domvpavlino.ru

Поражения электрическим током при прикосновении. Защита при косвенном прикосновении. Изменения в организме

Работа с электрическим током требует особой осторожности: электрический ток поражает внезапно, когда человек оказывается включенным в цепь прохождения тока.

Причины поражения электрическим током:
  • прикосновение к токоведущим частям, оголенным проводам, контактам электроприборов, рубильников, ламповых патронов, предохранителей, находящихся под напряжением;
  • прикосновение к частям электрооборудования, металлическим конструкциям сооружений и т.п., в обычном состоянии не находящихся, но в результате повреждения (пробоя) изоляции оказавшихся под напряжением:
  • нахождение вблизи места соединения с землей оборванного провода электросети;
  • нахождение в непосредственной близости от токоведущих частей, находящихся под напряжением выше 1000 В;
  • прикосновение к токоведущей части и мокрой стене или металлической конструкции, соединенной с землей;
  • одновременное прикосновение к двум проводам или другим токоведущим частям, которые находятся под напряжением;
  • несогласованные и ошибочные действия персонала (подача напряжения на установку, где работают люди; оставление установки под напряжением без надзора; допуск к работам на отключенном электрооборудовании без проверки отсутствия напряжения и т.д.).

Опасность поражения электрическим током отличается от других производственных опасностей тем, что человек не в состоянии без специальных приборов обнаружить ее на расстоянии. Часто эта опасность обнаруживается слишком поздно, когда человек уже оказался под напряжением.

Поражающее действие электрического тока

На живую ткань носит разносторонний характер. Проходя через тело человека, электрический ток производит термическое, электролитическое, механическое и биологическое воздействие.

Термическое действие тока проявляется в ожогах отдельных участков тела, нагреве и повреждении кровеносных сосудов; электролитическое — в разложении органической жидкости, в том числе крови, что вызывает нарушение ее состава, а также ткани в целом; механическое - в расслоении, разрыве тканей организма: биологическое - в раздражении и возбуждении живых тканей организма, а также в нарушении внутренних биологических процессов. Например, взаимодействуя с биотоками организма, внешний ток может нарушить нормальный характер их воздействия на ткани и вызвать непроизвольные сокращения мышц.

Рис. Классификация и виды электрических травм

Существуют три основных вида поражения электрическим током:

  • электрические травмы;
  • электрические удары;
  • электрический шок.

Электрическая травма

Электрическая травма - местное поражение тканей и органов электрическим током: ожоги, электрические знаки, электрометаллизация кожи, поражение глаз воздействием на них электрической дуги (электроофтальмия), механические повреждения.

Электрический ожог — это повреждения поверхности тела или внутренних органов под действием электрической дуги или больших токов, проходящих через тело человека.

Ожоги бывают двух видов: токовый (или контактный) и дуговой.

Токовый ожог обусловлен прохождением тока непосредственно через тело человека в результате прикосновений к токоведущей части. Токовый ожог — следствие преобразования электрической энергии в тепловую; как правило, это ожог кожи, так как кожа человека обладает во много раз большим электрическим сопротивлением, чем другие ткани тела.

Токовые ожоги возникают при работе на электроустановках относительно небольшого напряжения (не выше 1-2 кВ) и являются в большинстве случаев ожогами I или II степени; впрочем, иногда возникают и тяжелые ожоги.

При более высоких напряжениях более высоких между токоведущей частью и телом человека или между токоведущими частями образуется электрическая дуга, которая и вызывает возникновение ожога другого вида — дугового.

Дуговой ожог обусловлен действием на тело электрической дуги, обладающей высокой температурой (свыше 3500ºC) и большой энергией. Такой ожог возникает обычно при электроустановках высокого напряжения и носит тяжелый характер — III или IV степени.

Состояние пострадавшего зависит не столько от степени ожога, сколько от площади поверхности тела, пораженной ожогом.

Электрические знаки — это поражения кожи в местах соприкосновения с электродами круглой или эллиптической формы, серого или бело-желтого цвета с резко очерченными гранями диаметром 5-10 мм. Они вызываются механическим и химическим действиями тока. Иногда появляются спустя некоторое время после прохождения электрического тока. Знаки безболезненны, вокруг них не наблюдается воспалительных процессов. В месте поражения появляется припухлость. Небольшие знаки заживают благополучно, при больших размерах знаков часто происходит омертвение тела (чаще рук).

Электрометаллизация кожи — это пропитывание кожи мельчайшими частицами металла вследствие его разбрызгивания и испарения под действием тока, например при горении дуги. Поврежденный участок кожи приобретает жесткую шероховатую поверхность, а пострадавший испытывает ощущение присутствия инородного тела в месте поражения. Исход поражения, как и при ожоге, зависит от площади пораженного тела. В большинстве случаев металлизированная кожа сходит, пораженный участок приобретает нормальный вид и следов не остается.

Электрометаллизация может произойти при коротких замыканиях, отключениях разъединителей и рубильников под нагрузкой.

Электроофтальмия — это воспаление наружных оболочек глаз, возникающее под воздействием мощного потока ультрафиолетовых лучей. Такое облучение возможно при образовании электрической дуги (короткое замыкание), которая интенсивно излучает не только видимый свет, но и ультрафиолетовые и инфракрасные лучи.

Электроофтальмия обнаруживается спустя 2-6 ч после ультрафиолетового облучения. При этом наблюдаются покраснение и воспаление слизистых оболочек век, слезотечение, гнойные выделения из глаз, спазмы век и частичное ослепление. Пострадавший испытывает сильную головную боль и резкую боль в глазах, усиливающуюся при свете, у него возникает так называемая светобоязнь.

В тяжелых случаях воспаляется роговая оболочка глаза и нарушается ее прозрачность, расширяются сосуды роговой и слизистой оболочек, суживается зрачок. Болезнь продолжается обычно несколько дней.

Предупреждение электроофтальмии при обслуживании электроустановок обеспечивается применением защитных очков с обычными стеклами, которые плохо пропускают ультрафиолетовые лучи и защищают глаза от брызг расплавленного металла.

Механические повреждения возникают вследствие резких непроизвольных судорожных сокращений мышц под действием тока, проходящего через тело человека. В результате могут произойти разрывы кожи, кровеносных сосудов и нервной ткани, а также вывихи суставов и даже переломы костей.

Электрический удар

Электрический удар — это возбуждение живых тканей организма проходящим через них электрическим током, сопровождающееся непроизвольными судорожными сокращениями мышц.

Степень отрицательного воздействия этих явлений на организм может быть различна. Небольшие токи вызывают лишь неприятные ощущения. При токах, превышающих 10-15 мА, человек не способен самостоятельно освободиться от токоведущих частей и действие тока становится длительным (неотпускающий ток). При токе, равном 20-25 мА (50 Гц), человек начинает испытывать затруднение дыхания, которое усиливается с ростом тока. При действии такого тока в течение нескольких минут наступает удушье. При длительном воздействии токов величиной несколько десятков миллиампер и времени действия 15-20 с могут наступить паралич дыхания и смерть. Токи величиной 50-80 мА приводят к фибрилляции сердца, т.е. беспорядочному сокращению и расслаблению мышечных волокон сердца, в результате чего прекращается кровообращение и сердце останавливается. Действие тока величиной 100 мА в течение 2-3 с приводит к смерти (смертельный ток).

При невысоких напряжениях (до 100 В) постоянный ток примерно в 3-4 раза менее опасен, чем переменный частотой 50 Гц; при напряжениях 400-500 В опасность их сравнивается, а при более высоких напряжениях постоянный ток даже опаснее переменного.

Наиболее опасен ток промышленной частоты (20-100 Гц). Снижение опасности действия тока на живой организм заметно сказывается при частоте 1000 Гц и выше. Токи высокой частоты, начиная от сотен килогерц, вызывают только ожоги, не поражая внутренних органов. Это объясняется тем, что такие токи не способны вызывать возбуждение нервных и мышечных тканей.

