domvpavlino.ru

Решение сокращение дробей. Сокращение дробей: правила и примеры

Работая с дробями, многие ученики допускают одни и те же ошибки. А все потому, что они забывают элементарные правила арифметики . Сегодня мы повторим эти правила на конкретных задачах, которые я даю на своих занятиях.

Вот задача, которую я предлагаю каждому, кто готовится к ЕГЭ по математике:

Задача. Морская свинья ест 150 грамм корма в день. Но она выросла и стала есть на 20% больше. Сколько грамм корма теперь ест свинья?

Неправильное решение. Это задача на проценты, которая сводится к уравнению:

Многие (очень многие) сокращают число 100 в числителе и знаменателе дроби:

Вот такую ошибку допустила моя ученица прямо в день написания этой статьи. Красным отмечены числа, которые были сокращены.

Излишне говорить, что ответ получился неправильный. Судите сами: свинья ела 150 грамм, а стала есть 3150 грамм. Увеличение не на 20%, а в 21 раз, т.е. на 2000%.

Чтобы не допускать подобных недоразумений, помните основное правило:

Сокращать можно только множители. Слагаемые сокращать нельзя!

Таким образом, правильное решение предыдущей задачи выглядит так:

Красным отмечены цифры, которые сокращаются в числителе и знаменателе. Как видите, в числителе стоит произведение, знаменателе — обыкновенное число. Поэтому сокращение вполне законно.

Работа с пропорциями

Еще одно проблемное место — пропорции . Особенно когда переменная стоит с обеих сторон. Например:

Задача. Решите уравнение:

Неправильное решение — у некоторых буквально руки чешутся сократить все на m :

Сокращаемые переменные показаны красным. Получается выражение 1/4 = 1/5 — полный бред, эти числа никогда не равны.

А теперь — правильное решение. По существу, это обыкновенное линейное уравнение . Решается либо переносом всех элементов в одну сторону, либо по основному свойству пропорции:

Многие читатели возразят: «Где ошибка в первом решении?» Что ж, давайте разбираться. Вспомним правило работы с уравнениями:

Любое уравнение можно делить и умножать на любое число, отличное от нуля .

Просекли фишку? Можно делить только на числа, отличные от нуля . В частности, можно делить на переменную m , только если m != 0. А что делать, если все-таки m = 0? Подставим и проверим:

Получили верное числовое равенство, т.е. m = 0 — корень уравнения. Для остальных m != 0 получаем выражение вида 1/4 = 1/5, что, естественно, неверно. Таким образом, не существует корней, отличных от нуля.

Выводы: собираем все вместе

Итак, для решения дробно-рациональных уравнений помните три правила:

  1. Сокращать можно только множители. Слагаемые — нельзя. Поэтому учитесь раскладывать числитель и знаменатель на множители;
  2. Основное свойство пропорции: произведение крайних элементов равно произведению средних;
  3. Уравнения можно умножать и делить только на числа k , отличные от нуля. Случай k = 0 надо проверять отдельно.

Помните эти правила и не допускайте ошибок.

На первый взгляд алгебраические дроби кажутся очень сложными, и неподготовленный учащийся может подумать, что с ними невозможно ничего сделать. Нагромождение переменных, чисел и даже степеней навевает страх. Тем не менее, для сокращения обычных (например, 15/25) и алгебраических дробей используются одни и те же правила.

Шаги

Сокращение дробей

Ознакомьтесь с действиями с простыми дробями. Операции с обычными и алгебраическими дробями аналогичны. К примеру, возьмем дробь 15/35. Чтобы упростить эту дробь, следует найти общий делитель . Оба числа делятся на пять, поэтому мы можем выделить 5 в числителе и знаменателе:

15 5 * 3 35 → 5 * 7

Теперь можно сократить общие множители , то есть вычеркнуть 5 в числителе и знаменателе. В результате получаем упрощенную дробь 3/7 . В алгебраических выражениях общие множители выделяются точно так же, как и в обычных. В предыдущем примере мы смогли легко выделить 5 из 15 - тот же принцип применим и к более сложным выражениям, таким как 15x – 5. Найдем общий множитель. В данном случае это будет 5, так как оба члена (15x и -5) делятся на 5. Как и ранее, выделим общий множитель и перенесем его влево .

