domvpavlino.ru

Принцип работы турбогенератора на тэц. Как устроены синхронные турбо- и гидрогенераторы? Рассмотрим минусы рбмк

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Особенности конструкции турбогенератора

Турбогенератор - работающий в паре с турбиной синхронный генератор.

Основная функция в преобразовании механической энергии вращения паровой или газовой турбины в электрическую. Скорость вращения ротора 3000, 1500 об/мин. Механическая энергия от турбины преобразуется в электрическую посредством вращающегося магнитного поля ротора в статоре. Поле ротора, которое создается током постоянного напряжения, протекающего в медной обмотке ротора, приводит к возникновению трёхфазного переменного напряжения и тока в обмотках статора. Напряжение и ток на статоре тем больше чем сильнее поле ротора т.е. больше ток протекающий в обмотках ротора. Напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель - небольшой генератор на валу турбогенератора.

Турбогенераторы имеют цилиндрический ротор, установленный на двух подшипниках скольжения, в упрощенном виде напоминает увеличенный генератор легкового автомобиля. Выпускаются 2-х полюсные (3000 об/мин), 4-х полюсные (1500 об/мин как на Балаковской АЭС), следовательно, имеют высокие частоты вращения и проблемы с этим связанные. По способам охлаждения обмоток турбогенератора различают: с водяным охлаждением (три воды), с воздушным и водородным (чаще применяются на АЭС).

По качеству, надежности и долговечности турбогенераторов - Россия занимает передовые позиции в мире.

Конструкция турбогенератора

Генератор состоит из двух ключевых компонентов - статора и ротора . Но каждый из них содержит большое число систем и элементов.

Ротор - вращающийся компонент генератора и на него воздействуют динамические механические нагрузки, а также электромагнитные и термические.

Статор - стационарный компонент турбогенератора, но он также подвержен воздействию существенных динамических нагрузок - вибрационных и крутящих, а также электромагнитных, термических и высоковольтных.

В зависимости от системы охлаждения турбогенераторы подразделяются на несколько типов : с воздушным, масляным, водородным и водяным охлаждением. Также существуют комбинированные типы, например, генераторы с водородно-водяным охлаждением.

Также существуют специальные турбогенераторы, к примеру, локомотивные, служащие для питания цепей освещения и радиостанции паровоза. В авиации турбогенераторы служат дополнительными бортовыми источниками электроэнергии.

Например, турбогенератор ТГ - 6 0 работает на отбираемом от компрессора авиадвигателя сжатом воздухе, обеспечивая привод генератора трёхфазного переменного тока 208 вольт, 400 герц, номинальной мощностью 60 кВ*А.

Основными направлениями в области научно-технической политики компании «Электросила » я вляются:

· разработка новой продукции с техническими характеристиками, соответствующими или превосходящими мировые аналоги;

· привлечение к разработке новой продукции ведущих отечественных научных организаций;

· развитие материально-технической базы конструкторских подразделений и исследовательских лабораторий.

Изготавливают турбогенераторы:

· Всего изготовлено более 2701 турбогенераторов суммарной мощностью 275,1 ГВт (или 323,6 ГВ*А)

· Диапазон мощностей выпускаемых турбогенераторов от 2 до 1200 МВт

· Турбогенераторы «Силовых машин» работают в 44 странах мира

· Первый турбогенератор «Силовых машин» был изготовлен филиалом «Электросила» в 1924 году

Особенности конструкции современных турбогенераторов.

Одна их важнейших проблем турбостроения - охлаждение.

Прославленный ленинградский завод Электросила имени С.М. Кирова отгружает в адрес Костромской ГРЭС турбогенератор мощностью 1,2 млн. кВт. Создание такой исполинской электрической машины - замечательная победа советской науки и техники.

Вот что ему рассказали о создании сверхмощных турбогенераторов:

В результате научно-технического прогресса в энергомашиностроении, металлургии, благодаря созданию новых материалов, успехам технологии единичную мощность отечественных турбогенераторов удалось повысить с 0.5 тыс. кВт (1924 г.) до 1200 кВт (1975 г.), т.е. за 50 лет она выросла в 2400 раз.

Это большое достижение нашей науки и техники, особенно если учесть, что чем мощнее была создаваемая машина, тем сложнее оказывался узел проблем, встававших перед учеными, конструкторами, инженерами.

Чтобы получить хотя бы общее представление о том, как достигалось повышение мощности, какие основные задачи приходилось решать при этом, рассмотрим некоторые особенности конструкции современных турбогенераторов.

Ротор турбогенератора , который сидит на одном валу с паровой турбиной, выполняется из массивной поковки магнитной стали. В его обмотку от постороннего источника подается постоянный ток, и таким образом ротор превращается в электромагнит. При вращении ротора создаваемое им магнитное поле пересекает проводники статора, которые уложены в пазах сердечника (он выполняет роль магнитопровода). В результате в проводниках статора индуктируется переменная электродвижущая сила (э. д. с). От статора переменный ток поступает на повышающий трансформатор, а затем по линии электропередачи направляется к потребителям.

Даже это описание работы турбогенератора позволяет установить пути увеличения его мощности.

Ясно, что сделать это можно, повышая частоту вращения ротора : чем она будет больше, тем чаще магнитное поле будет пересекать обмотку статора. Казалось бы, такое решение весьма желательно, так как и паровая турбина имеет наилучшие технико-экономические показатели при больших частотах вращения. Но в действительности возможности в этом направлении строго ограничены. В Советском Союзе стандартная частота тока-50 Гц. Следовательно, чтобы при двух полюсах вырабатывать ток такой частоты, ротор должен делать за секунду 50 оборотов, или 3000 оборотов в минуту.

Очевидно, мощность турбогенератора можно повышать, увеличивая его габариты . Конечно. Ведь чем больше внутренний диаметр и длина статора (соответственно и ротора), тем больше размеры магнитной системы машины, а значит, величина магнитного потока, который и наводит э.д.с. в обмотке статора. И действительно, было время, когда конструкторы добивались роста мощности турбогенератора в значительной степени за счет увеличения его габаритов. Однако и эта возможность довольно скоро была практически исчерпана. Чем же это объясняется?

Длина той части ротора, на которой располагается обмотка (активная длина), не может быть существенно больше 8 м , иначе возникнут недопустимые прогибы. Ограничен и диаметр ротора величиной 1,2-1,3 м , так как по условиям прочности линейная скорость точек его поверхности не должна превышать 170-190 м в секунду (а это уже скорость реактивного самолета), при этом возникают усилия в сотни тонн, стремящиеся вытолкнуть обмотку из пазов. Если сделать ротор диаметром свыше 1,3 м, то даже лучшая легированная сталь не выдержит - центробежные силы разрушат конструкцию. Внешний диаметр статора также имеет свой предел - 4,3 м иначе, чтобы перевезти турбогенератор по железной дороге, придется расширять мосты и тоннели, останавливать встречное движение поездов по маршрутам следования. Может быть, сделать статор разъемным, чтобы облегчить перевозку? Но тогда на электростанции надо создавать филиал завода - сборочный цех и испытательную станцию.