В зависимости от исхода поражения электрические удары могут быть условно разделены на четыре степени:

  • I — судорожное сокращение мышц без потери сознания;
  • II — судорожное сокращение мышц с потерей сознания, но с сохранившимися дыханием и работой сердца;
  • III — потеря сознания и нарушение сердечной деятельности или дыхания (либо того и другого вместе);
  • IV — клиническая смерть, т.е. отсутствие дыхания и кровообращения.

Клиническая смерть - это переходный период от жизни к смерти, наступающий в момент прекращения деятельности сердца и легких. У человека, находящегося в состоянии клинической смерти, отсутствуют все признаки жизни: он не дышит, сердце его не работает, болевые раздражения не вызывают никаких реакций, зрачки глаз расширены и не реагируют на свет.

Длительность клинической смерти определяется временем с момента прекращения сердечной деятельности и дыхания до начала гибели клеток коры головного мозга. В большинстве случаев она составляет 4-5 мин, а при гибели здорового человека от случайной причины, в частности от электрического тока. — 7-8 мин.

Причинами смерти от электрического тока могут быть прекращение работы сердца, прекращение дыхания и электрический шок.

Работа сердца может прекратиться в результате или прямого воздействия тока на мышцу сердца, или рефлекторного действия, когда сердце не подвержено прямому воздействия тока. В обоих случаях может произойти остановка сердца или наступить его фибрилляция.

Токи, которые вызывают фибрилляцию сердца, называются фибрилляциоиными , а наименьший из них —

Фибрилляция обычно продолжается недолго и сменяется полной остановкой сердца.

Прекращение дыхания вызывается непосредственным, а иногда рефлекторным действием тока на мышцы грудной клетки, участвующие в процессе дыхания.

Как при параличе дыхания, так и при параличе сердца функции органов самостоятельно не восстанавливаются, необходимо оказание первой помощи (искусственное дыхание и массаж сердца). Кратковременное действие больших токов не вызывает ни паралича дыхания, ни фибрилляции сердца. Сердечная мышца при этом резко сокращается и остается в таком состоянии до отключения тока, после чего продолжает работать.

Электрический шок

Электрический шок — своеобразная реакция нервной системы организма в ответ на сильное раздражение электрическим током: расстройство кровообращения, дыхания, повышение кровяного давления.

Шок имеет две фазы:

  • I — фаза возбуждения;
  • II — фаза торможения и истощения нервной системы.

Во второй фазе учащается пульс, ослабевает дыхание, возникают угнетенное состояние и полная безучастность к окружающему при сохранившемся сознании. Шоковое состояние может длиться от нескольких десятков минут до суток, после чего наступает легальный исход.

Параметры, определяющие тяжесть поражения электрическим током

Основными факторами, определяющими степень поражения электрическим током, являются: сила тока, протекающего через человека, частота тока, время воздействия и путь протекания тока через тело человека.

Сила тока

Протекание через организм переменного тока промышленной частоты (50 Гц), широко используемого в промышленности и в быту, человек начинает ощущать при силе тока 0,6...1,5 мА (мА — миллиампер равен 0,001 А). Этот ток называют пороговым ощутимым током.

Большие токи вызывают у человека болезненные ощущения, которые с увеличением тока усиливаются. Например, при токе 3...5 мА раздражающее действие тока ощущается всей кистью, при 8... 10 мА — резкая боль охватывает всю руку и сопровождается судорожными сокращениями мыши кисти и предплечья.

При 10... 15 мА судороги мышц руки становятся настолько сильными, что человек не может их преодолеть и освободиться от проводника тока. Такой ток называется пороговым неотпускающим током.

При токе величиной 25...50 мА происходят нарушения в работе легких и сердца, при длительном воздействии такого тока может произойти остановка сердца и прекращение дыхания.

Начиная с величины 100 мА протекание тока через человека вызывает фибрилляцию сердца — судорожные неритмичные сокращения сердца; сердце перестает работать как насос, перекачивающий кровь. Такой ток называется пороговым фибрилляционным током. Ток более 5 А вызывает немедленную остановку сердца, минуя состояние фибрилляции.

Величина тока, протекающего через тело человека (I ч), зависит от напряжения прикосновения U пp и сопротивления тела человека

R ч: I ч = U пр / R ч

Сопротивление тела человека — величина нелинейная, зависящая от многих факторов: сопротивления кожи (сухая, влажная, чистая, поврежденная и т.д.): величины тока и приложенного напряжения; длительности протекания тока.

Наибольшим сопротивлением обладает верхний роговой слой кожи:

  • при снятом роговом слое R ч = 600-800 Ом;
  • при сухой неповрежденной коже R ч = 10-100 кОм;
  • при увлажненной коже R ч = 1000 Ом.

Сопротивление тела человека (R 4) в практических расчетах принимается равным 1000 Ом. В реальных условиях сопротивление тела человека — величина непостоянная и зависит от ряда факторов.

С ростом тока, проходящего через человека, его сопротивление уменьшается, так как при этом увеличиваются нагрев кожи и потоотделение. По этой же причине снижается R 4 с увеличением длительности протекания тока. Чем выше приложенное напряжение, тем больше ток, проходящий через тело человека I ч, тем быстрее снижается сопротивление кожи.

С ростом напряжения сопротивление кожи уменьшается в десятки раз, следовательно, уменьшается и сопротивление тела в целом; оно приближается к сопротивлению внутренних тканей тела, т.е. к своему наименьшему значению (300-500 Ом). Это можно объяснить электрическим пробоем слоя кожи, который происходит при напряжении 50-200 В.

Загрязнение кожи различными веществами, особенно хорошо проводящими электрический ток (металлическая или угольная пыль, ока-чина и т.п.), снижает ее сопротивление.

Сопротивление разных участков тела человека не одинаково. Объясняется это различной толщиной рогового слоя кожи, неравномерным распределением потовых желез на поверхности тела и неодинаковой степенью наполнения сосудов кожи кровью. Поэтому величина сопротивления тела зависит от места приложения электродов. Действие тока на организм усиливается при замыкании контактов в акупунктурных точках (зонах).

На исход электротравм влияют и условия окружающей среды (температура, влажность). Повышенная температура, влажность повышают опасность поражения электрическим током. Чем ниже атмосферное давление, тем выше опасность поражения.

Психическое и физическое состояние человека также оказывает влияние на тяжесть поражения электрическим током. При заболеваниях сердца, щитовидной железы и т.п. человек подвергается более сильному поражению при меньших значениях тока, так как в этом случае уменьшается электрическое сопротивление тела человека и общая сопротивляемость организма внешним раздражениям. Отмечено, например, что у женщин пороговые значения токов примерно в 1.5 раза ниже, чем у мужчин. Это объясняется более слабым физическим развитием женщин. При применении спиртных напитков сопротивление тела человека снижается так же, как и сопротивляемость его организма и внимание.

Частота тока

Наиболее опасен ток промышленной частоты — 50 Гц. Постоянный ток и ток больших частот менее опасен, и пороговые значения для него больше. Так, для постоянного тока:

  • пороговый ощутимый ток — 3...7 мА;
  • пороговый неотпускающий ток — 50...80 мА;
  • фибрилляционный ток — 300 мА.

Путь протекания тока

Важное значение имеет путь прохождения электрического тока через тело человека. Установлено, что ткани разных частей человеческого тела имеют различные удельные сопротивления. При прохождении тока через тело человека наибольшая часть тока проходит по пути наименьшего сопротивления, главным образом вдоль кровеносных и лимфатических сосудов. Различают 15 путей тока в теле человека. Наиболее частые: рука — рука; правая рука — ноги; левая рука — ноги; нога — нога; голова — ноги: голова — руки.

