domvpavlino.ru

Шкала фаренгейта и другие температурные шкалы. О различных температурных шкалах

Температурой также называют физическую величину, характеризующую степень нагретости тела, но этого для понимания смысла и значения понятия температура не достаточно. В этой фразе наблюдается лишь замена одного термина другим и не более понятным. Обычно физические понятия связаны с какими-то фундаментальными законами и получают смысл только в связи с этими законами. Понятие температура связано с понятием теплового равновесия и, следовательно, с законом макроскопической необратимости.

Изменение температуры

В состоянии термодинамического равновесия все тела, образующие систему, имеют одинаковую температуру. Измерение температуры можно произвести только косвенным путем, основываясь на зависимости от температуры таких физических свойств тел, которые можно измерить непосредственно. Применяемые для этого вещества (тела) называют термометрическими.

Пусть два теплоизолированных тела приведены в тепловой контакт. От одного тела к другому устремится поток энергии, будет происходить процесс теплопередачи. При этом считается, что тело, которое отдает тепло имеет большую температуру, чем тело к которому поток тепла устремился. Естественно, что через некоторое время поток энергии прекращается, наступает тепловое равновесие. Предполагается, что температуры тел выравниваются и устанавливается где-то в интервале между исходными значениями температур. Так, получается, что температура -- некоторая метка теплового равновесия. Получается, что любая величина t, которая удовлетворяет требованиям:

  1. $t_1>t_2$, если поток тепла идет о первого тела ко второму;
  2. $t"_1=t"_2=t,\ t_1 > t > t_2$, при установлении теплового равновесия может быть принята за температуру.

При этом предполагается, что тепловое равновесие тел подчиняется закону транзитивности: если два тела находятся в равновесии с третьим, то они находятся в тепловом равновесии и между собой.

Важнейшей особенностью приведённого определение температуры является его неоднозначность. Мы по-разному можем выбрать величины, удовлетворяющие поставленным требованиям (что отразится в способах измерения температуры), и получить несовпадающие температурные шкалы. Температурные шкалы -- это способы деления на части интервалов температур.

Приведем примеры. Как известно, прибор для измерения температуры -- термометр. Рассмотрим два типа термометров различного устройства. В одном роль температуры тела выполняет длина ртутного столбика в капилляре термометра, в случае когда термометр находится в тепловом равновесии с телом, температуру которого мы измеряем. Длина ртутного столбика удовлетворяет условиям 1 и 2, которые приведены выше и предъявляются к температуре.

Существует и другой способ измерения температуры: с помощью термопары. Термопарой называют электрическую цепь с гальванометром и двумя спаями разнородных металлов (рис. 1). Один спай помещен в среду с фиксированной температурой, например тающий лед, другой в среду, температуру которой надо определить. В этом случае температурным признаком считают ЭДС термопары. Эти два способа измерения температуры не будут давать одинаковых результатов. И для того, чтобы перейти от одной температуре к другой, необходимо построить градировочную кривую, устанавливающую зависимость ЭДС термопары от длины ртутного столбика. Тогда равномерная шкала ртутного термометра преобразуется в неравномерную шкалу термопары (или наоборот). Равномерные шкалы ртутного термометра и термопары образуют две совершенно разные температурные шкалы, на которых тело в одном и том же состоянии будет иметь различные температуры. Можно взять одинаковые по устройству термометры, но с различными "термическими телами" (например, ртутью и спиртом). Их температурные шкалы также не совпадут. График зависимости длины ртутного столбика от длины спиртового столбика не будут линейными.

Отсюда следует, что понятие температуры, основанное на законах теплового равновесия, не однозначно. Такая температура называется эмпирической, она зависит от способа измерения температуры. Нуль шкалы эмпирической температуры всегда выбивается произвольно. По определению эмпирической температуры физический смысл имеет только разность температур, то есть ее изменение. Любая эмпирическая температурная шкала приводится к термодинамической температурной шкале введением поправок, учитывающих характер связи термометрического свойства с термодинамической температурой.

Температурные шкалы

Для построения шкалы температур приписывают численные значения температуры двум фиксированным реперным точкам. За тем делят разность температур реперных точек на выбранное произвольным образом число частей, получая единицу измерения температуры. В качестве исходных значений, служащих при построении шкалы температуры для установления начала отсчета и ее единицы -- градуса, применяют температуры перехода химически чистых веществ из одного агрегатного состояния в другое, например температуру плавления льда $t_0$ и кипения воды $t_k$ при нормальном атмосферном давлении ($\approx 10^5Па).$ Величины $t_0\ и\ t_k$ имеют разные значения:

  • по шкале Цельсия (стоградусной шкале): температура кипения воды $t_k=100^0C$, температура плавления льда $t_0=0^0С$. Шкала Цельсия -- это такая шкала в которой температуры тройной точки воды 0,010С при давлении 0,06 атм. (Тройной точкой воды называют определенную температуру и давление, при которых могут существовать в равновесии одновременно вода, ее пар и лед.);
  • по шкале Фаренгейта температура кипения воды $t_k=212^0F;$ $t_0$=3$2^0F$ -- точка таянья льда;
  • Связь между температурами, выраженными в градусах Цельсия и Фаренгейта, имеет вид:

    \[\frac{t^0C}{100}=\frac{t^0F-32}{180}\ \ или\ t^0F=1,8t^0C+32\ \left(1\right);\]

    Ноль на этой шкале определяется по температуре замерзания смеси воды, соли и нашатыря в пропорции 1:1:1.