15x – 5 = 5 * (3x – 1)

Чтобы проверить, все ли правильно, достаточно умножить на 5 стоящее в скобках выражение - в результате получатся те же числа, что были сначала. Сложные члены можно выделять точно так же, как и простые. Для алгебраических дробей применимы те же принципы, что и для обычных. Это наиболее простой способ сократить дробь. Рассмотрим следующую дробь:

(x+2)(x-3) (x+2)(x+10)

Отметим, что и в числителе (сверху), и в знаменателе (снизу) присутствует член (x+2), поэтому его можно сократить так же, как общий множитель 5 в дроби 15/35:

(x+2) (x-3) (x-3) (x+2) (x+10) → (x+10)

В результате получаем упрощенное выражение: (x-3)/(x+10)

Сокращение алгебраических дробей

Найдите общий множитель в числителе, то есть в верхней части дроби. При сокращении алгебраической дроби первым делом следует упростить обе ее части. Начните с числителя и постарайтесь разложить его на как можно большее число множителей. Рассмотрим в данном разделе следующую дробь:

9x-3 15x+6

Начнем с числителя: 9x – 3. Для 9x и -3 общим множителем является число 3. Вынесем 3 за скобки, как это делается с обычными числами: 3 * (3x-1). В результате данного преобразования получится следующая дробь:

3(3x-1) 15x+6

Найдите общий множитель в числителе. Продолжим выполнение приведенного выше примера и выпишем знаменатель: 15x+6. Как и раньше, найдем, на какое число делятся обе части. И в этом случае общим множителем является 3, так что можно записать: 3 * (5x +2). Перепишем дробь в следующем виде:

3(3x-1) 3(5x+2)

Сократите одинаковые члены. На этом шаге можно упростить дробь. Сократите одинаковые члены в числителе и знаменателе. В нашем примере это число 3.

3 (3x-1) (3x-1) 3 (5x+2) → (5x+2)

Определите, что дробь имеет простейший вид. Дробь полностью упрощена в том случае, когда в числителе и знаменателе не осталось общих множителей. Учтите, что нельзя сокращать те члены, которые стоят внутри скобок - в приведенном примере нет возможности выделить x из 3x и 5x, поскольку полными членами являются (3x -1) и (5x + 2). Таким образом, дробь не поддается дальнейшему упрощению, и окончательный ответ выглядит следующим образом:

(3x-1) (5x+2)

Потренируйтесь сокращать дроби самостоятельно. Лучший способ усвоить метод заключается в самостоятельном решении задач. Под примерами приведены правильные ответы.

4(x+2)(x-13) (4x+8)

Ответ: (x=13)

2x 2 -x 5x

Ответ: (2x-1)/5

Специальные приемы

Вынесите отрицательный знак за пределы дроби. Предположим, дана следующая дробь:

3(x-4) 5(4-x)

Заметьте, что (x-4) и (4-x) “почти” идентичны, но их нельзя сократить сразу, поскольку они “перевернуты”. Тем не менее, (x - 4) можно записать как -1 * (4 - x), подобно тому как (4 + 2x) можно переписать в виде 2 * (2 + x). Это называется “переменой знака”.

-1 * 3(4-x) 5(4-x)

Теперь можно сократить одинаковые члены (4-x):

-1 * 3 (4-x) 5 (4-x)

Итак, получаем окончательный ответ: -3/5 . Научитесь распознавать разницу квадратов. Разница квадратов - это когда квадрат одного числа вычитается из квадрата другого числа, как в выражении (a 2 - b 2). Разницу полных квадратов всегда можно разложить на две части - сумму и разницу соответствующих квадратных корней. Тогда выражение примет следующий вид:

A 2 - b 2 = (a+b)(a-b)

Этот прием очень полезен при поиске общих членов в алгебраических дробях.

