domvpavlino.ru

Степень огнестойкости здания. Как определить степень огнестойкости здания? Классификация строительных материалов и их огнестойкость Какие составы относятся к 1 группе огнестойкости

ПОСОБИЕ

ПО ОПРЕДЕЛЕНИЮ ПРЕДЕЛОВ ОГНЕСТОЙКОСТИ КОНСТРУКЦИЙ,

ПРЕДЕЛОВ РАСПРОСТРАНЕНИЯ ОГНЯ ПО КОНСТРУКЦИЯМ И ГРУПП ВОЗГОРАЕМОСТИ МАТЕРИАЛОВ

ВНИМАНИЕ!!!

Разработано к СНиП II-2-80 "Противопожарные нормы проектирования зданий и сооружений". Приведены справочные данные о пределах огнестойкости и распространения огня по строительным конструкциям из железобетона, металла, древесины, асбестоцемента, пластмасс и других строительных материалов, а также данные о группах возгораемости строительных материалов.

Для инженерно-технических работников проектных, строительных организаций и органов государственного пожарного надзора. Табл. 15, рис. 3.

ПРЕДИСЛОВИЕ

Настоящее Пособие разработано к СНиП II-2-80 "Противопожарные нормы проектирования зданий и сооружений". Оно содержит данные о нормируемых показателях огнестойкости и пожарной опасности строительных конструкций и материалов.

Раздел 1 пособия разработан ЦНИИСК им. Кучеренко (д-р техн. наук проф. И.Г. Романенков, канд. техн. наук В.Н. Зигерн-Корн). Раздел 2 разработан ЦНИИСК им. Кучеренко (д-р техн. наук И.Г. Романенков, кандидаты техн. наук В.Н. Зигерн-Корн, Л.Н. Брускова, Г.М. Кирпиченков, В.А. Орлов, В.В. Сорокин, инженеры А.В. Пестрицкий, В.И. Яшин); НИИЖБ (д-р техн. наук В.В. Жуков; д-р техн. наук, проф. А.Ф. Милованов; канд. физ.-мат. наук А.Е. Сегалов, кандидаты техн. наук А.А. Гусев, В.В. Соломонов, В.М. Самойленко; инженеры В.Ф. Гуляева, Т.Н. Малкина); ЦНИИЭП им. Мезенцева (канд. техн. наук Л.М. Шмидт, инж. П.Е. Жаворонков); ЦНИИПромзданий (канд. техн. наук В.В. Федоров, инженеры Э.С. Гиллер, В.В. Сипин) и ВНИИПО (д-р техн. наук, проф. А.И. Яковлев; кандидаты техн. наук В.П. Бушев, С.В. Давыдов, В.Г. Олимпиев, Н.Ф. Гавриков; инженеры В.3.Волохатых, Ю.А. Гринчик, Н.П. Савкин, А.Н. Сорокин, В.С. Харитонов, Л.В. Шейнина, В.И. Щелкунов). Раздел 3 разработан ЦНИИСК им. Кучеренко (д-р техн. наук, проф. И.Г. Романенков, канд. хим. наук Н.В.Ковыршина, инж. В.Г.Гончар) и Институтом горной механики АН Груз. ССР (канд. техн. наук Г.С. Абашидзе, инженеры Л.И. Мирашвили, Л.В. Гурчумелия).

При разработке Пособия использованы материалы ЦНИИЭП жилища и ЦНИИЭП учебных зданий Госгражданстроя, МИИТ МПС СССР, ВНИИСТРОМ и НИПИсиликатобетон Минпромстройматериалов СССР.

Использованный в Руководстве текст СНиП II-2-80 набран полужирным шрифтом. Его пункты имеют двойную нумерацию, в скобках дана нумерация по СНиП.

В случаях, когда приведенные в Пособии сведения недостаточны для установления соответствующих показателей конструкций и материалов, за консультациями и с заявками на проведение огневых испытаний следует обращаться в ЦНИИСК им. Кучеренко или НИИЖБ Госстроя СССР. Основанием для установления этих показателей могут также служить результаты испытаний, выполненных в соответствии со стандартами и методиками, утвержденными или согласованными Госстроем СССР.

Замечания и предложения по Пособию просьба направлять по адресу: Москва, 109389, 2-я Институтская ул., д.6, ЦНИИСК им. В.А. Кучеренко.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Пособие составлено в помощь проектным, строительным организациям и органам пожарной охраны с целью сокращения затрат времени, труда и материалов на установление пределов огнестойкости строительных конструкций, пределов распространения огня по ним и групп возгораемости материалов, нормируемых СНиП II-2-80.

1.2.(2.1). Здания и сооружения по огнестойкости подразделяются на пять степеней. Степень огнестойкости зданий и сооружений определяется пределами огнестойкости основных строительных конструкций и пределами распространения огня по этим конструкциям.