Наиболее опасным является путь тока вдоль тела, например от руки к ноге или через сердце, голову, спинной мозг человека. Однако известны смертельные поражения, когда ток проходил по пути «нога — нога» или «рука — рука».

Вопреки установившемуся мнению наибольшая величина тока через сердце оказывается не по пути «левая рука — ноги», а по пути «правая рука — ноги». Это объясняется тем, что большая часть тока входит в сердце по продольной его оси, лежащей по пути «правая рука — ноги».

Рис. Характерные пути тока в теле человека

Время воздействия электрического тока

Чем продолжительнее протекает ток через человека, тем он опаснее. При протекании электрического тока через человека в месте контакта с проводником верхний слой кожи (эпидермис) быстро разрушается, электрическое сопротивление тела уменьшается, ток возрастает, и отрицательное действие электротока усугубляется. Кроме того, с течением времени растут (накапливаются) отрицательные последствия воздействия тока на организм.

Определяющую роль в поражающем действии тока играет величина силы электрического тока , протекающего через организм человека. Электрический ток возникает тогда, когда создается замкнутая электрическая цепь, в которую оказывается включенным человек. По закону Ома сила электрического тока / равна электрическому напряжению (/, деленному на сопротивление электрической цепи R :

Таким образом, чем больше напряжение, тем больше и опаснее электрический ток. Чем больше электрическое сопротивление цепи, тем меньше ток и опасность поражения человека.

Электрическое сопротивление цепи равно сумме сопротивлений всех участков, составляющих цепь (проводников, пола, обуви и др.). В общее электрическое сопротивление обязательно входит и сопротивление тела человека.

Электрическое сопротивление тела человека при сухой, чистой и неповрежденной коже может изменяться в довольно широких пределах — от 3 до 100 кОм (1 кОм = 1000 Ом), а иногда и больше. Основной вклад в электрическое сопротивление человека вносит наружный слой кожи — эпидермис, состоящий из ороговевших клеток. Сопротивление внутренних тканей тела небольшое — всего лишь 300...500 Ом. Поэтому при нежной, влажной и потной коже или повреждении эпидермиса (ссадины, раны) электрическое сопротивление тела может быть очень небольшим. Человек с такой кожей наиболее уязвим для электрическою тока. У девушек более нежная кожа и тонкий слой эпидермиса, нежели у юношей; у мужчин, имеющих мозолистые руки, электрическое сопротивление тела может достигать очень больших величин, и опасность их поражения электротоком снижается. В расчетах на электробезопасность обычно принимают величину сопротивления тела человека, равную 1000 Ом.

Электрическое сопротивление изоляции проводников тока, если она не повреждена, составляет, как правило, 100 и более килоом.

Электрическое сопротивление обуви и основания (пола) зависит от материала, из которого сделано основание и подошва обуви, и их состояния — сухие или мокрые (влажные). Например, сухая подошва из кожи имеет сопротивление примерно 100 кОм, влажная подошва — 0,5 кОм; из резины соответственно 500 и 1,5 кОм. Сухой асфальтовый пол имеет сопротивление около 2000 кОм, мокрый — 0,8 кОм; бетонный соответственно 2000 и 0,1 кОм; деревянный — 30 и 0,3 кОм; земляной — 20 и 0,3 кОм; из керамической плитки — 25 и 0,3 кОм. Как видим, при влажных или мокрых основаниях и обуви значительно возрастает электроопасность.

Поэтому при пользовании электричеством в сырую погоду, особенно на воде, необходимо соблюдать особую осторожность и принимать повышенные меры обеспечения электробезопасности.

Для освещения, бытовых электроприборов, большого количества приборов и оборудования на производстве, как правило, используется напряжение 220 В. Существуют электросети на 380, 660 и более вольт; во многих технических устройствах применяются напряжения в десятки и сотни тысяч вольт. Такие технические устройства представляют исключительно высокую опасность. Но и значительно меньшие напряжения (220, 36 и даже 12 В) могут быть опасными в зависимости от условий и электрического сопротивления цепи R.

Поражение электрическим током возникает при взаимодействии человека с токоведущими частями электрооборудования вследствие пробоя или неисправности.

Сложность полученных травм зависит от многих обстоятельств:

  • индивидуальных особенностей человека;
  • мощности разряда;
  • класса напряжения;
  • характера (постоянный или переменный);
  • места прикосновения;
  • пути прохождения потока по организму.

Прохождение тока по сосудам

Опасность электротравмы состоит в том, что без специальных устройств наличие аварийной ситуации выявить невозможно.

Причины электротравм

  • Прикосновение к поверхностям электроприборов, голым проводам, контактам электрических устройств (автоматических выключателей, патронов ламп, предохранителей) под напряжением.
  • Прикосновение к электротехническим устройствам, которые оказались под напряжением ввиду неисправности.
  • Одновременное прикосновение к двум фазам под напряжением.
  • Нарушение правил безопасности персонала при выполнении строительно-монтажных работ.
  • Прикосновение к влажным металлоконструкциям или стенам, соединенным с источником электротока.

Неосторожное использование бытовых приборов

Поражение электрическим током

Основные симптомы

Признаки поражения электрическим током:

  • отсутствие дыхания;
  • бледность;
  • «знаки тока» на теле пострадавшего;
  • запах горелого (волос, электроприбора и т.д.);
  • нахождение человека в положении лежа вблизи электроприбора;
  • отсутствие пульсации артерий;
  • отсутствие дыхания;

При летальном исходе на коже присутствуют множественные ожоги и петехиальные кровоизлияния. Те, кто выживает после полученной электротравмы, обычно находятся в коме. Состояние характеризуется нестабильной работой дыхательной системы, сердца и сосудистым коллапсом. Последующее состояние отмечается повышенной агрессией и судорогами вплоть до перелома костей от мышечных сокращений (падений во время припадков).

При получении электротравмы высокого напряжения у больного часто наблюдается гиповолемический шок, гипотензия, развивается почечная недостаточность.

Следующим этапом является деструкция тканей, вызванная электроожогом. Также вследствие получения травмы могут обостриться хронические заболевания желудочно-кишечного тракта (кровотечения из язв, язвенные колиты и др.), отек легких, различного рода инфекции аэробные и анаэробные.

Электротравма с тяжелыми последствиями

Почти в каждом случае наблюдаются отеки головного мозга с сопутствующим коматозным состоянием до нескольких суток.

К менее распространенным последствиям относят расстройства нервной системы, ведущие к частичной потере трудоспособности:

  • повреждения от ожогов;
  • нарушение зрения;
  • рефлекторные дистрофии;
  • частые головные боли;
  • катаракты;
  • нарушение работы памяти, эмоционального равновесия;
  • разрывы спинного мозга;
  • припадки.

Изменения в организме

Ток воздействует на ткань в четырех направлениях:

  • биологическое;
  • механическое;
  • электролитическое;
  • термическое.

Биологическое – нарушение состава тканей организма, биологических процессов, обострение заболеваний.

Механическое – нарушение целостности кожи и других тканей.

Электролитическое – разложение крови и секретов организма.

Термическое – ожоги, нагрев кровеносных сосудов.

Поражение рук электрическим током

Электроток проходит по замкнутой цепи, т.е. всегда ищет выходной путь. Поэтому степень поражения током организма зависит от пути, по которому он проходит по телу. Если поражение идет через нижние конечности и выходит на землю, опасность для организма снижается.

В случаях, когда токовая нагрузка проходит через сердце или голову, вероятность получения тяжелой травмы резко возрастает. Т.е. чем ближе путь прохождения электротока к сердцу, тем вероятнее летальный исход инцидента.

Вторым показателем степени поражения является длительность воздействия. Наибольшую опасность для организма представляет переменный ток, т.к. вызывает судороги сердца. В данной ситуации человек не сможет самостоятельно высвободиться. Пот, вызываемый судорогами, уменьшает сопротивление, и увеличивает негативное влияние токового потока.