Несмотря на значительные успехи металлургической промышленности, активный объем ротора за период с 1937 по 1974 год вырос менее чем в 2 раза (длина - с 6,5 до 8 м, диаметр - с 1 до 1,25 м), в то время как мощность турбогенераторов увеличивалась в 12 раз (со 100 до 1200 тыс. кВт). «Предельные габариты» были фактически достигнуты уже при создании машины в 300 тыс. кВт. Конечно, некоторые, правда, незначительные изменения размеров с увеличением мощности турбогенераторов происходили и в дальнейшем. Надо заметить, что, хотя и наблюдается прогресс в улучшении магнитных характеристик сталей, имеющиеся пределы по их насыщению не позволяют сколь-нибудь существенно повысить магнитную индукцию (для увеличения мощности генератора).

Центральная проблема

Теперь становится ясно, что для продвижения вверх по шкале мощности остается фактически один путь - увеличение токовой нагрузки статора . Но чем больше ток, проходящий по обмоткам машины, тем сильнее они нагреваются. Увеличивается ток в два раза - в четыре раза увеличиваются тепловые потери, ток растет в три раза, выделение тепла - в девять и т.д. Таков неумолимый закон физики.

Путь увеличения токовых нагрузок оказался довольно тернистым. Теперь главным врагом конструкторов стало тепло. И надо было найти эффективные способы отводить его от частей машины раньше, чем их температура успеет превысить допустимые значения.

Итак, центральной стала проблема охлаждения турбогенератора . От успехов в ее решении и сегодня в основном зависит прогресс турбогенераторостроения.

Вся история борьбы за повышение единичной мощности турбогенератора есть, в сущности, история развития способов его охлаждения.

Турбогенераторы, которые выпускались в довоенные годы, охлаждались воздухом. В машине 100 тыс. кВт устанавливались вентиляторы, которые ежесекундно прогоняли через нее 60 кубометров воздуха. Из-за малой его теплопроводности даже такой воздушный ураган оказался недостаточно эффективным для охлаждения машин большей мощности.

Лучше, чем воздух, отбирает тепло водород , так как его теплопроводность почти в 7 раз выше . К тому же плотность водорода в 10 раз меньше : ротору легча вращаться, а менее вязкой среде, снижаются потери на трение, коэффициент полезного действия турбогенератора увеличивается примерно на один процент; существенно и то что в среде водорода медленнее изнашивается («стареет») изоляция. Мощность турбогенератора при таком охлаждении удалось поднять до 150 тыс. кВт.

Чтобы создать еще более крупную машину, надо было опять-таки улучшать отвод тепла.

У машины в 150 тыс. кВт охлаждающий газ отнимал тепло, омывая наружную поверхность ротора и поверхность вентиляционных каналов в сердечнике статора. Такое косвенное охлаждение оказалось недостаточным для турбогенераторов следующей ступени мощности. У них впервые часть проводников в обмотках сделали полыми, и через них прогонялся водород. Непосредственное охлаждение вместо косвенного позволило создать машину в 200 тыс. кВт (1957 год).

Конечно, заманчиво было использовать для охлаждения воду: ведь ее теплопроводность в 3 раза, а теплоемкость в 3500 раз больше, чем у водорода. Но реализовать эту идею трудно из-за «несовместимости» воды и электричества. При малейшем увлажнении изоляции возможны пробой, короткое замыкание и весьма серьезная авария.

В турбогенераторе мощностью 300 тыс. кВт все же удалось осуществить непосредственное охлаждение водой обмоток статора. И хотя жидкость прогоняется под давлением по полым проводникам статора совсем близко от корпусной изоляции, водяной тракт настолько надежно спроектирован, так тщательно изготовлен, что прорыв воды практически исключен. (Для охлаждения применяют дистиллированную воду, так как обычная вода проводит электрический ток и оставляет осадки растворенных в ней солей на внутренних стенках проводников.)

Схема охлаждения:

водой - статорную обмотку,

водородом - роторную обмотку и активное железо - оказалась очень удачной. Она была использована и при создании турбогенераторов мощностью 500 и 800 тыс. кВт.

Таким образом, мы видим, что появление более совершенных систем охлаждения связано с невозможностью развития предыдущих типов машин, с достижением ими предельных мощностей. Показательно, что в дальнейшем новые решения распространялись не только вверх, но и вниз по шкале мощностей (в настоящее время для всех современных турбогенераторов мощностью 150 тыс. кВт и выше применяется непосредственное водяное охлаждение обмотки статора ) и границы между машинами с различными системами охлаждения устанавливались, по технико-экономическим соображениям.

Следует отметить, что новые принципы исполнения машин, которые появляются при повышении их единичной мощности, почти всегда оказываются и технически и экономически более целесообразными также для машин менее мощных.

Одно из главных следствий создания все более интенсивных систем охлаждения - снижение удельных расходов материалов при одновременном росте мощности турбогенератора . Если для машины в 30 тыс. кВт он был равен 2,75 кг (на 1 кВА), то с увеличением мощности турбогенератора до 800 тыс. кВт стал уже 0,58. Если бы удельный расход у него был бы таким же, как у машины в 30 тыс. кВт, то масса его была бы не 500 т, а 2000 т. А ведь на долю материалов приходится примерно 75 процентов себестоимости турбогенератора1

Проблема отвода тепла действительно центральная, но далеко не единственная. Путь интенсификации, то есть увеличения мощности турбогенератора при почти неизменяющемся его объеме, приводит, естественно, к росту электромагнитной, тепловой и механической напряженности машины. Одновременно с этим снижается (если не принимать специальных мер) её надежность.

Охлаждение

Во время работы в генераторе возникают потери энергии, превращающиеся в теплоту и нагревающие его элементы. Хотя к. п. д. современных генераторов очень высок и относительные потери составляют всего 1,5-2,5%, абсолютные потери достаточно велики (до 10 МВт в машине 800 МВт), что приводит к значительному повышению температуры активной стали, меди и изоляции.