  • Проверьте, правильно ли вы разложили то или иное выражение на множители. Для этого перемножьте множители - в результате должно получиться то же самое выражение.
  • Чтобы полностью упростить дробь, всегда выделяйте наибольшие множители.

В этой статье мы подробно разберем, как проводится сокращение дробей . Сначала обговорим, что называют сокращением дроби. После этого поговорим о приведении сократимой дроби к несократимому виду. Дальше получим правило сокращения дробей и, наконец, рассмотрим примеры применения этого правила.

Навигация по странице.

Что значит сократить дробь?

Мы знаем, что обыкновенные дроби подразделяются на сократимые и несократимые дроби . По названиям можно догадаться, что сократимые дроби можно сократить, а несократимые – нельзя.

Что же значит сократить дробь? Сократить дробь – это значит разделить ее числитель и знаменатель на их положительный и отличный от единицы . Понятно, что в результате сокращения дроби получается новая дробь с меньшим числителем и знаменателем, причем, в силу основного свойства дроби , полученная дробь равна исходной.

Для примера, проведем сокращение обыкновенной дроби 8/24 , разделив ее числитель и знаменатель на 2 . Иными словами, сократим дробь 8/24 на 2 . Так как 8:2=4 и 24:2=12 , то в результате такого сокращения получается дробь 4/12 , которая равна исходной дроби 8/24 (смотрите равные и неравные дроби). В итоге имеем .

Приведение обыкновенных дробей к несократимому виду

Обычно конечной целью сокращения дроби является получение несократимой дроби, которая равна исходной сократимой дроби. Эта цель может быть достигнута, если провести сокращение исходной сократимой дроби на ее числителя и знаменателя. В результате такого сокращения всегда получается несократимая дробь. Действительно, дробь является несократимой, так как из известно, что и - . Здесь же скажем, что наибольший общий делитель числителя и знаменателя дроби является наибольшим числом, на которое можно сократить эту дробь.

Итак, приведение обыкновенной дроби к несократимому виду заключается в делении числителя и знаменателя исходной сократимой дроби на их НОД.

Разберем пример, для чего вернемся к дроби 8/24 и сократим ее на наибольший общий делитель чисел 8 и 24 , который равен 8 . Так как 8:8=1 и 24:8=3 , то мы приходим к несократимой дроби 1/3 . Итак, .

Заметим, что под фразой «сократите дробь» часто подразумевают приведение исходной дроби именно к несократимому виду. Другими словами, сокращением дроби очень часто называют деление числителя и знаменателя на их наибольший общий делитель (а не на любой их общий делитель).

Как сократить дробь? Правило и примеры сокращения дробей

Осталось лишь разобрать правило сокращения дробей, которое и объясняет, как сократить данную дробь.

Правило сокращения дробей состоит из двух шагов:

  • во-первых, находится НОД числителя и знаменателя дроби;
  • во-вторых, проводится деление числителя и знаменателя дроби на их НОД, что дает несократимую дробь, равную исходной.

Разберем пример сокращения дроби по озвученному правилу.

Пример.

Сократите дробь 182/195 .

Решение.

Выполним оба шага, предписанные правилом сокращения дроби.

Сначала находим НОД(182, 195) . Наиболее удобно воспользоваться алгоритмом Евклида (смотрите ): 195=182·1+13 , 182=13·14 , то есть, НОД(182, 195)=13 .

Теперь делим числитель и знаменатель дроби 182/195 на 13 , при этом получаем несократимую дробь 14/15 , которая равна исходной дроби. На этом сокращение дроби закончено.

Кратко решение можно записать так: .

Ответ:

На этом с сокращением дробей можно и закончить. Но для полноты картины рассмотрим еще два способа сокращения дробей, которые обычно применяются в легких случаях.

Иногда числитель и знаменатель сокращаемой дроби несложно . Сократить дробь в этом случае очень просто: нужно лишь убрать все общие множители из числителя и знаменателя.

Стоит отметить, что этот способ напрямую следует из правила сокращения дробей, так как произведение всех общих простых множителей числителя и знаменателя равно их наибольшему общему делителю.

Разберем решение примера.

Пример.

Сократите дробь 360/2 940 .