Чаще всего в таких случаях наступает смерть: электроток, проходящий в сердце, вызывает фибрилляцию желудочков. Остановка сердцебиения происходит от повреждения центральной нервной системы.

Высокое напряжение характеризуется большими температурами и при контакте с кожей вызывает сильнейшие дуговые электроожоги, обугливание. При таких инцидентах происходит возгорание одежды и близлежащих предметов. Если нагрев от электротока прямой, то в точках входа-выхода потока и сосудах образуются некрозные точки. Происходит развитие тромбоза.

Виды поражений

  • электротравма;
  • электрический шок;
  • электроудар.

Электротравмы делятся на несколько видов:

  • электрические знаки;
  • ожоги;
  • механические повреждения;
  • поражения глаз;
  • электропигментация кожи.

Электроожог – повреждение кожи электротоком. Он обусловлен прохождением потока частиц непосредственно через организм человека. Различают:

  • Дуговые. Возникают под воздействием электродуги на организм человека. Характеризуются высокой температурой.
  • Контактные ожоги – наиболее распространенные. Вызваны прямым контактом тока напряжением до 1 кВ с кожей.

Электрический знак – изменение структуры кожных покровов в местах вхождения электротока. Чаще всего наблюдаются на руках. Кожа становится припухлая, появляются знаки круглой или овальной формы через некоторое время после возникновения инцидента.

Последствия поражения током в виде электрических знаков

Механические повреждения – разрывы мышц и кожных покровов. Возникают вследствие судорог. Отмечаются случаи с переломом конечностей.

Электроофтальмия – воспаление оболочки глаза вследствие воздействия ультрафиолета (во время появления электродуги). Диагностируется по истечении 6 часов после получения травмы. Симптомы – покраснение белков, повышенное слезоотделение, частичная слепота, головная боль, боль в глазах при свете, нарушение прозрачности роговицы, сужение зрачка. Состояние длится несколько дней.

Предотвратить электроофтальмию на производстве и во время строительных работ можно, если использовать защитные очки.

Электроофтальмия – поражение оболочки глаза при электротравме

Электрометаллизация – проникновение мелких расплавленных частиц в кожные покровы. Появляется из-за разбрызгивания раскаленного металла при горении дуги. Степень травматизма зависит от обширности действия металла. Зачастую кожные покровы постепенно восстанавливаются.

Электрошок – ответ ЦНС на внешнее раздражение электротоком. Последствия: нарушение работы легочных мышц, кровообращения. Делится на 2 фазы – возбуждения и истощения ЦНС. После длительного шокового состояния наступает летальный исход.

Электроудар – судорожные сокращения мышечной ткани под воздействием электротока. Небольшие травмы вызывают слабые удары (неприятные ощущения, покалывание). Ток большого напряжения крайне опасен. Под его воздействием человек не может самостоятельно действовать. Через несколько минут наступает удушье и фибрилляция желудочков.

Самым опасным считают токовые нагрузки в промышленных установках с частотой 20-100 Гц и более. Такой электроток вызывает, кроме ожогов, необратимые разрушения внутренних органов.

Электроудары различают 4 степеней:

  1. судорожное сокращение мышечных тканей;
  2. то же, но с потерей сознания (дыхание и работа сердца остаются в пределах нормы);
  3. потеря сознания, нарушения работы жизненно важных органов, обострение хронических заболеваний;
  4. клиническая смерть.

Путь прохождения токовой нагрузки через организм – решающий фактор. Наиболее опасны электротравмы, при которых поток течет вдоль тела (рука – рука, рука – нога, голова – ноги, голова – руки) через сердце.

Самым опасным является путь «правая рука – ноги», когда поток проходит вдоль оси сердца.

Основные факторы, влияющие на величину проходящего электротока:

  • Физическое состояние. Хроническое заболевание и острое течение болезней характеризуется снижением сопротивления организма. Следовательно, получить травму с более высокой степенью тяжести вероятнее человеку, который имеет проблемы со здоровьем. Спортсмены и мужчины имеют более высокое сопротивление тела, чем женщины. Также отрицательно на эту величину влияет количество употребленного алкоголя.
  • Психическое состояние. Возбужденное состояние нервной системы повышает кровяное давление и ускоряет сердцебиение. В таких случаях при получении травмы быстро развивается фибрилляция желудочков.
  • Условия окружающей среды: время года, погода, температура, относительная влажность воздуха. В условиях увеличения атмосферного давления увеличивается степень тяжести травмы.
  • Место входа–выхода потока. Разные части тела имеют неодинаковое сопротивление, поэтому и обширность поражения разная.
  • Чистота кожных покровов. Наличие слоя пота или грязи (хорошо проводящих электроток) увеличивает вероятность получить тяжелый ожог.

Последствия

  • Потеря сознания.
  • Возникающие из-за большой температуры ожоги.
  • Сбои в работе сердечной мышцы даже при минимальном времени контакта с электросетью.
  • Нарушения работы нервной системы, асистолия.
  • Обострение хронических заболеваний.
  • Появление внутренних кровотечений.
  • Общее повышение давления.

Помощь при поражении током

В первую очередь необходимо обесточить место инцидента, а пострадавшего – высвободить от контакта с источником без прямых прикосновений. Для этого используют диэлектрики – резиновые листы, жгуты, кожаные ремни, сухие деревянные палки, шесты. По возможности на руки надевают резиновые перчатки.

Если больной не может самостоятельно дышать, то незамедлительно приступают к искусственной вентиляции легких – «изо рта в рот». Периодическую поддержку дыхания следует продолжать в течение последующих четырех часов.

В случаях, когда у человека отсутствует сердцебиение, делают непрямой массаж сердца совместно с искусственной вентиляцией легких. Если травма вызвана ударом молнии и наблюдается асистолия, проводят удар рукой по сердцу, затем искусственное дыхание.

Если поражение произошло от контакта с низким напряжением, то выполняют дефибрилляцию. При осмотре особое внимание уделяют наличию переломов и ушибов позвоночника.

Помощь пострадавшему от поражения электротоком – дефибрилляция

Получившего электрохимические ожоги человека, следует немедленно доставить в ожоговое отделение или травматологию.

Обработка ран в условиях стационара заключается в удалении омертвевших слоев кожи. Практически во всех случаях проводятся мероприятия , направленные на исключение распространения инфекций в организме – антимикробное лечение.

Больным, пребывающим в коме, необходим постоянный мониторинг внутричерепного давления. При осложнениях, травмах головы следует применять специальную терапию.

Профилактика

Для уменьшения риска получения электротравм необходимо:

  • в жилых и административных зданиях прокладывать электропроводку с заземляющим кабелем (или проводом);
  • эффективно заземлять все электроустройства;
  • пользоваться для бытовых и офисных электроприборов розетками с заземляющими контактами;
  • правильно скручивать, а не сгибать провода удлинителей и электроприборов;
  • установить во влажных помещениях розетки с соответствующей степенью защиты;
  • не пользоваться неисправными электроприборами;
  • установить на вводах дифференциальную защиту (дифавтоматы , УЗО);
  • в непогоду находиться в безопасном помещении – в домах с плотно закрытыми дверями и окнами, избегать поездок в автомобиле в ненаселенной местности, где нет молниеотводов и высоких деревьев.

Что делать, если. Видео

Как правильно вести себя при ударе током, рассказывает видео ниже.

Соблюдение элементарных правил электробезопасности поможет избежать травм от поражения электрическим током.

7.Защита от воздействия электрического тока.

7.1. Действие электрического тока на организм человека.

При эксплуатации и ремонте электрических сетей и электрооборудования человек может оказаться в непосредственном соприкосновений с находящимися под напряжением частями электропроводок. В результате прохождения тока через организм человека может произойти нарушение его жизнедеятельности функции. Общие нарушения вызывают сбои функции центральной нервной системы, органов дыхания и кровообращения.