Предельный нагрев генераторов лимитируется изоляцией обмоток статора и ротора, так как под воздействием теплоты происходит ухудшение ее электроизоляционных свойств и понижение механической прочности и эластичности. Изоляция высыхает, крошится и перестает выполнять свои функции. Опытным путем установлено, что процесс этого, так называемого старения изоляции протекает тем быстрее, чем выше ее температура. Математически это выражается формулой

В качестве охлаждающей среды в современных генераторам применяют газы (воздух, водород) и жидкости (вода, масло).

Турбогенераторы выполняются с воздушным, водородным, водородно-жидкостным или чисто жидкостным охлаждением .

По способу отвода теплоты от меди обмоток системы охлаждения подразделяются накосвенные (поверхностные) и непосредственные.

При косвенном охлаждении (оно применяется только при газах) охлаждающий газ не соприкасается с проводником обмоток, а теплота, выделяемая в них, передается газу через изоляцию, которая таким образом оказывается перегруженной в тепловом отношении и значительно ухудшает теплопередачу.

При непосредственном охлаждении водород, вода циркулируют по внутрипроводниковым каналам и, соприкасаясь непосредственно с нагретой медью, отводят от нее теплоту при максимальной эффективности теплопередачи, так как между источником тепла и охлаждающей средой нет никаких барьеров. Большим преимуществом такой системы является также небольшая тепловая нагрузка изоляции.

Исторически первой системой охлаждения генераторов была система косвенного охлаждения. При этой системе циркуляция воздуха в машине осуществляется вентиляторами. Нагретый в машине воздух выбрасывается через горячие камеры в воздухоохладитель, расположенный под генератором, а оттуда, через общие камеры холодного воздуха поступает обратно в генератор (рис. 1-1).

Из схемы на рис. 1-2 видно, что при такой системе вентиляции один и тот же объем воздуха совершает замкнутый цикл охлаждения, поэтому ее называют замкнутой. В зависимости от расположения вентиляционных каналов и направления движения воздуха в машине различают осевую (рис. 1-3) и радиальную (рис. 1-4) вентиляцию.

Замкнутая система косвенного воздушного охлаждения турбогенератора

Эффективность вентиляции повышается при разделении потока охлаждающего воздуха на несколько параллельных струй. Радиальная многоструйная система вентиляции широко применялась до 50-х годов, и сейчас в эксплуатации находится значительное число турбогенераторов до 100 МВт, а также гидрогенераторов до 225 МВт с воздушным охлаждением (рис. 1-5).

В настоящее время косвенное воздушное охлаждение применяют ограниченно, в турбогенераторах только до 12 МВт . Более мощные генераторы оснащаются теперь более эффективными системами охлаждения, позволяющими значительно увеличить единичную мощность без существенного увеличения размеров машины, которые уже у генераторов 100 МВт с косвенным воздушным охлаждением достигли предельных значений, определяемых транспортными, технологическими и конструктивными соображениями.

Замкнутые системы вентиляции М машина; В = вентилятор; О - охладитель

Осевая вентиляция

Повышение единичной мощности генераторов может производиться только за счет увеличения отдельных конструктивных параметров, входящих в (1-9).

Однако частота вращения не может быть повышена, так как определяется частотой сети и числом пар полюсов генератора.

Индукция в зазоре современных крупных турбогенераторов также достигла практически предельного значения 1 Тл и не может существенно меняться из-за насыщения в зубцах.

Диаметр статора нельзя увеличивать из-за транспортных ограничений, а диаметр ротора - по условиям технологии изготовления его бочки.

Длина бочки ротора не должна быть больше шестикратного диаметра бочки, так как иначе статический прогиб ее достигнет недопустимых значений, а собственная частота приблизится к критической, при которой могут возникнуть опасные вибрации ротора. Это означает, что при предельном диаметре ротора 1200 мм длина его активной стали не может быть больше 7200-7500 мм.

Таким образом, единственная возможность повышения единичной мощности генераторов заключается в увеличении линейной нагрузки (а следовательно, плотности тока), которое требует соответствующего увеличения интенсивности отвода теплоты и может быть выполнено только при переходе на принципиально иные способы охлаждения.

Первым шагом повышения интенсивности охлаждения был переход на другую охлаждающую среду (водород) при сохранении системы косвенного охлаждения.

турбогенератор синхронный мощность

Многоструйная система водородного охлаждения турбогенератора

За счет лучших теплоотводящих свойств водорода удалось изготовить генераторы с максимальной мощностью 150 МВт.

Кроме повышения единичной мощности при переходе на водород были получены следующие преимущества: потери в генераторе на трение и вентиляцию уменьшились в 10 раз, так как плотность водорода в 14 раз меньше плотности воздуха. Это привело к повышению к. п. д. турбогенератора примерно на 0,8%. Удлинился срок службы изоляции и повысилась ее надежность, так как при коронировании не возникает озона, вызывающего интенсивное окисление изоляции и вредные азотные соединения.

Из-за значительно меньшей вязкости водорода снижается шум генератора.

При внутренних повреждениях в машине уменьшается вероятность пожара в ней, так как водород не поддерживает горения. Значительно уменьшается поверхность газоохладителей, которые могут теперь быть встроены в корпус генератора. Правда, применение водорода для охлаждения связано с опасностью взрывов гремучей смеси, которая образуется при определенных соотношениях кислорода и водорода. Однако правильная эксплуатация систем водородного охлаждения сводит на нет эту опасность.

Косвенное водородное охлаждение сохранилось в настоящее время только в турбогенераторах 30-60 МВт и в синхронных компенсаторах 32 MBЧА и выше, так как увеличение единичной мощности при косвенной системе охлаждения ограничено превышениями температур в изоляции и стали над температурой охлаждающей среды.

Дальнейшее повышение единичной мощности турбогенераторов оказалось возможным лишь при переходе на систему непосредственного охлаждения . Такое охлаждение применяется теперь не только в машинах 200 -800, но и в машинах 150, 100 и 60 МВт.

Н аилучшей охлаждающей средой является вода . Получение дистиллята с удельным сопротивлением 200-10+3 ОмЧсм не представляет трудностей. Поэтому при жидкостном охлаждении преимущественно применяется вода. Теплоотводящая способность трансформаторного масла примерно в 2,5 раза ниже, чем воды, а кроме того, масло пожароопасно и поэтому значительно реже применяется в качестве охлаждающей среды.

Для непосредственного охлаждения статора и ротора турбогенераторов широко применяется также водород.

Турбогенераторы используются на атомных и тепловых электростанциях .

С их помощью электроэнергия вырабатывается при непосредственном контакте с газовыми и паровыми турбинами в номинальном режиме в течение продолжительного времени.

Существуют три группы турбогенераторов различной мощности :

больше 500 МВт.

Различаются турбогенераторы также и по частоте вращения и частоте сети . Это четырех-полюсные частотой вращения 1500 и 1800 об/мин на частоту сети 50Гц и двухполюсные на частоту вращения 3000 и 3600 об/мин на частоту сети 60 Гц.