  • по шкале Кельвина: температуру отсчитывают от абсолютного нуля (t=-273,50C) и называют термодинамической или абсолютной температурой. T=0K -- это состояние, соответствующее полному отсутствию тепловых колебаний. Температура кипения воды по этой шкале $t_k=373К,$ температура плавления льда $t_0=273К$. Связь между температурой по кельвину и температурой по Цельсию:
  • \
  • по шкале Реомюра температура кипения воды $t_k=80^0R$, температурa плавления льда $t_0=0^0R.$ Шкала практически вышла из употребления. Связь между температурами, выраженными в градусах Цельсия и градусом Реомюра:
  • \

    В термометре Реомюра использовался спирт.

  • по шкале Ранкина точка кипения воды $t_k=671,67^{0\ }Ra$, температурa плавления льда $t_0={491,67}^0Ra.$ Начинается шкала от абсолютного нуля. Число градусов между точками замерзания и кипения воды по шкале Фаренгейта и Ранкина одинаково и равно 180.
  • Соотношение между кельвином и градусом Ранкина: 1К=1,$8^{0\ }Ra$, градусы Фаренгейта переводятся в градусы Ранкина по формуле:

    \[^0Ra=^0F+459,67\left(4\right);\]

В технике и в быту используется температура по шкале Цельсия. Единица этой шкалы называется градусом Цельсия ($^0С).\ $ В физике пользуются термодинамической температурой, которая не только более удобна, но и имеет глубокий физический смысл, так как определяется средней кинетической энергией молекулы. Единица термодинамической температуры -- градус кельвина (до 1968 г.), или сейчас просто кельвин (К), является одной из основных единиц в СИ. Температура T=0К называется абсолютным нулем температуры. Современная термометрия основана на шкале идеального газа, где в качестве термометрической величины используют давление. Шкала газового термометра абсолютна (T=0, p=0). При решении задач чаще всего вам придется использовать именно эту шкалу температур.

Температурные шкалы

Температурной шкалой называют конкретную функциональную числовую связь температуры со значениями измеряемого термометрического свойства. В связи с этим представляется возможным построение температурной шкалы на основе выбора любого термометрического свойства. В то же время нет ни одного термометрического свойства, которое линейно изменяется с

изменением температуры и не зависит от других факторов в широком интервале измерения температур. Первые шкалы появились в XVIII в. Для построения их выбирались две опорные, или реперные точки t 1 и t 2 , представляющие собой температуры фазового равновесия чистых веществ. Разность температур t 1 –t 2 называют основным температурным интервалом.

Фаренгейт (1715 г.), Реомюр (1776 г.) и Цельсий (1742 г.) при построении шкал основывались на допущении линейной связи между температурой t и термометрическим свойством, в качестве которого использовалось расширение объема жидкости V (формула 14.27) /8/

t=a+bV, (14.27)

где а и b - постоянные коэффициенты.

Подставив в уравнение (14.27) V=V 1 при t=t 1 и V=V 2 при t=t 2 , после преобразований получим уравнение (14.28) температурной шкалы /8/

В шкалах Фаренгейта, Реомюра и Цельсия точке плавления льда t 1 соответствовали +32, 0 и 0 °, а точке кипения воды t 2 - 212, 80 и 100 °. Основной интервал t 2 –t 1 в этих шкалах делится соответственно на N = 180, 80 и 100 равных частей, и 1/N часть каждого из интервалов называют градусом Фаренгейта - t °F , градусом Реомюра – t °R и градусом Цельсия-t °С. Таким образом, для шкал, построенных по указанному принципу, градус не является единицей измерения, а представляет собой единичный промежуток - масштаб шкалы.

Для пересчета температуры из одной указанной шкалы в другую используют соотношение (14.29)

t °С= 1,25 °R =-(5/9)( - 32), (14.29)

Позднее было выяснено, что показания термометров, имеющих разные термометрические вещества (например, ртуть, спирт и др.), использующих одно и то же термометрическое свойство и равномерную градусную шкалу, совпадают лишь в реперных точках, а в других точках показания расходятся. Последнее особенно заметно при измерении температур, значения которых расположены далеко от основного интервала.