Электрический ток проходя через тело человека может оказывать биологическое, тепловое, механическое и химическое действие.

Биологическое действие проявляется в возбуждении и раздражении живых тканей организма;

Тепловое – в способности вызывать ожоги отдельных участков тела;

Механическое – приводит к разрыву тканей, вывиху суставов, и повреждению костей;

Химическое – к электролизу крови (разложению).

Опасность электрического тока состоит в том, что он не имеет внешних признаков и не ощущается органами чувств человека. Только в момент прикосновения к токоведущим частям и возникновения поражающего действия организм начинает ощущать болевые проявления от протекания тока.

Тяжесть поражения электрическим током зависит от ряда факторов, в том числе силы тока, электрического сопротивления тела человека и длительности протекания тока через него, рода и частоты тока, пути его прохождения, индивидуальных свойств организма и условий окружающей среды.

По степени воздействия на человека различают три пороговых значения тока: ощутимый, неотпускающий и фибрилляционный .

Ощутимый – это электрический ток, который при прохождений через организм вызывает ощутимое раздражение. В качестве этого критерия электробезопасности принят ток I =0,6 мА, который не вызывает нарушений деятельности организма. Допустимая длительность протекания такого тока через тело человека не более 10 минут.

Неотпускающий – ток, который при прохождении через тело человека вызывает непреодолимые судорожные сокращения мышц руки, ноги или других частей тела, соприкасающихся с токоведущим проводником. В качестве этого критерия электробезопасности принят ток I =6 мА . Длительность воздействия такого тока ограничивается защитной реакцией самого человека.

Фибрилляционный – ток, вызывающий при прохождений через организм фибрилляцию сердца – хаотические, разновременные и разрозненные сокращения мышечных волокон сердца и паралич дыхания.

При частоте тока 50 Гц фибрилляционными являются токи в пределах от 50 мА до 5 А, а среднее значение порогового фибрилляционного тока – примерно 100 мА. При постоянном токе средним значением порогового фибрилляционного тока можно считать 300 мА, а верхним пределом 5 А.

На степень поражения сильно влияет электрическое сопротивление тела человека, которое изменяется в очень больших пределах.

Наибольшим сопротивлением обладает верхний слой кожи толщиной около 0,2 мм, состоящий из ороговевших клеток. Удельное электрическое сопротивление сухой кожи равно 3∙10 3 -2∙10 4 Ом∙м, а внутренних мышечных тканей – 200-300 Ом∙м. Повреждение рогового слоя (порезы, царапины, ссадины и другие микротравмы) может снизить сопротивление до значений, близких к значению внутреннего сопротивления, что увеличивает опасность поражения человека током.

Такое же влияние оказывает увлажнение кожи, а также загрязнение проводящей пылью или грязью.

Повышение напряжения приложенного к телу человека, в десятки раз уменьшает сопротивление кожи, а следовательно и полное сопротивление тела, которое приближается к своему наименьшему значению 300-500 Ом.

В качестве расчётных значений электрическое сопротивление тела человека принимают 1000 Ом при напряжении U = 50В и 6000 Ом при U = 36В.

В связи с большими различиями значений сопротивлений тканей человека и невозможностью заранее предвидеть место контакта тела человека с токоведущими частями оборудования, определить поражающую силу тока невозможно. Для оценки безопасных условий исходят из допустимых напряжений.

Безопасным напряжением считают напряжение 36 В(для светильников местного стационарного освещения, переносных светильников и электроинструмента в помещениях с повышенной опасностью) и 12 В в особо опасных помещениях (при работах внутри котлов, металлических резервуарах и др.).

В производственных процессах используют два рода тока: постоянный и переменный. При напряжениях до 500 В опасность поражения переменным током выше чем постоянным. Переменный ток частотой 50 Гц представляет наибольшую опасность, а с повышением частоты эта опасность уменьшается.

Опасность поражения электрическим током зависит от условий выполнения работ в производственных помещениях. По степени опасности поражения людей электрическим током производственные помещения, согласно ПУЭ, подразделяют на помещения особо опасные, с повышенной опасностью и без повышенной опасности.

Особо опасные помещения имеют повышенную влажность (по производственным условиям относительная влажность в них приближается к 100%) или химически активную среду, которая постоянно или длительно разрушающе действует на изоляцию и токоведущие части. Возможно и одновременное Действие этих двух факторов, определяющих признаки повышенной опасности производственных помещений. Особо опасными помещениями являются пропиточные, гальванические, газогенераторные участки и отделения, душевые, прачечные, помещения для зарядки аккумуляторов и др. В них разрешается работать электроинструментом напряжением не выше 42В при обязательном применении средств индивидуальной защиты (диэлектрических перчаток, ковриков и др.). Переносные электрические светильники должны иметь напряжение не более 12В.

Помещения с повышенной опасностью – это такие помещения, в которых относительная влажность длительно превышает 75%; имеются токопроводящие полы (металлические, земляные, железобетонные и др.) или токопроводящая пыль; температура воздуха длительно превышает +35°С; установлены большие заземлённые металлические конструкции и возможно одновременное прикосновение человека к имеющим соединение с землёй металлоконструкций зданий, технологическим аппаратам, механизмам и т.п., с одной стороны, и к металлическим корпусам электрооборудования – с другой. К таким помещениям относят кузнечные, механические, столярные производственные участки и отделения, неотапливаемые складские помещения и др. Напряжение электроинструмента и переносных электрических светильников, применяемых в помещениях с повышенной опасностью, не должно превышать 42В.

Помещениями без повышенной опасности являются все помещения, в которых отсутствуют факторы, определяющие особую и повышенную опасность помещений. Это служебные и бытовые помещения, отапливаемые склады и др.

Электроустановки вне помещений по степени опасности приравнивают к электроустановкам, эксплуатируемых в особо опасных помещениях.

Все электроустановки (трансформаторы, электрооборудование, электроприборы и т.п.) согласно Правилам устройства электроустановок (ПУЭ) по условиям электробезопасности разделяют на:

· электроустановки напряжением выше 1000В.

· электроустановки напряжением до 1000В.

· электроустановки с малым напряжением, не превышающим 42В.

7.2.Опасность прикосновения к токоведущим частям в сетях с изолированной и глухозаземленной нейтралью.

Степень поражения при прикосновении к токоведущим частям электрической сети зависит от схемы прикосновения человека, напряжения сети, режима нейтрали сети, качества изоляции токоведущих частей от земли и других факторов.

Наибольшую опасность представляет двухфазное (двухполюсное) прикосновение, при котором человек одновременно присоединяется к двум фазам электроустановки и оказывается под действием рабочего напряжения. Ток I ч, проходящий через тело человека, будет зависеть в этом случае только от напряжения сети и электрического сопротивления тела человека (рис. 7.1).

В сети постоянного тока или однофазной сети ток через тело человека, А:

I = U раб / R ч

где U раб – рабочее напряжение сети, В,

R ч – сопротивление тела человека, Ом.

В трёхфазной сети при касании двух линейных проводов:

I ч = U л / R ч = √3U ф / R ч

где U Л – линейное напряжение сети, В,

U Ф – фазное напряжение сети, В.

Такое включение человека встречается достаточно редко, чаще имеет место однофазное прикосновение. В этом случае на протекающий через человека ток оказывает влияние режим нейтрали источника тока (изолированная или глухозаземлённая), сопротивление изоляции и ёмкость фаз относительно земли.

В трёхфазной сети с изолированной нейтралью напряжением до 1000В (рис. 7.2а) при условии её малой протяжённости емкостным сопротивлением можно пренебречь, и тогда ток проходящий через человека:

I ч = 3U ф /(3R ч + r и)

Из приведённой формулы следует, что в неразветвлённых сетях небольшой протяжённости опасность поражения человека тем больше, чем ниже уровень изоляции (сопротивление изоляции проводов – r и). относительно земли.