Решение.

Разложим числитель и знаменатель на простые множители: 360=2·2·2·3·3·5 и 2 940=2·2·3·5·7·7 . Таким образом, .

Теперь избавляемся от общих множителей в числителе и знаменателе, для удобства, их просто зачеркиваем: .

Наконец, перемножаем оставшиеся множители: , и сокращение дроби закончено.

Вот краткая запись решения: .

Ответ:

Рассмотрим еще один способ сокращения дроби, который состоит в последовательном сокращении. Здесь на каждом шаге проводится сокращение дроби на некоторый общий делитель числителя и знаменателя, который либо очевиден, либо легко определяется с помощью

Вот и добрались до сокращения. Применяется здесь основное свойство дроби. НО! Не всё так просто. Со многими дробями (в том числе из школьного курса) вполне можно им обойтись. А если взять дроби «покруче»? Разберём подробнее! Рекомендую посмотреть материалов с дробями.

Итак, мы уже знаем, что числитель и знаменатель дроби можно умножать и делить на одно и тоже число, дробь от этого не изменится. Рассмотрим три подхода:

Подход первый.

Для сокращения делят числитель и знаменатель на общий делитель. Рассмотрим примеры:

Сократим:

В приведенных примерах мы сразу видим какие взять делители для сокращения. Процесс несложен – мы перебираем 2,3.4,5 и так далее. В большинстве примеров школьного курса этого вполне достаточно. А вот если будет дробь:

Тут процесс с подбором делителей может затянуться надолго;). Конечно, такие примеры лежат вне школьного курса, но справляться с ними нужно уметь. Чуть ниже рассмотрим как это делается. А пока вернёмся к процессу сокращения.

Как рассмотрено выше, для того чтобы сократить дробь, мы осуществляли деление на определённый нами общий делитель(ли). Всё правильно! Стоит лишь добавить признаки делимости чисел:

— если число чётное то оно делится на 2.

— если число из последних двух цифр делится на 4, то и само число делится на 4.

— если сумма цифр из которых состоит число делится на 3, то и само число делится на 3. Например 125031, 1+2+5+0+3+1=12. Двенадцать делится на 3, значит и 123031 делится на 3.

— если в конце числа стоит 5 или 0, то число делится на 5.

— если сумма цифр из которых состоит число делится на 9, то и само число делится на 9. Например 625032 =.> 6+2+5+0+3+2=18. Восемнадцать делится на 9, значит и 623032 делится на 9.

Второй подход.

Если кратко суть, то на самом деле всё действо сводится к разложению числителя и знаменателя на множители и далее к сокращению равных множителей в числителе и знаменателе (данный подход – это следствие из первого подхода):


Визуально, чтобы не запутаться и не ошибиться равные множители просто перечёркивают. Вопрос – а как разложить число на множители? Нужно определить перебором все делители. Это тема отдельная, она несложная, посмотрите информацию в учебнике или интернете. Никаких великих проблем с разложением на множители чисел, которые присутствуют в дробях школьного курса, вы не встретите.

Формально принцип сокращения можно записать так:

Подход третий.

Тут самое интересное для продвинутых и тех, кто хочет им стать. Сократим дробь 143/273. Попробуйте сами! Ну и как, быстро получилось? А теперь смотрите!

Переворачиваем её (числитель и знаменатель меняем местами). Делим уголком полученную дробь переводим в смешанное число, то есть выделяем целую часть:

Уже проще. Мы видим, что числитель и знаменатель можно сократить на 13:

А теперь не забываем снова перевернуть дробь обратно, давайте запишем всю цепочку:

Проверено – времени уходит меньше, чем на перебор и проверку делителей. Вернёмся к нашим двум примерам:

Первый. Делим уголком (не на калькуляторе), получим:

Эта дробь попроще конечно, но с сокращением опять проблема. Теперь отдельно разбираем дробь 1273/1463, переворачиваем её:

Тут уже проще. Можем рассмотреть такой делитель как 19. Остальные не подходят, это видно: 190:19= 10, 1273:19 = 67. Ура! Запишем:

Следующий пример. Сократим 88179/2717.