Указанное обстоятельство объясняется тем, что связь между температурой и термометрическим свойством на самом деле нелинейна и эта нелинейность различна для различных термометрических веществ. В частности, в рассматриваемом случае нелинейность между температурой и изменением объема жидкости объясняется тем, что температурный коэффициент объемного расширения жидкости сам изменяется от температуры и это изменение различно для различных капельных жидкостей.

На основе описанного принципа построения может быть получено любое количество температурных шкал, значительно различающихся между собой. Такие шкалы называют условными, а масштабы этих шкал - условными градусами. Проблема создания температурной шкалы, не зависящей от термометрических свойств веществ, была решена в 1848 г. Кельвином, а предложенная им шкала была названа термодинамической. В отличие от условных температурных шкал термодинамическая температурная шкала является абсолютной.

Термодинамическая шкала температур основана на использовании второго закона термодинамики. В соответствии с этим законом коэффициент полезного действия тепловой машины, работающей по обратимому циклу Карно, определяется только температурами нагревателя Т Н и холодильника Т X и не зависит от свойств рабочего вещества, таким образом коэффициент полезного действия вычисляют по формуле (14.30) /8/

(14.30)

где Q Н и Q X - соответственно количество теплоты, полученное рабочим веществом от нагревателя и отданное холодильнику.

Кельвином было предложено для определения температуры использовать равенство (14.31) /8/

T Н /Т X = Q Н /Q X , (14.31)

Следовательно, используя один объект в качестве нагревателя, а другой - в качестве холодильника и проводя между ними цикл Карно, можно определить отношение температур объектов путем измерения отношения теплоты, взятой от одного объекта и отданной другому. Полученная шкала температур не зависит от свойств рабочего (термометрического) вещества и называется абсолютной шкалой температур. Чтобы абсолютная температура (а не только отношение) имела определенное значение, было предложено принять разность термодинамических температур между точками кипения воды Т КВ и таяния льда Т ТЛ , равной 100 °. Принятие такого значения разности преследовало цель сохранения преемственности числового выражения термодинамической температурной шкалы от стоградусной температурной шкалы Цельсия. Таким образом, обозначая количество теплоты, полученной от нагревателя (кипящая вода) и отдаваемой холодильнику (тающий лед), соответственно через Q КВ и Q ТЛ и приняв Т КВ – Т ТЛ ==100, используя (14.31), получим равенство (14.32) и (14.33)

(14.32)

(14.33)

Для любой температуры Т нагревателя при неизменном значении температуры Т ТЛ холодильника и количества теплоты Q ТЛ , отдаваемой ему рабочим веществом машины Карно, будем иметь равенство (14.34) /8/

(14.34)

Выражение (14.34) является уравнением стоградусной термодинамической шкалы температур и показывает, что значение температуры Т по данной шкале линейно связано с количеством теплоты Q , полученной рабочим веществом тепловой машины при совершении ею цикла Карно, и, как следствие, не зависит от свойств термометрического вещества. За один градус термодинамической температуры принимают такую разность между температурой тела и температурой таяния льда, при которой производимая по обратимому циклу Карно работа равна 1/100 части работы, совершаемой в цикле Карно между температурой кипения воды и таяния льда (при условии, что в обоих циклах количество теплоты, отдаваемой холодильнику, одинаково). Из выражения (14.30) следует, что при максимальном значении должна быть равна нулю Т X . Эта наименьшая температура была названа Кельвином абсолютным нулем. Температуру по термодинамической шкале обозначают Т К. Если в выражение, описывающее газовый закон Гей-Люссака: (где Ро - давление при t=0 °С ; -температурный коэффициент давления), подставить значение темпе­ратуры, равное - , то давление газа P t станет равным нулю. Естественно предположить, что температура , при которой обеспечивается предельное минимальное давление газа, сама является минимально возможной, и по абсолютной шкале Кельвина принята за нуль. Следовательно, абсолютная температура .

Из закона Бойля-Мариотта известно, что для газов температурный коэффициент давления а равен температурному коэффициенту объемного расширения . Экспериментально было найдено, что для всех газов при давлениях, стремящихся к нулю, в интервале температур 0-100 °С температурный коэффициент объемного расширения = 1/273,15.