Турбогенераторы делятся на генераторы, приводимые во вращение газовой турбиной и с приводом от паровой турбины . Это классификация по виду приводной турбины.

В зависимости от системы охлаждения турбогенераторы разделяются на машины с косвеннымводородным охлаждением , воздушным охлаждением и водородным и жидкостным охлаждением . Любому оборудованию нужно своевременное обслуживание, а также иногда может потребоваться ремонт турбогенераторов.

Классификация по системе возбуждения подразделяет турбогенераторы на машины с независимой тиристорной системой , статической системой самовозбуждения и бесщеточным возбуждением .

Мощность генератора зависит от частоты и напряжения. Работа генератора допускается при напряжении не более 110% от номинального на выводах обмотки статора.

Сверхпроводящая обмотка возбуждения сделана из кабеля, поперечником 0,7 мм с 37 сверхпроводящими жилами из ниобий-титана в медной матрице. Центробежные и электродинамические стремления в обмотке воспринимаются бандажом из нержавеющей стали. Между открытой толстостенной пленкой из нержавеющей стали и бандажом расположен духовой электротермический экран, охлаждаемый потоком протекающего в тракте безжалостного газообразного гелия (он позже возвращается в ожижитель). Подшипники работают при комнатной температуре. Обмотка статора сделана из медных посредников (охладитель - вода) и охвачена ферромагнитным экраном из шихтованной стали. Ротор поворачивается в вакуумированном пространстве изнутри стенки из изоляционного материала. Сохранение вакуума в камере гарантируют уплотнители.

Размещено на Allbest.ru

...

Подобные документы

    Выбор главных размеров турбогенератора. Расчет номинального фазного напряжения при соединении обмотки в звезду. Характеристика холостого хода. Определение индуктивного сопротивления рассеяния Потье. Оценка и расчет напряжений в бандаже и на клине.

    курсовая работа , добавлен 21.06.2011

    Определение размеров и электромагнитных нагрузок. Проектирование статора и ротора. Характеристика холостого хода. Параметры и постоянная времени турбогенератора. Отношение короткого замыкания, тока короткого замыкания и статической перегружаемости.

    курсовая работа , добавлен 10.11.2015

    Понятие и характеристика паровой турбины. Особенности конструкции и предназначение паровой турбины. Анализ расчета внутренних потерь и схемы работы теплофикационной турбины и последовательность расчета ступеней давления. Эксплуатация турбинной установки.

    курсовая работа , добавлен 25.03.2012

    История создания и виды электродвигателя. Принцип работы и устройство синхронного электродвигателя переменного тока. Изучение работы генератора на основе закона электромагнитной индукции Фарадея. Изучение характеристики простейшего электрогенератора.

    презентация , добавлен 12.10.2015

    Принцип действия, основные характеристики и элементы конструкции синхронного вертикального двигателя, область применения. Расчет электромагнитного ядра явнополюсного синхронного двигателя, его оптимизация по минимуму приведенной стоимости и резервов.

    курсовая работа , добавлен 16.04.2011

    Понятие и функциональные особенности погрузочно-разгрузочных машин, сферы их практического применения и значение. Группа режима работы и направления ее исследования. Классификация и типы кранов, их специфика. Устройство, элементы тележки, принцип работы.

    презентация , добавлен 17.05.2013

    Принцип действия синхронного генератора. Типы синхронных машин и их устройство. Управление тиристорным преобразователем. Характеристика холостого хода и короткого замыкания. Включение генераторов на параллельную работу. Способ точной синхронизации.

    презентация , добавлен 05.11.2013

    Применение синхронных двигателей в устройствах автоматики и техники. Изготовление ротора, турбогенератора. Предназначение двигателей для привода мощных вентиляторов, мельниц, насосов и других устройств. Конструктивное исполнение статора синхронной машины.

    презентация , добавлен 01.09.2015

    Понятие и задачи языков программирования общего назначения, их классификация и разновидности, их функциональные особенности и сферы практического применения. Структурные составляющие языка QBasic, принцип его работы, главные операции и возможности.

    презентация , добавлен 30.03.2014

    Факторы, влияющие на жизнедеятельность человека в полёте. Работоспособность авиационных систем охлаждения по высоте и скорости полета. Конструкция и принцип работы турбохолодильника. Система охлаждения аппаратуры средних и заднего технических отсеков.

Введение

Турбогенераторы (ТГ) представляют собой основной вид генерирующего оборудования, обеспечивающего свыше 80% общего мирового объема выработки электроэнергии. Одновременно ТГ являются и наиболее сложным типом электрических машин, в которых тесно сочетаются проблемы мощности, габаритов, электромагнитных характеристик, нагрева, охлаждения, статической и динамической прочности элементов конструкции. Обеспечение максимальной эксплуатационной надежности и экономичности ТГ является центральной научно-технической проблемой. Вместе с тем, несмотря на огромное количество работ, выполненных за прошедшие десятилетия, вопросы дальнейшего развития теории, разработки более совершенных технологий и конструкций ТГ, методов расчета и исследований не теряют своей актуальности.

Турбогенератор - неявнополюсный синхронный генератор, основная функция которого состоит в конвертации механической энергии в работе от паровой или газовой турбины в электрическую при высоких скоростях вращения ротора (3000,1500об/мин). Механическая энергия от турбины конвертируется в электрическую при помощи вращающегося магнитного поля, которое создается током постоянного напряжения, протекающего в медной обмотке ротора, что в свою очередь приводит к возникновению трехфазного переменного тока и напряжения в обмотках статора. В зависимости от систем охлаждения турбогенераторы подразделяются на несколько видов: генераторы с воздушным охлаждением, генераторы с водородным охлаждением и генераторы с водяным охлаждением. Также существуют комбинированные типы, например, генератор с водородно-водяным охлаждением (ТВВ). Турбогенератор ТВВ-320-2 предназначен для выработки электрической энергии на тепловой электростанции при непосредственном соединении с паровой турбиной К-300-240 Ленинградского металлического завода или Т-250-240 Уральского турбомоторного завода.

Задание

а) конструкция и принцип действия электрической в соответствии с заданием, сфера применения;

б) схема-развертка обмотки.