В сетях с глухозаземлённой нейтралью (рис. 7.2б) ток, который пройдёт через человека при его прикосновении к фазе, будет:

I ч = U Ф / (R ч + R о)

В этом случае при прикосновении к одной из фаз трёхфазной четырёхпроводной сети с глухозаземлённой нейтралью человек оказывается практически под фазным напряжением.

7.3.Опаснсть напряжения прикосновения и шага.

При пробое или нарушении изоляции электроустановок (рис.7.3) их корпуса и соединённые с ними заземлители оказываются под напряжением. При прикосновении к любому корпусу электроустановки 1, 2, 3 возникает опасность поражения человека электрическим током. Ток, протекающий через корпус электроустановки и заземлитель, растекается по значительному объёму земли. В этом случае земля становится участком электрической цепи. Пространство вокруг заземлителя, где проходит растекание тока на землю, называют полем растекания.

Для выявления закономерности распределения потенциалов на поверхности земли в зоне растекания тока примем допущение что ток замыкания I з стекает в землю через полусферический заземлитель радиусом r , находящийся в однородном грунте с удельным сопротивлением ρ , Ом∙м. (Распределение потенциала на поверхности земли при растекании тока в грунте показан на рис. 7.4.).

Потенциал т.А, находящийся на расстоянии х А от заземлителя можно определить из выражения:

(7.1)

Из выражения (7.1) видно, что потенциал на поверхности земли вокруг полушарового заземлителя изменяется по закону гиперболы, уменьшаясь от максимального значения до нуля по мере удаления от заземлителя.

При попадании человека в зону растекания тока, он может оказаться под разностью потенциалов, которая существует между двумя точками земли, на которых стоит человек. Эту разность потенциалов между двумя точками цепи тока, находящимися одна от другой на расстоянии шага, на которых одновременно стоит человек, называют напряжением шага .

Напряжение шага U ш можно определить как разность потенциалов между точками А и В на поверхности земли (рис.7.3).

Напряжение шага зависит от ширины шага α, и расстояния х А от места замыкания на землю. По мере удаления от места замыкания опасность шаговых напряжений уменьшается: U ш1 › U ш2 (рис. 7.3). На расстоянии около 20м от места замыкания шаговое напряжение практически не представляет опасности. При шаге равном 0,8м вблизи места растекания тока шаговое напряжение может достигать 100 – 150В. Такое напряжение при протекании тока по пути «нога – нога» может вызвать судороги мышц ног, и человек может упасть на землю.

Для уменьшения шагового напряжения в зоне растекания тока человек должен соединить ноги вместе, и не спеша выходить из опасной зоны так, чтобы при передвижении ступня одной ноги не выходила за пределы другой.

Напряжением прикосновения называют напряжение между двумя точками цепи тока, которых одновременно касается человек, или напряжение, приложенное к телу человека.

Корпуса электроустановок 1, 2, 3, которых может коснуться человек (рис.7.3), соединённых заземляющей шиной с заземлителем, при пробое изоляции окажутся под тем же потенциалом, что и сам заземлитель- j з

Потенциал другой точки – это потенциал основания (земли) в том месте где стоит человек – j осн

В этом случае напряжение прикосновения будет:

Где – коэффициент напряжения прикосновения, учитывающей форму потенциальной кривой при полусферическом заземлителе. При заземлителях другой формы коэффициент α 1 определяют из других выражений.

Таким образом, напряжение прикосновения для человека (рис.7.3.), касающегося заземлённого корпуса электроустановки и стоящего на земле, определяется отрезком ОС и зависит от формы потенциальной кривой и расстояния х между человеком и заземлителем: чем дальше от заземлителя находится человек, тем больше U пр и наоборот.

При наибольшем расстоянии х = ∞, а практически при х ≥ 20м напряжение прикосновения имеет наибольшее значение:

U ПР =U З ;

Это наиболее опасный случай прикосновения.

При наименьшем значении х , т.е. когда человек стоит непосредственно на заземлителе U ПР =0 , и .

Это безопасный случай, при котором человек не подвергается воздействию напряжения, хотя он и находится под потенциалом заземлителя.

При других значениях х в пределах 0…20м U пр плавно возрастает от 0 до з, а от 0 до 1 (пунктирная кривая на рис. 7.3.).

7.4. Организационные мероприятия и технические средства,

обеспечивающие безопасность работ в электроустановках.

Обслуживание электроустановок, производство монтажных, ремонтных и наладочных работ требуют выполнения организационных и технических мероприятий, применения технических средств по предупреждению поражения человека электрическим током.

Работы в действующих установках по мерам безопасности разбивают на 4 категории:

При полном снятии напряжения;

При частичном снятии напряжения;

Без снятия напряжения вблизи и на токоведущих частях, находящихся под напряжением;

Без снятия напряжения вдали от токоведущих частей, находящихся под напряжением

Правилами техники безопасности определены требования к персоналу, обслуживающему электроустановки.

7.5.Защита от поражения электрическим током при прикосновении к

нетоковедущим частям электроустановок.

Для устранения опасности поражения током в случае прикосновения к корпусу электроустановки и к другим нетоковедущим металлическим частям, оказавшимся под напряжением в результате нарушения изоляции, применяют защитное заземление, зануление и защитное отключение .

Защитным заземлением называют преднамеренное электрическое соединение металлических нетоковедущих частей электроустановки, которые могут оказаться под напряжением, с заземляющим устройством.

Заземляющее устройство состоит из заземлителя и заземляющих проводников. Заземлителем является металлический проводник (электрод) или группа соединённых между собой проводников (электродов), находящихся в непосредственном соприкосновении с землёй. Заземляющим проводником называют металлический проводник, который соединяет заземляемые части электроустановки с заземлителем.

Принцип действия защитного заземления заключается в снижении до безопасных значений напряжений прикосновения . Это достигается путём уменьшения потенциала заземлённого оборудования, за счёт уменьшения сопротивления заземлителя.

При замыкании токоведущих частей на заземлённый корпус электроустановки он окажется под напряжением U З =I З R З Человек при прикосновении к корпусу попадает под напряжение. Ток протекающий через тело человека будет

Из этого выражения видно, что ток через человека можно уменьшить путём уменьшения сопротивления заземления R з и коэффициента прикосновения или увеличения общего сопротивления человека R оч .

Защитное заземление применяют в трёхфазных сетях напряжением до 1000 В с изолированной нейтралью. (рис. 7.5-а) и сетях напряжением выше 1000 В с заземлённой нейтралью. (рис. 7.5-б).

Сопротивление заземляющего устройства Rз в таких случаях не должно быть больше нормированной величины. Эта величина зависит от напряжения электроустановки, мощности источника питания и является основным показателем, характеризующим пригодность защитного заземления для данных условий.

Согласно ПУЭ и ГОСТ 12.1.030-81 « ССБТ. Электробезопасность. Защитное заземление. Зануление » в электроустановках переменного тока напряжением до 1000 В в сети с изолированной нейтралью сопротивление заземляющего устройства не должно превышать 4 Ом. Если мощность источника питания (трансформатора, генератора) не превышает 100 кВ ·А, то сопротивление заземляющего устройства может достигать 10 Ом, но не более.

В электроустановках с напряжением выше 1000 В сопротивление заземляющего устройства должно быть не более 250/I з (где I з – ток замыкания на землю). При использовании заземляющего устройства одновременно и для электроустановок напряжением до 1000 В его сопротивление R з = 125/I з . Во всех случаях сопротивление R з не должно превышать 10 Ом.

Сопротивление заземления измеряют не реже одного раза в год в периоды наименьшей проводимости:один раз летом при наибольшем просыхании почвы, один раз зимой при наибольшем промерзании почвы. Контроль сопротивления заземления проводят при помощи измерителей защитного заземления типов МС-08, М-416 и др.

