);

Serial.print(" Data = ");

Serial.print(present, HEX);

Serial.print(" ");

data[i] = ds.read();

Serial.print(data[i], HEX);

Serial.print(" ");

Serial.print(" CRC=");

Serial.print(OneWire::crc8(data, 8), HEX);

Serial.println();

// конвертируем данный в фактическую температуру

// так как результат является 16 битным целым, его надо хранить в

// переменной с типом данных "int16_t", которая всегда равна 16 битам,

// даже если мы проводим компиляцию на 32-х битном процессоре

int16_t raw = (data

if (data == 0x10) {

raw = (raw & 0xFFF0) + 12 - data;

byte cfg = (data & 0x60);

// при маленьких значениях, малые биты не определены, давайте их обнулим

if (cfg == 0x00) raw = raw & ~7; // разрешение 9 бит, 93.75 мс

else if (cfg == 0x20) raw = raw & ~3; // разрешение 10 бит, 187.5 мс

else if (cfg == 0x40) raw = raw & ~1; // разрешение 11 бит, 375 мс

//// разрешение по умолчанию равно 12 бит, время преобразования - 750 мс

celsius = (float)raw / 16.0;

fahrenheit = celsius * 1.8 + 32.0;

Serial.print(" Temperature = ");

Serial.print(celsius);

Serial.print(" Celsius, ");

Serial.print(fahrenheit);

Serial.println(" Fahrenheit");

Как подключить несколько сенсоров DS18B20 к Arduino?

Вы можете подключить несколько цифровых датчиков температуры DS18B20 параллельно. При этом библиотека OneWire library позволит вам считывать данные со всех датчиков одновременно.

Ниже описаны два метода подключения сенсоров.

Для большого количества сенсоров (больше 10), надо использовать резисторы с меньшим сопротивлением (например, 1.6 КОм или даже меньше).

Кроме того, если вы подключаете параллельно более 10 датчиков, могут возникнуть проблемы (погрешности при съеме показаний). Поэтому рекомендуется устанавливать дополнительный резистор сопротивлением 100...120 Ом между контактом data на Arduino и data на каждом сенсоре!

Результат работы предыдущего скетча с двумя подключенными сенсорами может выглядет примерно следующим образом:

ROM = 28 88 84 82 5 0 0 6A

Data = 1 51 1 4B 46 7F FF F 10 FE CRC=FE

Temperature = 21.06 Celsius, 69.91 Fahrenheit

ROM = 28 DA CA 27 5 0 0 49

Data = 1 4E 1 4B 46 7F FF 2 10 D9 CRC=D9

Temperature = 20.87 Celsius, 69.57 Fahrenheit

No more addresses.

Выбираем правильный сенсор

Было бы неплохо знать, с какого именно сенсора вы получаете данные, когда вы используете параллельно несколько датчиков. Как это сделать?

Серийный номер

Так как датчики цифровые, у каждого из них есть индивидуальный серийный номер, который можно использовать для опознавания того или иного сенсора. Вроде бы все просто. Но... нам ведь надо предварительно определить эти серийные номера, прежде чем использовать их для опознавания сенсора, правильно?

Вы могли обратить на примерах выше, что скетч выдает нам данные в виде 64-битного серийного номера - значение “ROM”. Например:

28 88 84 82 5 0 0 6A или 28 DA CA 27 5 0 0 49 в примере выше.

Не забывайте, если вы используете одновременно большое количество датчиков (10 и больше), надо добавить резисторы 100 … 120 Ом между контактами data с сенсора DS18B20 и пином data на Arduino (для каждого датчика!).

Ниже показана схема параллельного подключения нескольких сенсоров с использованием трех контактов.


Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!

Датчик температуры в Arduino – один из самых распространенных видов сенсоров. Разработчику проектов с термометрами на Arduino доступно множество разных вариантов, отличающихся по принципу действия, точности, конструктивному исполнению. Цифровой датчик DS18B20 является одним из наиболее популярных температурных датчиков, часто он используется в водонепроницаемом корпусе для измерения температуры воды или других жидкостей. В этой статье вы найдете описание датчика ds18b20 на русском, мы вместе рассмотрим особенности подключения к ардуино, принцип работы датчика, описание библиотек и скетчей.

DS18B20 – это цифровой температурный датчик, обладающий множеством полезных функций. По сути, DS18B20 – это целый микроконтроллер, который может хранить значение измерений, сигнализировать о выходе температуры за установленные границы (сами границы мы можем устанавливать и менять), менять точность измерений, способ взаимодействия с контроллером и многое другое. Все это в очень небольшом корпусе, который, к тому же, доступен в водонепроницаемом исполнении.