Выбор варианта

а) выбирается по таблице 1.1

Таблица 1.1

б) выбирается по таблицам 1.2 и 1.3

Таблица 1.2

Таблица 1.3

Турбогенераторы

2.1 Турбогенератор - работающий в паре с турбиной синхронный генератор. Основная функция в преобразовании механической энергии вращения паровой или газовой турбины в электрическую. Скорость вращения ротора 3000, 1500 об/мин. Механическая энергия от турбины преобразуется в электрическую посредством вращающегося магнитного поля ротора в статоре. Поле ротора, которое создается током постоянного напряжения, протекающего в медной обмотке ротора, приводит к возникновениютрёхфазного переменного напряжения и тока в обмотках статора. Напряжение и ток на статоре тем больше, чем сильнее поле ротора, т.е. больше ток протекающий в обмотках ротора. Напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель - небольшой генератор на валу турбогенератора. Турбогенераторы имеют цилиндрический ротор установленный на двух подшипниках скольжения, в упрощенном виде напоминает увеличенный генератор легкового автомобиля. Выпускаются 2-х полюсные (3000 об/мин), 4-х полюсные (1500 об/мин как на Балаковской АЭС), следовательно, имеют высокие частоты вращения и проблемы с этим связанные. По способам охлаждения обмоток турбогенератора различают: с водяным охлаждением (три воды), с воздушным и водородным (чаще применяются на АЭС).

В зависимости от системы охлаждения турбогенераторы подразделяются на несколько типов: с воздушным, масляным, водородным и водяным охлаждением. Также существуют комбинированные типы, например, генераторы с водородно-водяным охлаждением. Также существуют специальные турбогенераторы, к примеру, локомотивные, служащие для питания цепей освещения и радиостанции паровоза. В авиации турбогенераторы служат дополнительными бортовыми источниками электроэнергии. Например, турбогенератор ТГ-60 работает на отбираемом от компрессора авиадвигателя сжатого воздуха, обеспечивая привод генератора трёхфазного переменного тока 208 вольт, 400 герц, номинальной мощностью 60 кВ*А.

Конструкция турбогенератора

Генератор состоит из двух ключевых компонентов - статора и ротора. Но каждый из них содержит большое число систем и элементов. Ротор - вращающийся компонент генератора и на него воздействуют динамические механические нагрузки, а также электромагнитные и термические. Статор - стационарный компонент турбогенератора, но он также подвержен воздействию существенных динамических нагрузок - вибрационных и крутящих, а также электромагнитных, термических и высоковольтных. Первоначальный (возбуждающий) постоянный ток ротора генератора подается на него с возбудителя генератора. Обычно возбудитель соосно соединён упругой муфтой с валом генератора и является продолжением системы турбина-генератор-возбудитель. Хотя на крупных электрических станциях предусмотрено и резервное возбуждение ротора генератора. Такое возбуждение происходит от отдельно стоящего возбудителя. Такие возбудители постоянного тока приводятся в действие своим электродвигателем переменного трехфазного тока и включены как резерв в схему сразу нескольких турбоустановок. С возбудителя постоянный ток подается в ротор генератора посредством скользящего контакта через щётки и контактные кольца. Современные турбогенераторы используют тиристорные системы самовозбуждения.

Работа турбогенератора

Неявнополюсные роторы (рис. 10 и 11) применя­ют в синхронных машинах большой мощности, имеющих частоту вращения п = 1500÷3000 об/мин. Изготовление ма­шин большой мощности с такими частотами вращения при явнополюсной конструкции ротора невозможно по услови­ям механической прочности ротора и крепления полюсов и обмотки возбуждения.

Неявнополюсные роторы имеют главным образом син­хронные генераторы, предназначенные для непосредствен­ного соединения с паровыми турбинами. Такие машины на­зывают турбогенераторами. Турбогенераторы для тепловых электрических станций имеют частоту вращения 3000 об/мин и два полюса, а для атомных станций - 1500 об/мин и четыре по­люса. Ротор турбогенераторов выполняют массивным из цельной стальной поковки. Для роторов турбогенерато­ров большой мощности применяют высококачественную хромоникелевую или хромоникельмолибденовую сталь. По условиям механической прочности диаметр ротора при частоте вращения 3000 об/мин не должен превышать 1,2-1,25 м. Чтобы обеспечить необходимую меха­ническую жесткость, активная длина ротора должна быть не больше 6,5 м.

На рис. 10 дан общий вид, а на рис. 11 - поперечный разрез двухполюсного ротора тур­богенератора.

На наружной поверхности ротора фрезеруют пазы прямоугольной формы, в которые укладывают катушки обмотки возбуждения. Примерно на одной трети полюс­ного деления обмотку не укладывают, и эта часть образует так называемый большой зубец, через который проходит основная часть магнитного потока генератора. Иногда в большом зубце выполняют пазы, которые образуют вен­тиляционные каналы. Из-за больших центробежных сил, действующих на об­мотку возбуждения, ее крепление в пазах производят с по­мощью немагнитных металлических клиньев. Немагнитные клинья ослабляют магнитные потоки пазового рассеяния, которые могут вызывать насыщение зубцов и приводить к уменьшению полезного потока. Пазы большого зубца за­крывают магнитными клиньями. Лобовые части обмотки закрепляют роторными бандажами. Обмотка ротора имеет изоляцию класса В или F. Выводы от обмотки возбуждения подсоединяют к контактным кольцам на роторе. Вдоль оси ротора по всей его длине просверливают цент­ральное отверстие, которое служит для исследования ма­териала центральной части поковки и для разгрузки по­ковки от опасных внутренних напряжений. На рис. 12 дан общий вид турбогенератора. В турбогенераторах функ­цию демпферной обмотки выполняют массивное тело рото­ра и клинья.

Кроме турбогенераторов с неявнополюсным ротором вы­пускают быстроходные синхронные двигатели большой мощности - турбодвигатели.

От десятков тысяч оборотов в минуту (у синхронных турбогенераторов с возбуждением от постоянных магнитов "НПК "Энергодвижение") до 3000, 1500 об/мин (у синхронных турбогенераторов с возбуждением ротора). Механическая энергия от турбины преобразуется в электрическую посредством вращающегося магнитного поля ротора в статоре . Поле ротора, которое создается либо установленными на ротор постоянными магнитами, либо током постоянного напряжения, протекающего в медной обмотке ротора, приводит к возникновению трёхфазного переменного напряжения и тока в обмотках статора. Напряжение и ток на статоре тем больше, чем сильнее поле ротора, т.е. больше ток протекающий в обмотках ротора. У синхронных турбогенераторов с внешним возбуждением напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель - небольшой генератор на валу турбогенератора. Турбогенераторы имеют цилиндрический ротор установленный на двух подшипниках скольжения , в упрощенном виде напоминает увеличенный генератор легкового автомобиля. Выпускаются 2-х полюсные (3000 об/мин), 4-х полюсные (1500 об/мин как на Балаковской АЭС), и многополюсные машины, в зависимости от мест эксплуатации и требований Заказчика. По способам охлаждения обмоток турбогенератора различают: с жидкостным охлаждением через рубашку статора; с жидкостным непосредственным охлаждением обмоток; с воздушным охлаждением; с водородным охлаждением (чаще применяются на АЭС).