Таким образом, нулевое значение абсолютной температуры соответствует °С. Температура таяния льда по абсолютной шкале составит ==273,15 К. Любая температура в абсолютной шкале Кельвина может быть определена как (где t температура в °С). Необходимо отметить, что один градус Кельвина (1 К) соответствует одному градусу Цельсия (1 °С), так как обе шкалы базируются на одинаковых реперных точках. Термодинамическая шкала температур, основанная на двух реперных точках (температура таяния льда и кипения воды), обладала недостаточной точностью измерения. Практически трудно воспроизвести температуры указанных точек, так как они зависят от изменения давления, а также от незначительных примесей в воде. Кельвин и независимо от него Д. И. Менделеев высказали соображения о целесообразности построения термодинамической шкалы температур по одной реперной точке. Консультативный комитет по термометрии Международного комитета мер и весов в 1954 г. принял рекомендацию о переходе к определению термодинамической шкалы с использованием одной реперной точки - wтройной точки воды (точки равновесия воды в твердой, жидкой и газообразной фазах), которая легко воспроизводится в специальных сосудах с погрешностью не более 0,0001 К. Температура этой точки принята равной 273,16 К, т.е. выше температуры точки таяния льда на 0,01 К. Такое число выбрано для того, чтобы значения температур по новой шкале практически не отличались от старой шкалы Цельсия с двумя реперными точками. Второй реперной точкой является абсолютный нуль, который экспериментально не реализуется, но имеет строго фиксированное положение. В 1967 г. XIII Генеральная конференция по мерам и весам уточнила определение единицы термодинамической температуры в следующей редакции: «Кельвин-1/273,16 часть термодинамической температуры тройной точки воды». Термодинамическая температура может быть также выражена в градусах Цельсия: t = Т- 273,15 К. Использование второго закона термодинамики, предложенное Кельвином с целью установления понятия температуры и построения абсолютной термодинамической температурной шкалы, не зависящей от свойств термометрического вещества, имеет огромное теоретическое и принципиальное значение. Однако реализация указанной шкалы с использованием в качестве термометра тепловой машины, работающей по обратимому циклу Карно, практически неосуществима.

Термодинамическая температура эквивалентна газотермической, используемой в уравнениях, описывающих законы идеальных газов. Газотермическую температурную шкалу строят на основе газового термометра, в котором в качестве термометрического вещества используется газ, приближающийся по свойствам к идеальному газу. Таким образом, газовый термометр является реальным средством для воспроизведения термодинамической температурной шкалы. Газовые термометры бывают трех типов: постоянного объема, постоянного давления и постоянной температуры. Обычно применяют газовый термометр постоянного объема (рисунок 14.127), в котором изменение температуры газа пропорционально изменению давления. Газовый термометр состоит из баллона 1 и соединительной трубки 2, заполненных через вентиль 3 водородом, гелием или азотом (для высоких температур). Соединительная трубка 2 подсоединена к трубке 4 двухтрубного манометра, у которого трубку 5 можно перемещать вверх или вниз благодаря гибкому соединительному шлангу 6. При изменении температуры объем системы, заполненной газом, изменяется, и для приведения его к первоначальному значению трубку 5 вертикально перемещают до тех пор, пока уровень ртути в трубке 4 не совпадет с осью Х-Х. При этом столб ртути в трубке 5, отсчитанный от уровня Х-Х, будет соответствовать давлению газа Р в баллоне.

Рисунок 14.127 – Схема газового термометра

Обычно измеряемую температуру Т определяют относительно некоторой точки отсчета, например по отношению к температуре тройной точки воды T 0 , при которой давление газа в баллоне будет Ро . Искомая температура вычисляется по формуле (14.35)

(14.35)

Газовые термометры используют в интервале ~ 2- 1300 К. Погрешность газовых термометров находится в пределах 3-10- 3 - 2-10- 2 К в зависимости от измеряемой температуры. Достижение такой высокой точности измерения -сложная задача, требующая учета многочисленных факторов: отклонения свойств реального газа от идеального, наличие примесей в газе, сорбцию и десорбцию газа стенками баллона, диффузию газа через стенки, изменение объема баллона от температуры, распределение температуры вдоль соединительной трубки.

В силу большой трудоемкости работы с газовыми термометрами предпринимались попытки изыскать более простые методы воспроизведения термодинамической температурной шкалы.

На основе проведенных в различных странах исследований на VII Генеральной конференции по мерам и весам в 1927 г. было принято термодинамическую шкалу заменить «практической» температурной шкалой и назвать ее международной температурной шкалой. Эта шкала была согласована со стоградусной термодинамической шкалой настолько тесно, насколько позволял уровень знаний того времени.

Для построения международной температурной шкалы было выбрано шесть воспроизводимых реперных точек, значения температуры которых по термодинамической шкале были тщательно измерены в различных странах с помощью газовых термометров и приняты наиболее достоверные результаты. С помощью реперных точек градуируются эталонные приборы для воспроизведения международной температурной шкалы. В интервалах между реперными точками значения температур рассчитывают по предлагаемым интерполяционным формулам, устанавливающим связь между показаниями эталонных приборов и температурой по международной шкале. В 1948, 1960 и 1968 гг. в положения о международной температурной шкале был внесен ряд уточнений и дополнений, так как на основе усовершенствованных методов измерений были обнаружены отличия этой шкалы от термодинамической, особенно в области высоких температур, а также в связи с необходимостью продлить температурную шкалу до более низких температур. В настоящее время действует принятая на XIII конференции по мерам и весам усовершенствованная шкала под названием «международная практическая температурная шкала 1968» (МПТП-68). Определение «практическая» указывает, что эта температурная шкала в общем не совпадает с термодинамической. Температуры МПТШ-68 снабжаются индексом (T 68 или t 68 ).