Температурный датчик DS18B20 имеет разнообразные виды корпуса. Можно выбрать один из трех – 8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92. Последний является наиболее распространенным и изготавливается в специальном влагозащитном корпусе, так что его смело можно использовать под водой. У каждого датчика есть 3 контакта. Для корпуса TO-92 нужно смотреть на цвет проводов: черный – земля, красный – питание и белый/желтый/синий – сигнал. В интернет-магазинах можно купить готовый модуль DS18B20.

Где купить датчик

Естественно, что DS18B20 дешевле всего купить на Алиэкспрессе, хотя он продается и в любых специализированных российских интернет-магазинах с ардуино. Приведем несколько ссылок для примера:

Память датчика состоит из двух видов: оперативной и энергонезависимой – SRAM и EEPROM. В последнюю записываются регистры конфигурации и регистры TH, TL, которые могут использоваться как регистры общего назначения, если не используются для указания диапазона допустимых значений температуры.

Основной задачей DS18B20 является определение температуры и преобразование полученного результата в цифровой вид. Мы можем самостоятельно задать необходимое разрешение, установив количество бит точности – 9, 10, 11 и 12. В этих случаях разрешающие способности будут соответственно равны 0,5С, 0,25С, 0,125С и 0,0625С.

Полученные температурные измерения сохраняются в SRAM датчика. 1 и 2 байты сохраняют полученное значение температуры, 3 и 4 сохраняют пределы измерения, 5 и 6 зарезервированы, 7 и 8 используются для высокоточного определения температуры, последний 9 байт хранит устойчивый к помехам CRC код.

Подключение DS18B20 к Arduino

DS18B20 является цифровым датчиком. Цифровые датчики передают значение измеряемой температуры в виде определенного двоичного кода, который поступает на цифровые или аналоговые пины ардуино и затем декодируется. Коды могут быть самыми разными, ds18b20 работает по протоколу данных 1-Wire. Мы не будем вдаваться в подробности этого цифрового протокола, укажем лишь необходимый минимум для понимания принципов взаимодействия.

Обмен информацией в 1-Wire происходит благодаря следующим операциям:

  • Инициализация – определение последовательности сигналов, с которых начинается измерение и другие операции. Ведущее устройство подает импульс сброса, после этого датчик должен подать импульс присутствия, сообщающий о готовности к выполнению операции.
  • Запись данных – происходит передача байта данных в датчик.
  • Чтение данных – происходит прием байта из датчика.

Для работы с датчиком нам понадобится программное обеспечение:

  • Arduino IDE;
  • Библиотека OneWire, если используется несколько датчиков на шине, можно использовать библиотеку DallasTemperature. Она будет работать поверх OneWire.

Из оборудования понадобятся:

  • Один или несколько датчиков DS18B20;
  • Микроконтроллер Ардуино;
  • Коннекторы;
  • Резистор на 4,7 кОм (в случае подключения одного датчика пойдет резистор номиналом от 4 до 10K);
  • Монтажная плата;
  • USB-кабель для подключения к компьютеру.

К плате Ардуино UNO датчик подключается просто: GND с термодатчика присоединяется к GND Ардуино, Vdd подключается к 5V, Data – к любому цифровому пину.

Простейшая схема подключения цифрового датчика DS18B20 представлена на рисунке.

Алгоритм получения информации о температуре в скетче состоит из следующих этапов:

  • Определение адреса датчика, проверка его подключения.
  • На датчик подается команда с требованием прочитать температуру и выложить измеренное значение в регистр. Процедура происходит дольше остальных, на нее необходимо примерно 750 мс.
  • Подается команда на чтение информации из регистра и отправка полученного значения в «монитор порта»,
  • Если требуется, то производится конвертация в градусы Цельсия/Фаренгейта.

Пример простого скетча для DS18B20

Самый простой скетч для работы с цифровым датчиком выглядит следующим образом. (в скетче мы используем библиотеку OneWire, о которой поговорим подробнее чуть позже).