История

Один из основателей компании «ABB » Чарльз Браун построил первый турбогенератор в 1901 году . Это был 6-ти полюсный генератор мощностью 100 кВА .

Появление во второй половине XIX века мощных паровых турбин привело к тому, что потребовались высокоскоростные турбогенераторы. Первое поколение этих машин имело стационарную магнитную систему и вращающуюся обмотку. Но данная конструкция имеет целый ряд ограничений, одно из них - небольшая мощность. Кроме этого, ротор явнополюсного генератора не способен выдерживать большие центробежные усилия.

Основным вкладом Чарльза Брауна в создание турбогенератора было изобретение ротора, в котором его обмотка (обмотка возбуждения) укладывается в пазы, которые получаются в результате механической обработки поковки. Вторым вкладом Чарльза Брауна в создание турбогенератора была разработка в 1898 году ламинированного цилиндрического ротора. И, в конечном итоге, в 1901 году он построил первый турбогенератор. Данная конструкция используется в производстве турбогенераторов по сей день.

Типы турбогенераторов

В зависимости от системы охлаждения турбогенераторы подразделяются на несколько типов: с воздушным, масляным, водородным и водяным охлаждением. Также существуют комбинированные типы, например, генераторы с водородно-водяным охлаждением.

Также существуют специальные турбогенераторы, к примеру, локомотивные, служащие для питания цепей освещения и радиостанции паровоза . В авиации турбогенераторы служат дополнительными бортовыми источниками электроэнергии. Например, турбогенератор ТГ-60 работает на отбираемом от компрессора авиадвигателя сжатого воздуха, обеспечивая привод генератора трёхфазного переменного тока 208 вольт, 400 герц, номинальной мощностью 60 кВ*А.

Конструкция турбогенератора

Генератор состоит из двух ключевых компонентов - статора и ротора. Но каждый из них содержит большое число систем и элементов. Ротор - вращающийся компонент генератора и на него воздействуют динамические механические нагрузки, а также электромагнитные и термические. Статор - стационарный компонент турбогенератора, но он также подвержен воздействию существенных динамических нагрузок - вибрационных и крутящих, а также электромагнитных, термических и высоковольтных.

Возбуждение ротора генератора

Первоначальный (возбуждающий) постоянный ток ротора генератора подается на него с возбудителя генератора. Обычно возбудитель соосно соединён упругой муфтой с валом генератора и является продолжением системы турбина-генератор-возбудитель. Хотя на крупных электрических станциях предусмотрено и резервное возбуждение ротора генератора. Такое возбуждение происходит от отдельно стоящего возбудителя. Такие возбудители постоянного тока приводятся в действие своим электродвигателем переменного трехфазного тока и включены как резерв в схему сразу нескольких турбоустановок. С возбудителя постоянный ток подается в ротор генератора посредством скользящего контакта через щётки и контактные кольца. Современные турбогенераторы используют тиристорные системы самовозбуждения.

Напишите отзыв о статье "Турбогенератор"

Литература

  • Вольдек А. И. Электрические машины. Энергия. Л. 1978
  • Operation and Maintenance of Large Turbo Generators, by Geoff Klempner and Isidor Kerszenbaum, ISBN 0-471-61447-5 , 2004

Примечания

Ссылки

Отрывок, характеризующий Турбогенератор

– Пожалуйте, ваше сиятельство, Петруша с бумагами пришел, – сказала одна из девушек помощниц няни, обращаясь к князю Андрею, который сидел на маленьком детском стуле и дрожащими руками, хмурясь, капал из стклянки лекарство в рюмку, налитую до половины водой.
– Что такое? – сказал он сердито, и неосторожно дрогнув рукой, перелил из стклянки в рюмку лишнее количество капель. Он выплеснул лекарство из рюмки на пол и опять спросил воды. Девушка подала ему.
В комнате стояла детская кроватка, два сундука, два кресла, стол и детские столик и стульчик, тот, на котором сидел князь Андрей. Окна были завешаны, и на столе горела одна свеча, заставленная переплетенной нотной книгой, так, чтобы свет не падал на кроватку.
– Мой друг, – обращаясь к брату, сказала княжна Марья от кроватки, у которой она стояла, – лучше подождать… после…
– Ах, сделай милость, ты всё говоришь глупости, ты и так всё дожидалась – вот и дождалась, – сказал князь Андрей озлобленным шопотом, видимо желая уколоть сестру.
– Мой друг, право лучше не будить, он заснул, – умоляющим голосом сказала княжна.
Князь Андрей встал и, на цыпочках, с рюмкой подошел к кроватке.
– Или точно не будить? – сказал он нерешительно.
– Как хочешь – право… я думаю… а как хочешь, – сказала княжна Марья, видимо робея и стыдясь того, что ее мнение восторжествовало. Она указала брату на девушку, шопотом вызывавшую его.
Была вторая ночь, что они оба не спали, ухаживая за горевшим в жару мальчиком. Все сутки эти, не доверяя своему домашнему доктору и ожидая того, за которым было послано в город, они предпринимали то то, то другое средство. Измученные бессоницей и встревоженные, они сваливали друг на друга свое горе, упрекали друг друга и ссорились.
– Петруша с бумагами от папеньки, – прошептала девушка. – Князь Андрей вышел.
– Ну что там! – проговорил он сердито, и выслушав словесные приказания от отца и взяв подаваемые конверты и письмо отца, вернулся в детскую.
– Ну что? – спросил князь Андрей.
– Всё то же, подожди ради Бога. Карл Иваныч всегда говорит, что сон всего дороже, – прошептала со вздохом княжна Марья. – Князь Андрей подошел к ребенку и пощупал его. Он горел.
– Убирайтесь вы с вашим Карлом Иванычем! – Он взял рюмку с накапанными в нее каплями и опять подошел.
– Andre, не надо! – сказала княжна Марья.
Но он злобно и вместе страдальчески нахмурился на нее и с рюмкой нагнулся к ребенку. – Ну, я хочу этого, сказал он. – Ну я прошу тебя, дай ему.
Княжна Марья пожала плечами, но покорно взяла рюмку и подозвав няньку, стала давать лекарство. Ребенок закричал и захрипел. Князь Андрей, сморщившись, взяв себя за голову, вышел из комнаты и сел в соседней, на диване.
Письма всё были в его руке. Он машинально открыл их и стал читать. Старый князь, на синей бумаге, своим крупным, продолговатым почерком, употребляя кое где титлы, писал следующее:
«Весьма радостное в сей момент известие получил через курьера, если не вранье. Бенигсен под Эйлау над Буонапартием якобы полную викторию одержал. В Петербурге все ликуют, e наград послано в армию несть конца. Хотя немец, – поздравляю. Корчевский начальник, некий Хандриков, не постигну, что делает: до сих пор не доставлены добавочные люди и провиант. Сейчас скачи туда и скажи, что я с него голову сниму, чтобы через неделю всё было. О Прейсиш Эйлауском сражении получил еще письмо от Петиньки, он участвовал, – всё правда. Когда не мешают кому мешаться не следует, то и немец побил Буонапартия. Сказывают, бежит весьма расстроен. Смотри ж немедля скачи в Корчеву и исполни!»
Князь Андрей вздохнул и распечатал другой конверт. Это было на двух листочках мелко исписанное письмо от Билибина. Он сложил его не читая и опять прочел письмо отца, кончавшееся словами: «скачи в Корчеву и исполни!» «Нет, уж извините, теперь не поеду, пока ребенок не оправится», подумал он и, подошедши к двери, заглянул в детскую. Княжна Марья всё стояла у кроватки и тихо качала ребенка.
«Да, что бишь еще неприятное он пишет? вспоминал князь Андрей содержание отцовского письма. Да. Победу одержали наши над Бонапартом именно тогда, когда я не служу… Да, да, всё подшучивает надо мной… ну, да на здоровье…» и он стал читать французское письмо Билибина. Он читал не понимая половины, читал только для того, чтобы хоть на минуту перестать думать о том, о чем он слишком долго исключительно и мучительно думал.