7.6 Расчёт защитного заземления .

Расчёт заключается в определении числа заземляющих проводников (труб, стержней), и длины соединяющей полосы, способа размещения в грунте.

Порядок расчёта заземлителей.

1. Зная напряжение, мощность и режим нейтрали электроустановки, определяют нормируемую величину сопротивления –R з.

2. Определяют расчётное удельное сопротивление грунта .

За расчётное удельное сопротивление грунта принимают наибольшее его значение в течении года

где – удельное сопротивление грунта, полученное при измерении, Ом*м

Ψ – коэффициент, учитывающий увеличение удельного сопротивления земли в течении года для разных климатических зон. По таблице 3.11 и 3.12 [ 7 ].

3.Рассчитывают сопротивление R В вертикальных одиночных заземлителей по эмпирическим формулам табл. 3.1 , табл. 11.4.[ 4 ].

4. Определяют число вертикальных заземлителей n с учетом коэффициента использования вертикальных электродов.

Сначала принимают =1. Затем уточняют количество электродов с учетом выбранного по табл. 3.2. значения , который зависит от числа заземлителей, способа их размещения и от отношения расстояния а между заземлителями к их длине l.

5. Находят длину соединяющей вертикальные электроды полосы. При размещении электродов в ряд длина полосы l n =1.05*a(n-1)

При размещении по контуру l n =1.05*a*n

6. По расчетным и выбранным параметрам полосы определяют ее сопротивление R г по эмпирическим формулам табл. 3.1[ 7 ] , табл. 11.4.[ 4 ].

7. Определяют результирующее сопротивление R общ растеканию тока сложного заземлителя с учетом экранирования между полосами и вертикальными электродами, учитываемого коэффициентом использования горизонтального полосового электрода.

Результирующее сопротивление заземлителей не должно превышать нормируемую величину, £

Зануление .

Этот способ защиты от поражения электрическим током заключается в преднамеренном электрическом соединении металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением, с нулевым защитным проводником.

Нулевым защитным проводником называют проводник, соединяющий зануляемые части с глухозаземлённой нейтральной точкой в трёхфазных сетях, с глухозаземлённым выводом обмотки источника тока в однофазных сетях и с глухозаземлённой средней точкой обмотки источника в сетях постоянного тока.

Принципиальная схема зануления в сети трёхфазного тока показана на рис. 7.6.

Защитный эффект зануления состоит в уменьшении длительности замыкания на корпус и, следовательно, в снижении времени воздействия электрического тока на человека.

Это достигается путём подключения корпусов электроустановок к нулевому проводу. При таком соединении любое замыкание на корпус превращается в однофазное, короткое замыкание. В этом случае в цепи возникает большой ток, способный обеспечить срабатывание защиты и тем самым автоматически отключить повреждённую электроустановку от питающей сети.

Рис. 7.6 Схема зануления в трёхфазной сети.

1.Корпус электроустановки. 2. Аппараты защиты от к.з., r0 – сопротивление заземления нейтрали обмотки источника тока. r п – сопротивление повторного заземления нулевого защитного проводника. Iк – ток короткого замыкания. Iн – часть тока к.з., протекающего через нулевой защитный проводник. Iз – часть тока к.з., протекающего через землю.

Такой защитой являются: плавкие предохранители или автоматические выключатели максимального тока, магнитные пускатели со встроенной тепловой защитой и другие.

Нулевой защитный проводник соединяют с землёй с помощью повторного заземлителя r п (рис. 7.6). В этом случае с момента возникновения замыкания на корпус и до автоматического отключения электроустановки от сети, проявляется защитное свойство этого заземлителя, как при защитном заземлении, то есть заземление корпусов через нулевой проводник снижает в аварийный период их напряжение относительно земли.

Таким образом, зануление осуществляет два защитных действия – быстрое автоматическое отключение повреждённой электроустановки от питающей сети и снижение напряжения занулённых металлических нетоковедущих частей, оказавшихся под напряжением, относительно земли.

С момента появления биткоина курс криптовалют неуклонно рос – именно поэтому многие предпочитали хранить сбережения в токенах. Но анонс libra 2019 поколебал эту тенденцию. Конечно, снижение курса за биткоин с 12 000 долларов до 9800 – не слишком значительная потеря для человека, купившего токен в 2008 году за 3 доллара. Но для того, кто приобрел монету в начале года за 10 тысяч – уже чувствительно.

Причины снижения курса

Дело в том, что появление libra crypto мировая банковская система восприняла как угрозу существующему порядку и задействовала регуляторные механизмы. А так как либра выходит в обращение только в первом полугодии 2020 года, то прессинг ударил по действующим криптовалютам.
Такой «удар на опережение» связан с тем, что либра будет опираться на многомиллионную аудиторию социальных сетей фейсбук и инстаграм, а курс будет независимым и формируемым специальным ресурсом, созданным компаниями-инвесторами (таковых насчитывается 28). Соответственно, ее старт сразу будет высоким, и финансисты боятся не успеть отреагировать.
    В то же время по заявленным характеристикам многие предпочтут buy libra , потому что:
  • проценты за транзакции ожидаются чисто символические;
  • можно будет вовсе не переводить токены либры в национальные валюты, расплачиваясь непосредственно ими за все товары и услуги по всему миру через приложения, работающие по технологии блокчейн;
  • полная анонимность – токен «рождается» в момент его покупки и «умирает» при оплате.
Кроме многомиллионной аудитории пользователей успех либры обеспечивается и серьезностью инвесторов – это транснациональные корпорации в области совершения электронных платежей, медиагрупп и инновационных технологий.

Непосредственно соприкосновение с токоведущими частями установок, находящимися под напряжением, связано с опасностью поражения током. При этом степень опасности и возможность поражения электрическим током зависят от того, каким образом произошло прикосновение человека к проводникам, находящимся под напряжением.

Возможны два случая прикосновений:

1) к двум линейным проводам одновременно;

2) к одному линейному проводу.

Двухфазное прикосновение. Прикосновение к двум линейным проводам (двум фазам) одновременно (рис. 6, а) является чрезвычайно опасным, поскольку к телу человека в этом случае прикладывается наибольшее возможное в данной сети напряжение — линейное. Ток, протекающий через тело человека, равен

где I ч — ток, протекающий через тело человека, в А;

U л — линейное напряжение установки в В;

U ф — фазовое напряжение в В;

R ч — сопротивление человека в Ом.

В сети с линейным напряжением 380 В и при сопротивлении тела человека 1000 Ом через человека будет проходить ток, равный I ч =380/1000= 0,38 А

Такой ток является, безусловно, опасным для жизни человека.

Рис. 6. Схема пути электрического тока :

а— при двухфазном прикосновении; б — при однофазном прикосновении в системе с заземленной нейтралью; в — при однофазном прикосновении в системе с изолированной нейтралью; г — при однофазном прикосновении в системе при наличии емкости

Случаи двухфазного прикосновения человека происходят очень редко. Достаточно сказать, что из всех случаев электропоражений с тяжелым исходом на долю одновременных прикосновений к двум фазам приходится от 3 до 10%.

Однофазное прикосновение. В 90—97% случаев, повлекших тяжелые электропоражения, имело место прикосновение к одной фазе,. Однако прикосновение к одной фазе является значительно менее опасным, чем двухфазное прикосновение. Объясняется это тем, что при однофазном прикосновении напряжение, под которым оказывается человек, не превышает фазного, т. е. меньше линейного в =1,73 раза. Соответственно меньше оказывается и ток, протекающий через тело человека. Кроме того, на величину этого тока влияет также режим нейтрали источника тока, сопротивление пола, на котором стоит человек, сопротивление его обуви и некоторые другие факторы.