МПТШ-68 базируется на 11 основных реперных точках, приведенных в таблице 9. Наряду с основными имеется 27 вторичных реперных точек, охватывающих диапазон температур от 13,956 до 3660 К (от - 259,194 до 3387 °С). Числовые значения температур, приведенные в таблице 14.4, соответствуют термодинамической шкале и определены с помощью газовых термометров.

В качестве эталонного термометра в интервале температур от 13,81 до 903,89 К (630,74 °С - точка затвердевания сурьмы-вторичная реперная точка) принимается платиновый термопреобразователь сопротивления. Этот интервал разбит на пять подынтервалов, для каждого из которых определены интерполяционные формулы в виде полиномов до четвертой степени. В интервале температур от 903,89 до 1337,58 К используется эталонный платина-платинородиевый термоэлектрический термометр. Интерполяционной формулой, связывающей термоэлектродвижущую силу с температурой, здесь является полином второй степени.

Для температур выше 1337,58 К (1064,43°С) МПТШ-68 воспроизводится с помощью квазимонохроматического термометра с использованием закона излучения Планка.

Таблица 14.4 - Основные реперные точки МПТШ-68

Температура и температурные шкалы

Температура - степень нагретости вещества. Данное понятие основано на способности передавай тепло различными телами (веществом) друг другу при разной степени их нагретости и находиться в состоянии теплового равновесия при равных температурах. Причем тепло всегда передается от тела с более высокой температурой к телу с низкой температурой. Температура может быть также определена как параметр теплового состояния вещества, обуславливаемый средней кинетической энергией движения его молекул. Отсюда очевидно, что понятие «температура» для одной молекулы неприменимо, т.к. при какой-либо конкретной температуре энергия одной молекулы не может быть охарактеризована средним значением. Из данного положения следует, что понятие «температура» является статистическим.

Температура измеряется приборами, которые называются термометрами, в основу работы которых могут быть заложены различные физические принципы. Возможность измерения температуры такими приборами основывается на явлении теплового обмена телами с разной степенью нагретости и изменении их физических (термометрических) свойств при нагревании (охлаждении).

Для количественного определения температуры необходимо выбрать ту или иную температурную шкалу. Температурные шкалы строятся на основе определенных физических свойств какого-либо вещества, которые не должны зависеть от посторонних факторов и должны быть точно и удобно замеряемыми. На самом деле не существует ни одного термометрического свойства для термометрических тел или веществ, которые бы полностью удовлетворяли указанным условиям во всем диапазоне измеряемых температур. Поэтому температурные шкалы определяются для различных температурных диапазонов, построенных на произвольном допущении линейной зависимости

между свойством термометрического тела и температурой. Такие шкалы называются условными, а измеряемая по ним температура -условной.

4 К условной температурной шкале относится одна из распространенных шкал - шкала Цельсия. По этой шкале в качестве границ условного диапазона измерения приняты точки плавления льда и кипения воды при нормальном атмосферном давлении, а одну сотую часть данной шкалы принято называть одним градусом Цельсия (\ С),

| Однако, построение такой температурной шкалы с не пользованием жидкостных термометров может привести к ряду затруднений, связанных со свойствами используемых термометрических жидкостей. Например, показания ртутного и спиртового термометров, работающих на принципе расширения жидкости, будут различными при измерении одной и той же температуры в силу различных коэффициентов их объемного расширения.

| Поэтому для усовершенствования условной температурной шкалы было предложено использование газового термометра с использованием газов, свойства которых незначительно отличались бы от свойств идеального газа (водород, гелий, азот и др.).

С помощью газового термометра измерение температуры может быть основано на изменении объема или давления газа в замкнутой термосистеме.

На практике более широкое распространение получил способ, основанный на измерении давления при постоянном объеме, т.к. является более точным и легко реализуемым.

Для создания единой температурной шкалы, не связанной с термометрическими свойствами различных веществ для широкого интервала температур, Кельвином была предложена шкала температур, основанная на втором законе термодинамики. Эта шкала получила название термодинамической температурной шкалы.

В ее основе лежат следующие положения:

Если при обратимом цикле Карно тело поглощает теплоту 0, при температуре Т, и отдает тепло С? 3 при температуре Т 2 , то должно соблюдаться следующее равенство:

Т. О,

п<Г (21)

Согласно положениям термодинамики данное соотношение не зависит от свойств рабочего тела.