Билибин находился теперь в качестве дипломатического чиновника при главной квартире армии и хоть и на французском языке, с французскими шуточками и оборотами речи, но с исключительно русским бесстрашием перед самоосуждением и самоосмеянием описывал всю кампанию. Билибин писал, что его дипломатическая discretion [скромность] мучила его, и что он был счастлив, имея в князе Андрее верного корреспондента, которому он мог изливать всю желчь, накопившуюся в нем при виде того, что творится в армии. Письмо это было старое, еще до Прейсиш Эйлауского сражения.
«Depuis nos grands succes d"Austerlitz vous savez, mon cher Prince, писал Билибин, que je ne quitte plus les quartiers generaux. Decidement j"ai pris le gout de la guerre, et bien m"en a pris. Ce que j"ai vu ces trois mois, est incroyable.
«Je commence ab ovo. L"ennemi du genre humain , comme vous savez, s"attaque aux Prussiens. Les Prussiens sont nos fideles allies, qui ne nous ont trompes que trois fois depuis trois ans. Nous prenons fait et cause pour eux. Mais il se trouve que l"ennemi du genre humain ne fait nulle attention a nos beaux discours, et avec sa maniere impolie et sauvage se jette sur les Prussiens sans leur donner le temps de finir la parade commencee, en deux tours de main les rosse a plate couture et va s"installer au palais de Potsdam.

Ротора в статоре . Поле ротора, которое создается током постоянного напряжения, протекающего в медной обмотке ротора, приводит к возникновению трёхфазного переменного напряжения и тока в обмотках статора. Напряжение и ток на статоре тем больше, чем сильнее поле ротора, т.е. больше ток протекающий в обмотках ротора. Напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель - небольшой генератор на валу турбогенератора. Турбогенераторы имеют цилиндрический ротор установленный на двух подшипниках скольжения , в упрощенном виде напоминает увеличенный генератор легкового автомобиля. Выпускаются 2-х полюсные (3000 об/мин), 4-х полюсные (1500 об/мин как на Балаковской АЭС), следовательно, имеют высокие частоты вращения и проблемы с этим связанные. По способам охлаждения обмоток турбогенератора различают: с водяным охлаждением (три воды), с воздушным и водородным (чаще применяются на АЭС). По качеству, надежности и долговечности производимых турбогенераторов - Россия занимает передовые позиции в мире.

История

Один из основателей компании «ABB » Чарльз Браун построил первый турбогенератор в 1901 году . Это был 6-ти полюсный генератор мощностью 100 кВА .

Появление во второй половине XIX века мощных паровых турбин привело к тому, что потребовались высокоскоростные турбогенераторы. Первое поколение этих машин имело стационарную магнитную систему и вращающуюся обмотку. Но данная конструкция имеет целый ряд ограничений, одно из них - небольшая мощность. Кроме этого, ротор явнополюсного генератора не способен выдерживать большие центробежные усилия.

Основным вкладом Чарльза Брауна в создание турбогенератора было изобретение ротора, в котором его обмотка (обмотка возбуждения) укладывается в пазы, которые получаются в результате механической обработки поковки. Вторым вкладом Чарльза Брауна в создание турбогенератора была разработка в 1898 году ламинированного цилиндрического ротора. И, в конечном итоге, в 1901 году он построил первый турбогенератор. Данная конструкция используется в производстве турбогенераторов по сей день.

Типы турбогенераторов

В зависимости от системы охлаждения турбогенераторы подразделяются на несколько типов: с воздушным, масляным, водородным и водяным охлаждением. Также существуют комбинированные типы, например, генераторы с водородно-водяным охлаждением.

Также существуют специальные турбогенераторы, к примеру, локомотивные, служащие для питания цепей освещения и радиостанции паровоза . В авиации турбогенераторы служат дополнительными бортовыми источниками электроэнергии. Например, турбогенератор ТГ-60 работает на отбираемом от компрессора авиадвигателя сжатом воздухе, обеспечивая привод генератора трёхфазного переменного тока 208 вольт, 400 герц, номинальной мощностью 60 кВ*А.

Конструкция турбогенератора

Генератор состоит из двух ключевых компонентов - статора и ротора. Но каждый из них содержит большое число систем и элементов. Ротор - вращающийся компонент генератора и на него воздействуют динамические механические нагрузки, а также электромагнитные и термические. Статор - стационарный компонент турбогенератора, но он также подвержен воздействию существенных динамических нагрузок - вибрационных и крутящих, а также электромагнитных, термических и высоковольтных.

Возбуждение ротора генератора

Первоначальный (возбуждающий) постоянный ток ротора генератора подается на него с возбудителя генератора. Обычно возбудитель соосно соединен упругой муфтой с валом генератора и является продолжением системы турбина-генератор-возбудитель. Хотя на крупных электрических станциях предусмотрено и резервное возбуждение ротора генератора. Такое возбуждение происходит от не соединенного с ротором генератора возбудителя. Такие возбудители переменного тока приводятся в действие своим электродвигателем переменного трехфазного тока и включены как резерв в схему сразу нескольких турбоустановок. С возбудителя постоянный ток подается в ротор генератора через щетки и контактные кольца! Появляется основной магнитный поток и при подключении нагрузки в генераторе будет наводиться ЭДС(~I)

Литература

  • Вольдек А. И. Электрические машины. Энергия. Л. 1978
  • Operation and Maintenance of Large Turbo Generators, by Geoff Klempner and Isidor Kerszenbaum, ISBN 0-471-61447-5 , 2004

Примечания


Wikimedia Foundation . 2010 .