Делим, получим:

Отдельно разбираем дробь 1235/2717, переворачиваем её:

Можем рассмотреть такой делитель как 13 (до 13 не подходят):

Числитель 247:13=19 Знаменатель 1235:13=95

*В процессе увидели ещё один делитель равный 19. Получается, что:

Теперь записываем исходное число:

И не важно, что будет больше в дроби – числитель или знаменатель, если знаменатель, то переворачиваем и действуем как описано. Таким образом мы можем сократить любую дробь, третий подход можно назвать универсальным.

Конечно, два примера рассмотренные выше это непростые примеры. Давайте попробуем эту технологию на уже рассмотренных нами «несложных» дробях:

Две четвёртых.

Семьдесят две шестидесятых. Числитель больше знаменателя, переворачивать не нужно:

Разумеется, третий подход применили к таким простым примерам просто как альтернативу. Способ, как уже сказано, универсальный, но не для всех дробей удобный и корректный, особенно это относится к простым.

Многообразие дробей велико. Важно, чтобы вы усвоили именно принципы. Строгого правила по работе с дробями просто нет. Посмотрели, прикинули каким образом удобнее действовать и вперёд. С практикой придёт навык и будете щёлкать их как семечки.

Вывод:

Если видите общий(ие) делитель(и) для числителя и знаменателя, то используйте их для сокращения.

Если умеете быстро раскладывать на множители число, то разложите числитель и знаменатель, далее сокращайте.

Если никак не можете определить общий делитель, то воспользуйтесь третьим подходом.

*Для сокращения дробей важно усвоить принципы сокращения, понимать основное свойство дроби, знать подходы к решению, быть крайне внимательным при вычислениях.

И запомните! Дробь принято сокращать до упора, то есть сокращать её пока есть общий делитель.

C уважением, Александр Крутицких.

В прошлый раз мы составили план, следуя которому, можно научиться быстро сокращать дроби. Теперь рассмотрим конкретные примеры сокращения дробей.

Примеры .

Проверяем, а не делится ли бо́льшее число на меньшее (числитель на знаменатель или знаменатель на числитель)? Да, во всех трех этих примерах бо́льшее число делится на меньшее. Таким образом, каждую дробь сокращаем на меньшее из чисел (на числитель либо на знаменатель). Имеем:

Проверяем, а не делится ли бо́льшее число на меньшее? Нет, не делится.

Тогда переходим к проверке следующего пункта: а не оканчивается ли запись и числителя, и знаменателя одним, двумя или несколькими нулями? В первом примере запись числителя и знаменателя оканчивается нулем, во втором — двумя нулями, в третьем — тремя нулями. Значит, первую дробь сокращаем на 10, вторую — на 100, третью — на 1000:

Получили несократимые дроби.

Бо́льшее число на меньшее не делится, запись чисел нулями не оканчивается.

Теперь проверяем, а не стоят ли числитель и знаменатель в одном столбце в таблице умножения? 36 и 81 оба делятся на 9, 28 и 63 — на 7, а 32 и 40 — на 8 (они делятся еще и на 4, но если есть возможность выбора, всегда сокращать будем на бо́льшее). Таким образом, приходим к ответам:

Все полученные числа являются несократимыми дробями.

Бо́льшее число на меньшее не делится. А вот запись и числителя, и знаменателя оканчивается нулем. Значит, сокращаем дробь на 10:

Эту дробь еще можно сократить. Проверяем по таблице умножения: и 48, и 72 делятся на 8. Сокращаем дробь на 8:

Полученную дробь еще можем сократить на 3:

Эта дробь — несократимая.

Бо́льшее из чисел на меньшее не делится. Запись числителя и знаменателя оканчивается на нуль.Значит, сокращаем дробь на 10.

Полученные в числителе и знаменателе числа проверяем на и . Так как сумма цифр и 27, и 531 делятся на 3 и на 9, то эту дробь можно сократить как на 3, так и на 9. Выбираем большее и сокращаем на 9. Полученный результат — несократимая дробь.

Загрузка...