I Термодинамическая температурная шкала Кельвина стала использоваться как исходная шкала для других температурных шкал, не зависящих от термометрических свойств рабочего вещества. Для определения одного градуса по этой шкале интервал, находящийся между точками плавления льда и кипения воды, делится, как и в стоградусной шкале Цельсия, на сто равных частей. Таким образом, I П С оказывается равным ] °К

* По данной шкале, принятой называться абсолютной за нулевую точку принимается температура на 273,15° ниже точки плавления льда, называемая абсолютным нулем. Теоретически доказано, что при этой температуре прекращается всякое тепловое движение молекул любого вещества, поэтому эта шкала в известной мере носит теоретический характер.

Между температурой Т, выраженной в Кельвинах, и температурой *, выраженной в градусах Цельсия, действует соотношение:

1=Т-Т 0 , (2.2)

где Т 0 = 273,15 К.

Из существующих термометров наиболее точно реализуют абсолютную температурную шкалу газовые термометры в интервале не выше 1200 °С. Использование этих термометров при более высоких температурах сталкивается с большими трудностями, кроме того, газовые термометры являются достаточно сложными и громоздкими приборами, что для практических целей неудобно. Поэтому для практического и удобного воспроизведения термодинамической шкалы в широких диапазонах изменения температурпринятыииспользуютсяМеждународные практические

температурные шкапы (МПТШ). В настоящее время действует принятая в 1968 году температурная шкала МПТШ-68, построение которой базируется на реперных точках, определяемых фазовым состоянием веществ. Данные реперные точки используются для эталонизации температур в различных диапазонах, которые приведены в табл. 2.1.

Молекулярно-кинетическое определение

Измерение температуры

Для измерения температуры выбирается некоторый термодинамический параметр термометрического вещества. Изменение этого параметра однозначно связывается с изменением температуры.

На практике для измерения температуры используют

Единицы и шкала измерения температуры

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах - градусах.

Шкала температур Кельвина

Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры - кельвин (К).

Абсолютная шкала температуры называется так, потому что мера основного состояния нижнего предела температуры - абсолютный ноль , то есть наиболее низкая возможная температура, при которой в принципе невозможно извлечь из вещества тепловую энергию.

Абсолютный ноль определён как 0 K, что приблизительно равно −273.15 °C.

Шкала температур Кельвина - температурная шкала, в которой начало отсчёта ведётся от абсолютного нуля .

Используемые в быту температурные шкалы - как Цельсия , так и Фаренгейта (используемая, в основном, в США), - не являются абсолютными и поэтому неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды, из-за чего температуру приходится выражать отрицательным числом. Для таких случаев были введены абсолютные шкалы температур.

Одна из них называется шкалой Ранкина , а другая - абсолютной термодинамической шкалой (шкалой Кельвина); температуры по ним измеряются, соответственно, в градусах Ранкина (°Ra) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля. Различаются они тем, что кельвин равен градусу Цельсия, а градус Ранкина - градусу Фаренгейта.

Температуре замерзания воды при стандартном атмосферном давлении соответствуют 273,15 K. Число градусов Цельсия и кельвинов между точками замерзания и кипения воды одинаково и равно 100. Поэтому градусы Цельсия переводятся в кельвины по формуле K = °C + 273,15.

Шкала Цельсия

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. Ноль градусов Цельсия - это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F - 32), 1 °F = 9/5 °С + 32. Предложена Г. Фаренгейтом в 1724.

Энергия теплового движения при абсолютном нуле

Когда материя охлаждается, многие формы тепловой энергии и связанные с ней эффекты одновременно уменьшаются по величине. Вещество переходит от менее упорядоченного состояния к более упорядоченному. Газ превращается в жидкость и затем кристаллизуется в твёрдое тело (гелий и при абсолютном нуле остается в жидком состоянии при атмосферном давлении). Движение атомов и молекул замедляется, их кинетическая энергия уменьшается. Сопротивление большинства металлов падает из-за уменьшения рассеяния электронов на колеблющихся с меньшей амплитудой атомах кристаллической решётки. Таким образом даже при абсолютном нуле электроны проводимости движутся между атомами со скоростью Ферми порядка 1x10 6 м/с.

Температура, при которой частицы вещества имеют минимальное количество движения, сохраняющееся только благодаря квантовомеханическому движению, - это температура абсолютного нуля (Т = 0К).

Температуры абсолютного нуля достичь невозможно. Наиболее низкая температура (450±80)x10 -12 К конденсата Бозе-Эйнштейна атомов натрия была получена в 2003 г. исследователями из МТИ . При этом пик теплового излучения находится в области длин волн порядка 6400 км, то есть примерно радиуса Земли.