1.3.(2.4). Строительные материалы по возгораемости подразделяются на три группы: несгораемые, трудносгораемые и сгораемые.

1.4. Пределы огнестойкости конструкций, пределы распространения огня по ним, а также группы возгораемости материалов, приведенные в настоящем Пособии, следует вносить в проекты конструкций при условии, что их исполнение полностью соответствует описанию, данному в Пособии. Материалы Пособия следует также использовать при разработке новых конструкций.

2. СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ. ПРЕДЕЛЫ ОГНЕСТОЙКОСТИ И ПРЕДЕЛЫ РАСПРОСТРАНЕНИЯ ОГНЯ

2.1(2.3). Пределы огнестойкости строительных конструкций определяются по стандарту СЭВ 1000-78 "Противопожарные нормы строительного проектирования. Метод испытания строительных конструкций на огнестойкость".

Предел распространения огня по строительным конструкциям определяется по методике, приведенной в прил.2.

ПРЕДЕЛ ОГНЕСТОЙКОСТИ

2.2. За предел огнестойкости строительных конструкций принимается время (в часах или минутах) от начала их огневого стандартного испытания до возникновения одного из предельных состояний по огнестойкости.

2.3. Стандарт СЭВ 1000-78 различает следующие четыре вида предельных состояний по огнестойкости: по потере несущей способности конструкций и узлов (обрушение или прогиб в зависимости от типа конструкций); до теплоизолирующей. способности - повышение температуры на необогреваемой поверхности в среднем более чем на 160 °C или в любой точке этой поверхности более чем на 190 °С в сравнении с температурой конструкции до испытания, или более 220 °С независимо от температуры конструкции до испытания; по плотности - образование в конструкциях сквозных трещин или сквозных отверстий, через которые проникают продукты горения или пламя; для конструкций, защищенных огнезащитными покрытиями и испытываемых без нагрузок, предельным состоянием будет достижение критической температуры материала конструкции.

Для наружных стен, покрытий, балок, ферм, колонн и столбов предельным состоянием является только потеря несущей способности конструкций и узлов.

2.4. Предельные состояния конструкций по огнестойкости, указанные в п.2.3, в дальнейшем для краткости будем называть соответственно I, II, III и IV предельными состояниями конструкции по огнестойкости.

В случаях определения предела огнестойкости при нагрузках, определяемых на основании подробного анализа условий, возникающих во время пожара и отличающихся от нормативных, предельное состояние конструкции будем обозначать 1А.

2.5. Пределы огнестойкости конструкций могут быть определены и расчетным путем. В этих случаях испытания допускается не проводить.

Определение пределов огнестойкости расчетным путем следует выполнять по методикам, одобренным Главтехнормированием Госстроя СССР.

2.6. Для ориентировочной оценки предела огнестойкости конструкций при их разработке и проектировании можно руководствоваться следующими положениями:

а) предел огнестойкости слоистых ограждающих конструкций по теплоизолирующей способности равен, а, как правило, выше суммы пределов огнестойкости отдельно взятых слоев. Отсюда следует, что увеличение числа слоев ограждающей конструкции (оштукатуривание, облицовка) не уменьшает ее предела огнестойкости по теплоизолирующей способности. В отдельных случаях введение дополнительного слоя может не дать эффекта, например, при облицовке листовым металлом с необогреваемой стороны;

б) пределы огнестойкости ограждающих конструкций с воздушной прослойкой в среднем на 10% выше пределов огнестойкости тех же конструкций, но без воздушной прослойки; эффективность воздушной прослойки тем выше, чем больше она удалена от нагреваемой плоскости; при замкнутых воздушных прослойках их толщина не влияет на предел огнестойкости;

в) пределы огнестойкости ограждающих конструкций с несимметричным расположением слоев зависят от направленности теплового потока. С той стороны, где вероятность возникновения пожара выше, рекомендуется располагать несгораемые материалы с низкой теплопроводностью;

г) увеличение влажности конструкций способствует уменьшению скорости прогрева и повышению огнестойкости за исключением тех случаев, когда увеличение влажности увеличивает вероятность внезапного хрупкого разрушения материала или появления местных выколов, особенно опасно это явление для бетонных и асбестоцементных конструкций;

д) предел огнестойкости нагруженных конструкций уменьшается с увеличением нагрузки. Наиболее напряженное сечение конструкций, подверженное воздействию огня и высоких температур, как правило, определяет величину предела огнестойкости;

е) предел огнестойкости конструкции тем выше, чем меньше отношение обогреваемого периметра сечения ее элементов к их площади;