Синонимы :
  • Турбаза «Волчья»
  • Турболет

Смотреть что такое "Турбогенератор" в других словарях:

    турбогенератор - турбогенератор … Орфографический словарь-справочник

    ТУРБОГЕНЕРАТОР - синхронный генератор трехфазного тока с приводом от паровой или газовой турбины, частота вращения 1500 или 3000 об/мин. Мощность до 1200 МВт … Большой Энциклопедический словарь

    ТУРБОГЕНЕРАТОР - ТУРБОГЕНЕРАТОР, турбогенератора, муж. (см. турбина и генератор) (тех.). Агрегат из электрического генератора и турбины, установленной с ним на одном валу. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    ТУРБОГЕНЕРАТОР - ТУРБОГЕНЕРАТОР, а, муж. Электрический генератор, приводимый в действие паровой или газовой турбиной. | прил. турбогенераторный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    турбогенератор - сущ., кол во синонимов: 7 газотурбогенератор (1) гидротурбогенератор (2) … Словарь синонимов

    Турбогенератор - ТГ Turbogenerator генератор электрического тока с приводом от газовой или паровой турбины. Термины атомной энергетики. Концерн Росэнергоатом, 2010 … Термины атомной энергетики

    турбогенератор - Синхронный генератор, приводимый во вращение от паровой или газовой турбины. [ГОСТ 27471 87] Тематики машины электрические вращающиеся в целом … Справочник технического переводчика

В большинстве синхронных машин используется обращенная конструктивная схема по сравнению с , т. е, система возбуждения расположена на роторе, а якорная обмотка на статоре. Это объясняется тем, что через скользящие контакты проще осуществить подвод сравнительно слабого тока к обмотке возбуждения, чем тока к рабочей обмотке. Магнитная система синхронной машины показана на рис. 1.

Полюса возбуждения синхронной машины размещены на роторе. Сердечники полюсов электромагнитов выполняются так же, как в машинах постоянного тока. На неподвижной части - статоре расположен сердечник 2, набранный из изолированных листов электротехнической стали, в пазах которого размещена рабочая обмотка переменного тока - обычно трехфазная.

Рис. 1. Магнитная система синхронной машины

При вращении ротора в обмотке якоря наводится переменная э.д.с., частота которой прямо пропорциональна частоте вращения ротора. Протекающий по рабочей обмотке переменный ток создает свое магнитное поле. Ротор и поле рабочей обмотки вращаются с одинаковой частотой - . В двигательном режиме вращающееся рабочее поле увлекает за собой магниты системы возбуждения, а в генераторном - наоборот.

Рассмотрим конструкцию самых мощных машин - турбо- и гидрогенераторов . Турбогенераторы приводятся во вращение паровыми турбинами, которые наиболее экономичны при высоких частотах вращения. Поэтому турбогенераторы выполняют с минимальным числом полюсов системы возбуждения - двумя, что соответствует максимальной частоте вращения 3000 об/мин при промышленной частоте 50 Гц.

Основная проблема турбогенераторостроения заключается в создании надежной машины при предельных величинах электрических, магнитных, механических и тепловых нагрузок. Эти требования накладывают отпечаток на всю конструкцию машины (рис. 2).

Рис. 2. Общий вид турбогенератора: 1 - контактные кольца и щеточный аппарат, 2 - подшипник, 3 - ротор, 4 - бандаж ротора, 5 - обмотка статора, 6 - статор, 7 - выводы обмотки статора, 8 - вентилятор.

Ротор турбогенератора выполняется в виде цельной поковки диаметром до 1,25 м, длиной до 7 м (рабочая часть). Полная длина поковки с учетом вала составляет 12 - 15 м. На рабочей части фрезеруются пазы, в которые укладывается обмотка возбуждения. Таким образом получается двухполюсный электромагнит цилиндрической формы без явно выраженных полюсов.

При производстве турбогенераторов применяются новейшие материалы и конструктивные решения, в частности непосредственное охлаждение активных частей струями охлаждающего агента - водорода или жидкости. Для получения больших мощностей приходится увеличивать длину машины, что и придает ей весьма своеобразный вид.

Гидрогенераторы (рис. 3) по конструкции существенно отличаются от турбогенераторов. Экономичность режима гидравлических турбин зависит от скорости водяного потока, т. е. напора. На равнинных реках создать большой напор невозможно, поэтому частоты вращения турбин весьма низкие - от десятков до сотен оборотов в минуту.

Чтобы получить промышленную частоту 50 Гц, такие тихоходные машины приходится делать с большим числом полюсов. Для размещения большого количества полюсов приходится увеличивать диаметр ротора гидрогенератора, иногда до 10 - 11 м.

Рис. 3. Продольный разрез гидрогенератора зонтичного типа: 1 - ступица ротора, 2 - обод ротора, 3 - полюс ротора, 4 - сердечник статора, 5 - обмотка статора, 6 - крестовина, 7 - тормоз, 8 - подпятник, 9 - втулка ротора.

Создание мощных турбо- и гидрогенераторов представляет сложную инженерную задачу. Необходимо решить целый ряд вопросов механического, электромагнитного, теплового и вентиляционного расчетов и обеспечить технологичность конструкции в производстве. Эти задачи по плечу только мощным конструкторско-производственным коллективам и фирмам.

Весьма интересны конструкции различных типов , в которых широко используются системы с постоянными магнитами и реактивные системы, т. е. системы, у которых рабочее магнитное поле взаимодействует не с магнитным полем возбуждения, а с ферромагнитными выступающими полюсами ротора, не имеющими обмотки.

Но все-таки основная область техники, где синхронные машины сегодня не имеют конкурентов - это энергетика. Все генераторы на электростанциях от самых мощных до передвижных выполняются на базе синхронных машин.

Рис. 4. Синхронный турбогенератор

Что же касается , то их слабым местом является проблема пуска. Сам по себе синхронный двигатель обычно не может разогнаться. Для этого он снабжается специальной пусковой обмоткой, работающей по принципу асинхронной машины, что усложняет конструкцию и сам процесс пуска. Поэтому синхронные двигатели обычно выпускаются на средние и большие мощности.

Загрузка...