#include /* * Описание взаимодействия с цифровым датчиком ds18b20 * Подключение ds18b20 к ардуино через пин 8 */ OneWire ds(8); // Создаем объект OneWire для шины 1-Wire, с помощью которого будет осуществляться работа с датчиком void setup(){ Serial.begin(9600); } void loop(){ // Определяем температуру от датчика DS18b20 byte data; // Место для значения температуры ds.reset(); // Начинаем взаимодействие со сброса всех предыдущих команд и параметров ds.write(0xCC); // Даем датчику DS18b20 команду пропустить поиск по адресу. В нашем случае только одно устрйоство ds.write(0x44); // Даем датчику DS18b20 команду измерить температуру. Само значение температуры мы еще не получаем - датчик его положит во внутреннюю память delay(1000); // Микросхема измеряет температуру, а мы ждем. ds.reset(); // Теперь готовимся получить значение измеренной температуры ds.write(0xCC); ds.write(0xBE); // Просим передать нам значение регистров со значением температуры // Получаем и считываем ответ data = ds.read(); // Читаем младший байт значения температуры data = ds.read(); // А теперь старший // Формируем итоговое значение: // - сперва "склеиваем" значение, // - затем умножаем его на коэффициент, соответсвующий разрешающей способности (для 12 бит по умолчанию - это 0,0625) float temperature = ((data << 8) | data) * 0.0625; // Выводим полученное значение температуры в монитор порта Serial.println(temperature); }

Скетч для работы с датчиком ds18b20 без delay

Можно немного усложнить программу для ds18b20, чтобы избавиться от , тормозящей выполнение скетча.

#include OneWire ds(8); // Объект OneWire int temperature = 0; // Глобальная переменная для хранения значение температуры с датчика DS18B20 long lastUpdateTime = 0; // Переменная для хранения времени последнего считывания с датчика const int TEMP_UPDATE_TIME = 1000; // Определяем периодичность проверок void setup(){ Serial.begin(9600); } void loop(){ detectTemperature(); // Определяем температуру от датчика DS18b20 Serial.println(temperature); // Выводим полученное значение температуры // Т.к. переменная temperature имеет тип int, дробная часть будет просто отбрасываться } int detectTemperature(){ byte data; ds.reset(); ds.write(0xCC); ds.write(0x44); if (millis() - lastUpdateTime > TEMP_UPDATE_TIME) { lastUpdateTime = millis(); ds.reset(); ds.write(0xCC); ds.write(0xBE); data = ds.read(); data = ds.read(); // Формируем значение temperature = (data << 8) + data; temperature = temperature >> 4; } }

Библиотека DallasTemperature и DS18b20

В своих скетчах мы можем использовать библиотеку DallasTemperature, упрощающую некоторые аспекты работы с датчиком ds18b20 по 1-Wire. Пример скетча:

#include // Номер пина Arduino с подключенным датчиком #define PIN_DS18B20 8 // Создаем объект OneWire OneWire oneWire(PIN_DS18B20); // Создаем объект DallasTemperature для работы с сенсорами, передавая ему ссылку на объект для работы с 1-Wire. DallasTemperature dallasSensors(&oneWire); // Специальный объект для хранения адреса устройства DeviceAddress sensorAddress; void loop(void){ // Запрос на измерения датчиком температуры Serial.print("Измеряем температуру..."); dallasSensors.requestTemperatures(); // Просим ds18b20 собрать данные Serial.println("Выполнено"); // Запрос на получение сохраненного значения температуры printTemperature(sensorAddress); // Задержка для того, чтобы можно было что-то разобрать на экране delay(1000); } // Вспомогательная функция печати значения температуры для устрйоства void printTemperature(DeviceAddress deviceAddress){ float tempC = dallasSensors.getTempC(deviceAddress); Serial.print("Temp C: "); Serial.println(tempC); } // Вспомогательная функция для отображения адреса датчика ds18b20 void printAddress(DeviceAddress deviceAddress){ for (uint8_t i = 0; i < 8; i++) { if (deviceAddress[i] < 16) Serial.print("0"); Serial.print(deviceAddress[i], HEX); } }

Библиотека OneWire для работы с DS18B20

DS18B20 использует для обмена информацией с ардуино протокол 1-Wire, для которого уже написана отличная библиотека. Можно и нужно использовать ее, чтобы не реализовывать все функции вручную. . Для установки библиотеки скачайте архив, распакуйте в папку library вашего каталога Arduino. Подключается библиотека с помощью команды #include

Все датчики DS18B20 подключаются параллельно, для них всех достаточно одного резистора. При помощи библиотеки OneWire можно одновременно считать все данные со всех датчиков. Если количество подключаемых датчиков более 10, нужно подобрать резистор с сопротивлением не более 1,6 кОм. Также для более точного измерения температуры нужно поставить дополнительный резистор на 100…120 Ом между выходом data на плате Ардуино и data на каждом датчике. Узнать, с какого датчика получено то или иное значение, можно с помощью уникального серийного 64-битного кода, который будет выдан в результате выполнения программы.

Для подключения температурных датчиков в нормальном режиме нужно использовать схему, представленную на рисунке.