Температура с термодинамической точки зрения

Существует множество различных шкал температур. Когда-то температура определялась очень произвольно. Мерой температуры служили метки, нанесённые на равных расстояниях на стенах трубочки, в которой при нагревании расширялась вода. Потом решили измерить температуру и обнаружили, что градусные расстояния не одинаковы. В термодинамике дается определение температуры, не зависящее от каких-либо частных свойств вещества.

Введем функцию f (T ) , которая не зависит от свойств вещества. Из термодинамики следует, что если какая-то тепловая машина, поглощая количество теплоты Q 1 при T 1 выделяет тепло Q s при температуре в один градус , а другая машина, поглотив тепло Q 2 при T 2 , выделяет то же самое тепло Q s при температуре в один градус, то машина, поглощающая Q 1 при T 1 должна при температуре T 2 выделять тепло Q 2 .

Конечно, между теплом Q и температурой T существует зависимость и тепло Q 1 должно быть пропорционально Q s . Таким образом, каждому количеству тепла Q s , выделенного при температуре в один градус, соответствует количество тепла, поглощённого машиной при температуре T , равное Q s , умноженному на некоторую возрастающую функцию f температуры:

Q = Q s f (T )

Поскольку найденная функция возрастает с температурой, то можно считать, что она сама по себе измеряет температуру, начиная со стандартной температуры в один градус. Это означает, что можно найти температуру тела, определив количество тепла, которое поглощается тепловой машиной, работающей в интервале между температурой тела и температурой в один градус. Полученная таким образом температура называется абсолютной термодинамической температурой и не зависит от свойств вещества. Таким образом, для обратимой тепловой машины выполняется равенство:

Для системы, в которой энтропия S может быть функцией S (E ) её энергии E , термодинамическая температура определяется как:

Температура и излучение

При повышении температуры растёт энергия, излучаемая нагретым телом. Энергия излучения абсолютно чёрного тела описывается законом Стефана - Больцмана

Шкала Реомюра

Предложена в году Р. А. Реомюром , который описал изобретённый им спиртовой термометр.

Единица - градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками - температурой таяния льда (0 °R) и кипения воды (80 °R)

1 °R = 1,25° C.

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции , на родине автора.

Переходы из разных шкал

Сравнение температурных шкал

Сравнение температурных шкал
Описание Кельвин Цельсий Фаренгейт Ранкин Делиль Ньютон Реомюр Рёмер
Абсолютный ноль 0 −273.15 −459.67 0 559.725 −90.14 −218.52 −135.90
Температура таяния смеси Фаренгейта (соль и лёд в равных количествах) 255.37 −17.78 0 459.67 176.67 −5.87 −14.22 −1.83
Температура замерзания воды (Нормальные условия) 273.15 0 32 491.67 150 0 0 7.5
Средняя температура человеческого тела ¹ 310.0 36.6 98.2 557.9 94.5 12.21 29.6 26.925
Температура кипения воды (Нормальные условия) 373.15 100 212 671.67 0 33 80 60
Плавление титана 1941 1668 3034 3494 −2352 550 1334 883
Поверхность Солнца 5800 5526 9980 10440 −8140 1823 4421 2909

¹ Нормальная средняя температура человеческого тела - 36.6 ° C ±0.7 ° C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F - это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 ° C. Однако это значение не входит в диапазон нормальной средней температуры тела человека, поскольку температура разных частей тела разная

Температура - важнейший параметр окружающей среды (ОС). Температура ОС характеризует степень нагретости, которая определяется внутренней кинетической энергией теплового движения молекул. Температуру можно определить как параметр теплового состояния. Для сравнения степени нагретости тел использует изменение какого либо физического их свойства, зависящего от температуры и легко поддающегося измерению (например, объемное расширение жидкости, изменение электрического сопротивления металла и т.д.).

Чтобы перейти к количественному определению температуры, необходимо установить шкалу температур., т.е. выбрать начало отсчета (нуль температурной шкалы) и единицу измерения температурного интервала (градус).

Температурные шкалы, применяемые до введения единой температурной шкалы, представляет собой ряд отметок внутри температурного интервала, ограниченного двумя легко воспроизводимыми постоянными (основными реперными или опорными) точками кипения и плавления химически чистых веществ. Эти температуры принимали равными произвольным числовым значениям t" и t”. Таким образом, 1 град = (t" - t”)/n, где t" и t” - две постоянные легко воспроизводимые температуры; n - целое число, на которое разбит температурный интервал.

Для разметки температурной шкалы чаще всего использовали объемное расширение тел при нагревании, а за постоянные точки принимали температуры кипения воды и таяния льда. На этом принципе основаны температурные шкалы, созданные Ломоносовым, Фаренгейтом, Реомюром и Цельсием. При построении этих шкал была принята линейная зависимость между объемным расширением жидкости и температурой, т.е.