Нейтрали генераторов и трансформаторов могут быть выполнены либо глухозаземленными, либо изолированными от земли. Глухозаземленной называется нейтраль генератора или трансформатора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, трансформаторы тока и т. д.). Изолированной называется нейтраль, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление (например, компенсационные катушки, трансформаторы напряжения и т. д.).

На рис. 6, б и в показаны схемы электрических сетей с заземленной и изолированной нейтралью.

Однофазное прикосновение в сети с глухозаземленной нейтралью. При таком прикосновении (рис. 6, б) ток, протекающий через тело человека, определяется фазовым напряжением сети , сопротивлением тела R ч, сопротивлением R п пола и почвы на участке от ступней ног до заземляющего устройства, сопротивлением обуви R o б и сопротивлением заземления нейтрали источника тока R 0:

Рассмотрим наиболее неблагоприятный случай. Предположим, что человек, прикоснувшийся к одной фазе, стоит на сыром грунте или на проводящем (металлическом или земляном) полу; его обувь также проводящая — сырая или имеет металлические гвозди. Следовательно, можно принять R п = 0 и R об = 0.

Поскольку сопротивление заземления нейтрали R 0 , как правило, равно 4 Ом, им без ущерба для точности подсчета можно пренебречь. В результате формула примет вид .

При линейном напряжении U л = 380 В через тело человека будет протекать ток, равный

Такой ток опасен для жизни.

Если же человек стоит на изолирующем полу (например, из метлахской плитки) в непроводящей обуви (например, резиновой), то, принимая R п = 120 000 Ом и R об = 100 000 Ом, получим

Такой ток безопасен для человека.

В действительности незагрязненные полы из метлахской плитки и резиновая обувь обладают значительно большим сопротивлением по сравнению с принятыми нами, т. е. ток, протекающий через человека, будет еще меньше.

Однофазное прикосновение в сети с изолированной нейтралью. При однофазном прикосновении человека в сети, имеющей изолированную нейтральную точку (рис. 6, б), ток проходит от места контакта через тело человека, затем через обувь, пол, землю и несовершенную изоляцию проводов к двум другим фазам и далее к источнику электроэнергии. Величина тока, проходящего через тело человека, в этом случае равна

где R из — сопротивление изоляции одной фазы сети относительно земли в Ом.

В наиболее неблагоприятном случае, когда человек стоит на проводящем полу и имеет проводящую обувь, т. е. при R п = 0 и R об = 0, формула значительно упростится:

При U л = 380 В и R из = 500 000 Ом получим

Этот ток значительно меньше тока (0,22 А), вычисленного нами для случая однофазного прикосновения при аналогичных условиях, но в сети с заземленной нейтралью. Если же принять R п = 120 000 Ом и R = 100 000 Ом, то ток будет еще меньше:

Следовательно, в сети с изолированной нейтралью условия безопасности находятся в прямой зависимости не только от сопротивления пола и обуви, но и от сопротивления изоляции проводов относительно земли: чем лучше изоляция, тем меньше сила тока, протекающего через человека. В сети с заземленной нейтралью положительная роль изоляции проводов практически полностью утрачена.

Таким образом, при прочих равных условиях однофазное прикосновение человека в сети с изолированной нейтралью менее опасно, чем в сети с заземленной нейтралью, и, следовательно, система с изолированной нейтралью при нормальном состоянии изоляции менее опасна для человека, чем система с глухим заземлением нейтрали. Однако в линии такой системы может длительное время существовать незамеченное персоналом замыкание одной из фаз на землю. Если в это время человек прикоснется к проводу одной из двух других фаз, то окажется под полным линейным напряжением сети, что равносильно двухфазному прикосновению.

Общие требования обустройстве электросетей. Согласно Правилам устройства электроустановок в четырехпроводных сетях переменного тока и трехпроводных сетях постоянного тока выполняют глухое заземление нейтрали. Сети с изолированной нейтралью применяют при повышенных требованиях безопасности с обязательным устройством контроля изоляции сети и целости пробивных предохранителей силовых трансформаторов, позволяющих персоналу быстро обнаружить замыкание на землю, либо с устройством автоматического отключения участков, получивших замыкание на землю.

Опасность воздействия емкостного тока. В связи с тем, что каждая электрическая установка имеет емкость, необходимо учитывать также ее опасное влияние и возможное поражение током. Выше было сказано, что наименьшую опасность представляет однофазное прикосновение в системе с изолированной нейтралью при наличии качественной изоляции фаз. Однако даже в случае идеальной изоляции поражение током возможно и зависит от величины емкостного тока.

Емкость тока зависит от конструкции сети (воздушная или кабельная), напряжения и сечения проводов. При равных условиях (одинаково высоком напряжении, например, в 10 кВ) емкость жилы подземного кабеля среднего сечения относительно земли значительно больше емкости одной фазы относительно земли воздушной линии (соответственно, 0,2*10 -6 Ф/км и 0,0045*10 -6 ÷ 0,005 X 10 -6 Ф/км).

Предположим, что изоляция сети находится в таком хорошем состоянии, что токами утечки через изоляцию можно пренебречь, но сеть имеет некоторую емкость по отношению к земле. Для рассматриваемого случая схема прикосновения человека к одной фазе и образования цепи движения токов утечки через емкость показана на рис. 6, г.

Общее выражение для емкостного тока, протекающего через тело человека, будет

где jχ c — емкостное сопротивление одной фазы, выраженное в символической форме (здесь χ c = 1/(ω*C)—реактивное сопротивление емкости, где ω = 2πf— угловая частота переменного тока; f — частота тока в Гц; С—емкость фазы по отношению к земле в Ф).

Если взять модуль полного сопротивления, то ток, протекающий через тело человека:

При значительной емкости сети, которая имеет место в разветвленных и протяженных кабельных сетях, величина тока, протекающего через тело человека, может оказаться опасной для жизни. В таких случаях электрические системы с изолированной нейтралью в отношении безопасности полностью теряют преимущества перед системами с заземленной нейтралью и их следует рассматривать как равноценные. Но для сетей малой и средней протяженности однофазное прикосновение менее опасно для систем с изолированной нейтралью.

Опасность шаговых напряжений. Опасность поражения током может возникнуть вблизи места перехода тока

Рис. 7.

в землю с упавшего фазного провода. В зоне растекания токов (рис. 7) человек подвергается воздействию шаговых напряжений, т. е. напряжений, обусловленных, током замыкания на землю между точками почвы, отстоящими друг от друга в зоне растекания токов на расстоянии шага. Опасность поражения в этом случае увеличивается при сокращении расстояния между человеком и местом замыкания на землю и увеличении ширины шага.

Сила тока однофазного замыкания на землю I з может быть определена по формуле величина шагового напряжения U ш по формуле

где R 0 — сопротивление рабочего заземления нейтрали в Ом;

R p — сопротивление растеканию тока в месте замыкания фазного провода на землю в Ом;

ρ - удельное сопротивление грунта в Ом*см;

а — длина шага в см;

х — расстояние от места замыкания фазного провода до места измерения напряжения в см.

Определим величину шагового напряжения, воздействию которого подвергается стоящий на земле человек, если произошло замыкание на землю в сети напряжением 330/220 В с заземленной нейтралью. Сопротивление рабочего заземления R 0 = 4 Ом. Сопротивление растеканию тока в месте замыкания R р = 12 Ом (это соответствует наименьшему значению сопротивления, за исключением случая замыкания на металлическую конструкцию большой протяженности). Человек находится на расстоянии х = 4 м от точки замыкания. Величина шага а = 0,8 м. Удельное сопротивление, грунта растеканию тока ρ = 3*10 4 Ом*см.

Первоначально определим силу тока замыкания на землю а затем величину шагового напряжения

Параметры тока, проходящего через человека при воздействии шагового напряжения, зависят, кроме того, от сопротивлений опорной поверхности ног и обуви. Защитное действие оказывает обувь, обладающая хорошими изоляционными свойствами, например, резиновая.

Загрузка...