Выводы

Микросхема Dallas DS18B20 является очень интересным устройством. Датчики температуры и термометры, созданные на ее основе, обладают приемлемыми для большинства задач характеристиками, развитым функционалом, относительно не дороги. Особенную популярность датчик DS18B20 снискал как влагозащищенное устройство для измерения температуры жидкостей.

За дополнительные возможности приходится платить относительной сложностью работы с датчиком. Для подключения DS18B20 нам обязательно понадобится резистор с номиналом около 5К. Для работы с датчиком в скетчах ардуино нужно установить дополнительную библиотеку и получить определенные навыки для работы с ней – там все не совсем тривиально. Впрочем, можно купить уже готовый модуль, а для скетча в большинстве случаев хватит простых примеров, приведенных в этой статье.

DS18B20 подключение к Arduino — это фантастический датчик определения температурной составляющей с цифровым интерфейсом в своем составе — следовательно он не требует выполнения калибровки. Поэтому, такие устройства можно подключить одновременно в множественном количестве к одному контакту arduino. Такую возможность предоставляет оригинальный адрес, который был запрограммирован в схему DS18B20 при его изготовлении.

Вот так выглядит эта «супер-сложная» схема DS18B20 подключение к Arduino:

Здесь нужен всего один резистор и больше ничего))). К тому же здесь отсутствуют необходимость в калибровании температуры, а также исключаются возможные неточности при выполнении сборки. Питающее напряжение возможно подавать в диапазоне от 3v до 5v. Все элементарно. А отображение температурного значения - три строки)). Ниже показан образец, все досконально и четко расписано.

Вот отсюда нужно скачать библиотеку:

Тут все аналогично, код в образце Multiple.pde. Разница лишь в том, что применено некоторое количество переменных величин имеющих адреса термометров — следовательно на три датчика три переменные величины со своим адресом и аналогичный код для поиска:

If (!sensors.getAddress(Thermometer1, 0)) Serial.println("Не найден адрес датчика 0"); if (!sensors.getAddress(Thermometer2, 1)) Serial.println("Не найден адрес датчика 1"); if (!sensors.getAddress(Thermometer3, 2)) Serial.println("Не найден адрес датчика 2");

Естественно и вывода температурных составляющих также по три.

Пора переходить к чему-нибудь более полезному в хозяйстве. Ну, например, сделать цифровой термометр, что-ли. Тем более, что с Ардуино - это совсем не так сложно, как было в "доконтроллерную эпоху". В те времена электронный термометр представлял собой сложную конструкцию из десятка микросхем, аналогового датчика, который нужно было еще откалибровать, и трансформаторного блока питания на несколько выходных напряжений. Ну, и - соответствующей подготовки радиолюбителя, который задумает все это собрать. Сейчас с этим - все гораздо проще.

Разрешите представить - цифровой датчик температуры буржуинской фирмы "Dallas semiconductor" DS18B20.

Полностью функциональное устройство для точного (до нескольких знаков после запятой) измерения температуры в диапазоне от -55 до +120 градусов Цельсия. Кроме того - имеется даже немного "мозгов" (ячеек памяти) для запоминания чего-нибудь полезного. Но пока что мы ими пользоваться не будем. Как видно на рисунке - выпускается в нескольких вариациях. Самая распространенная и для нас удобная - та, где написано "ТО-92".

Датчик имеет всего 3 вывода, на два из которых подается напряжение питания 5в, а средний вывод - для передачи данных. Все управление датчиком (подача на него команд, считывание измеренной температуры) идет по единственному проводнику, поэтому вся эта технология и протокол приема-передачи называется "1-Wire" или "One-Wire".

Чтобы не сильно загружаться теорией, примерно рассмотрим вкратце процесс измерения температуры с помощью нашего датчика.

Каждый сеанс передачи или приема данных начинается с команды инициализации. Опять же не будем вдаваться в подробности общения Ардуины с термометром, за нас это сделали посторонние люди (мысленно скажем им спасибо). Просто передадим ей одну команду - "инициализация", и она сама разберется, что надо сделать.

Далее, после инициализации, начинаем подавать управляющие команды. Тут надо заметить, что на одном управляющем проводке, теоретически, может находиться несколько устройств семейства "1-Wire". Причем, не только датчики температуры. Поэтому, есть возможность обращаться к каждому из них по уникальному серийному номеру. Но, поскольку у нас на проводе единственный датчик, то ни к чему другому мы не можем обратиться в принципе. Поэтому эти прелюдии пропускаются командой (передаваемым байтом "0хСС"). Забыл сказать - здесь и далее используется шеснадцатиричная запись двоичных чисел (байтов).