где k - коэффициент пропорциональности (соответствует относительно температурному коэффициенту объемного расширения). Интегрирование уравнения (1) дает

где D - постоянная интегрирования.

Для определения постоянных k и D используют две выбранные температуры t" и t”. Приняв при температуре t" объем V", а при температуре t” - V”, получим

t" = kV" + D; (3)

t” = kV” + D; (4).

Вычтя уравнение (3) из уравнений (2) и (4), получим

t - t" = k(V - V") (5);

t” - t" = k(V” - V") (6).

Разделив уравнение (5) на уравнение (6), получим

где t" и t” - температура соответственно таяния льда и кипения воды при нормальном давлении и ускорении свободного падения 980,665 см/с 2 ; V" и V” - объемы жидкостей, соответствующие температурам t" и t”; V - объем жидкости, соответствующий температуре t.

В природе нет жидкостей с линейной зависимостью между коэффициентом объемного расширения и температурой поэтому показания термометров зависят от природы термометрического вещества (ртути, спирта и т.п.).

С развитием науки и техники возникла необходимость в создании единой температурной шкалы, несвязанной с какими либо частными свойствами термометрического вещества и пригодные в широком интервале температур. В 1848 году Кельвин, исходя из второго начала термодинамики, предложил определять температуру на основании равенства

T 2 /(T 2 - T 1) = Q 2 /(Q 2 - Q 1),

где Т 1 и Т 2 - температура соответственно холодильника и нагревателя; Q 1 и Q 2 - количество теплоты, соответственно полученной рабочим веществом от нагревателя и отданной холодильнику (для идеальной тепловой машины, работающей по циклу Карно).

Пусть Т 2 равно температуре кипения воды (Т 100), а Т 1 - температура таяния льда (Т 0); тогда, приняв разность T 2 - T 1 равной 100 град и обозначив количество теплоты, соответствующее этим температурам, через Q 100 и Q 0 , получим

Т 100 = Q 100 100/(Q 100 - Q 0); Т 0 = Q 0 100/(Q 100 - Q 0).

При любой температуре нагревателя

Т = Q 100/(Q 100 - Q 0) (8).

Уравнение является уравнением термодинамической шкалы температур, которое не зависит от свойств термометрического вещества.

Решением XI Генеральной конференции по мерам и весам в России предусмотрено применение двух температурных шкал: термодинамической и международной практической.

В термодинамической шкале Кельвина нижней точкой является точка абсолютного нуля (0К), а единственной экспериментальной основной точкой - тройная точка воды. Этой точке соответствует 273,16К. Тройная точка воды (температура равновесия воды в твердой, жидкой и газообразной фазах) ваше точки таяния льда на 0,01 град. Термодинамическую шкалу называют абсолютной, если в ней за нуль принята точка на 273,16К ниже точки плавления льда.

Строго говоря, осуществить шкалу Кельвина невозможно, т.к. уравнение ее выведено из идеального цикла Карно. Термодинамическая шкала температур совпадает со шкалой газового термометра, наполненного идеальным газом. Известно, что некоторые реальные газы (водород, гелий, неон, азот) в широком интервале температур по своим свойствам сравнительно мало отличаются от идеального газа. Так, шкала водородного термометра (с учетом поправок на отклонение свойств реального газа от идеального) представляет собой практически термодинамическую шкалу температур.

Международная практическая температурная шкала основана на ряде воспроизводимых равновесных состояний, которым соответствуют определенные значения температур (основные реперные точки), и на эталонных приборах, градуированных при этих температурах. В интервале между температурами основных реперных точек интерполяцию выполняют по формулам, устанавливающим связь между показаниями эталонных приборов и значениями международной практической шкалы. Основные реперные точки реализуются как определенные состояния фазовых равновесий некоторых чистых веществ и охватывают интервал температур от -259,34 0 С (тройная тоска равновесия водорода) до +1064,43 0 С (точка затвердевания золота).

Эталонным прибором, используемым в области температур от -259,34 до +630,74 0 С, является платиновый термометр сопротивления, от +630,74 до +1064,43 0 С - термоэлектрический термометр с термоэлектродами и платинародия (10% родия) и платины. Для области температур выше 1064,43 0 С температуру по международной практической шкале определяют в соответствии с законом излучения Планка.

Температуру, измеряемую по международной практической шкале, обозначают t, а числовые значения сопровождают знаком 0 С.

Температура по термодинамической шкале связана с температурой по международной практической шкале соотношением T = t + 273,15. На IX генеральной конференции по мерам и весам в 1948 году международная практическая температурная шкала была названа шкалой Цельсия. Для международной практической шкалы температур и шкалы Цельсия общей является одна постоянная точка (температура кипения воды); во всех остальных точках эти шкалы существенно различаются, особенно при высоких температурах.

Загрузка...