После того, как определились с адресатом - передаем команду "измерить температуру" ("0х44"). После этого нужно оставить датчик в покое примерно на 1 секунду, пока он будет делать свои дела.

За это время "ds-ка" измерит температуру и запишет результаты в два байта, которые нам нужно у нее выудить и привести к человеческому виду. Начинаем, как всегда, с инициализации сеанса связи. Потом снова передаем команду "сброс передачи адреса" ("0хСС"). И тут же следом - сообщаем, что готовы принять результат измерения: ("0хВЕ").

После этого Ардуина получает последовательно 2 байта (или двухбайтное число - кому как нравится) с результатами. Посмотрим, что это за результаты и как нам привести их к удобоваримому виду.

Опять же, чтоб не сильно грузиться, определимся с тем, что для нас важно. А именно - в младшем и, частично, в старшем байте находится результат измерения температуры с точностью до 4-го знака после запятой (нам такая точность - излишня). Знак температуры ("+" или "-") определяется значением старшего бита старшего байта.

Но, довольно слов - пора заняться конструированием. Схема подключения DS18B20 к Ардуине не только проста - а элементарно проста:

Выводы питания датчика подключены к соответствующим выводам Ардуины, а вывод данных - к цифровому выходу "10". Кроме того, вывод данных подключен к шине +5 вольт через резистор 3 - 5 килоом (так называемый "подтягивающий" резистор). Заметьте, что цифровой выход "10", хотя он будет работать и на выход, и на вход, нам уже не придется настраивать, как в предыдущем примере со светодиодами. Разработчики библиотеки "1-Wire" заботливо освободили нас от всякой черновой работы. Спасибо им за это!

В-общем, у меня получилось, примерно, так:

Да! Совсем забыл! Библиотека "1-Wire" не входит в базовую поставку Arduino IDE, поэтому ее нужно скачать, например, отсюда . Распакуем архив и положим папку с библиотекой в директорию \libraries, которая находится в папке, где установлена Arduino IDE. При следующем запуске среды разработки - библиотека будет доступна для использования. Вот где ее можно найти:

Однако, не будем использовать скетч из "Образцов", там сильно всего наворочено. Лучше скопируем в Arduino IDE вот такой скетч:

#include

OneWire ds(10); //

void setup(void) {
Serial.begin(9600); //настраиваем последовательный порт для вывода результатов
}

void loop() {
byte data; // объявляем массив из 2-х байт
ds.reset(); // инициализируем датчик
ds.write(0xCC); // пропускаем адресацию к конкретному датчику (у нас он один)
ds.write(0x44); // даем команду измерять температуру
delay(1000); // ждем 1 секунду, пока измеряется температура

ds.reset(); // снова инициализируем датчик
ds.write(0xCC); // снова пропускаем адресацию
ds.write(0xBE); // даем команду готовности считывать температуру
data = ds.read(); //считываем младший
data = ds.read(); // и старший байты
int Temp = (data << 8) + data; // преобразуем считанную информацию
Temp = Temp >> 4; // к нужному виду.
Serial.println(Temp); // выводим результат в последовательный порт.

Что мы тут видим... Сначала к скетчу подключается библиотека "OneWire". Указываем, что наш датчик подключен к выводу "10" Ардуины. Затем настраивается последовательный порт для вывода результатов измерения. Все, подготовительные операции закончены, начинаем измерять. Подготавливаем (резервируем и называем) 2 байта, куда будем записывать результат измерения температуры. Затем - подаем команды, как описывалось выше и, наконец, получаем 2 байта с нашей температурой. Затем происходит преобразование считанной информации и удаление лишних знаков после запятой с тем, чтобы получить целое значение температуры, без десятичных дробей. Эта информация и выводится через последовательный порт. Где мы можем ее увидеть? А вот здесь:

Итак, загружаем этот скетч в Ардуину, открываем "Монитор последовательного порта" и наблюдаем каждую секунду измеренную температуру:

Ура! Заработало! Не будем вдаваться в подробности процесс преобразования полученных от датчика 2-х байт в целое число температуры, это тема для отдельной большой статьи. Скажу только, что полученное число - переменная Temp типа integer. То есть, она может принимать как положительные значения, так и отрицательные. Проверим работу нашего устройства на морозце:

Ну что же - показывает и отрицательные температуры. Даже прямо сразу со знаком. В дальнейшем, когда мы будем выводить температуру на различные индикаторы, надо будет запомнить эту особенность нашей программы. И предусмотреть дополнительно индикацию знака плюсовой температуры. Но про то - уже в следующих статьях.

Загрузка...