ж) предел огнестойкости статически неопределимых конструкций, как правило, выше предела огнестойкости аналогичных статически определимых конструкций за счет перераспределения усилий на менее напряженные и нагреваемые с меньшей скоростью элементы; при этом необходимо учитывать влияние дополнительных усилий, возникающих вследствие температурных деформаций;

з) возгораемость материалов, из которых выполнена конструкция, не определяет ее предела огнестойкости. Например, конструкции из тонкостенных металлических профилей имеют минимальный предел огнестойкости, а конструкции из древесины имеют более высокий предел огнестойкости, чем конструкции из стали при тех же отношениях обогреваемого периметра сечения к его площади и величины действующих напряжений к временному сопротивлению или пределу текучести. В то же время следует учитывать, что применение сгораемых материалов вместо трудносгораемых или несгораемых может понизить предел огнестойкости конструкции, если скорость его выгорания будет выше скорости прогревания.

Для оценки предела огнестойкости конструкций на основании вышеперечисленных положений необходимо располагать достаточными сведениями о пределах огнестойкости конструкций, аналогичных рассматриваемым по форме, использованным материалам и конструктивному исполнению, а также сведениями об основных закономерностях их поведения при пожаре или огневых испытаниях.

2.7. В случаях, когда в табл.2-15 пределы огнестойкости указаны для однотипных конструкций различных размеров, предел огнестойкости конструкции, имеющей промежуточный размер, может определяться по линейной интерполяции. Для железобетонных конструкций при этом должна осуществляться интерполяция и по величине расстояния до оси арматуры.

ПРЕДЕЛ РАСПРОСТРАНЕНИЯ ОГНЯ

2.8. (прил.2, п.1). Испытание строительных конструкций на распространение огня заключается в определении размера повреждения конструкции вследствие ее горения за пределами зоны нагрева - в контрольной зоне.

2.9. Повреждением считается обугливание или выгорание материалов, обнаруживаемое визуально, а также оплавление термопластичных материалов.

За предел распространения огня принимается максимальный размер повреждения (см), определяемый по методике испытания, изложенной в прил.2 к СНиП II-2-80.

2.10. На распространение огня испытывают конструкции, выполненные с применением сгораемых и трудносгораемых материалов, как правило, без отделки и облицовки.

Конструкции, выполненные только из несгораемых материалов, следует считать не распространяющими огонь (предел распространения огня по ним следует принимать равным нулю).

Если при испытании на распространение огня повреждение конструкций в контрольной зоне составляет не более 5 см, ее также следует считать не распространяющей огонь.

2.11. Для предварительной оценки предела распространения огня могут быть использованы следующие положения:

а) конструкции, выполненные из сгораемых материалов, имеют предел распространения огня по горизонтали (для горизонтальных конструкций - перекрытий, покрытий, балок и т.п.) более 25 см, а по вертикали (для вертикальных конструкций - стен, перегородок, колонн и т.п.) - более 40 см;

б) конструкции, выполненные из сгораемых или трудносгораемых материалов, защищенных от воздействия огня и высоких температур несгораемыми материалами, могут иметь предел распространения огня по горизонтали менее 25 см, а по вертикали - менее 40 см при условии, что защитный слой в течение всего времени испытания (до полного остывания конструкции) не прогреется в контрольной зоне до температуры воспламенения или начала интенсивного термического разложения защищаемого материала. Конструкция может не распространять огонь при условии, что наружный слой, выполненный из несгораемых материалов, в течение всего времени испытания (до полного остывания конструкции) не прогреется в зоне нагрева до температуры воспламенения или начала интенсивного термического разложения защищаемого материала;

в) в случаях, когда конструкция может иметь различный предел распространения огня при нагревании с разных сторон (например, при несимметричном расположении слоев в ограждающей конструкции), этот предел устанавливается по его максимальному значению.

БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ

2.12. Основными параметрами, которые оказывают влияние на предел огнестойкости бетонных и железобетонных конструкций являются: вид бетона, вяжущего и заполнителя; класс арматуры; тип конструкции; форма поперечного сечения; размеры элементов; условия их нагрева; величина нагрузки и влажность бетона.

2.13. Увеличение температуры в бетоне сечения элемента во время пожара зависит от вида бетона, вяжущего и заполнителей, от отношения поверхности, на которую действует пламя, к площади поперечного сечения. Тяжелые бетоны с силикатным заполнителем прогреваются быстрее, чем с карбонатными заполнителями. Облегченные и легкие бетоны тем медленнее прогреваются, чем меньше их плотность. Полимерная связка, как и карбонатный заполнитель, уменьшает скорость прогрева бетона вследствие происходящих в них реакций разложения, на которые расходуется тепло.

Массивные элементы конструкции лучше сопротивляются воздействию огня; предел огнестойкости колонн, нагреваемых с четырех сторон, меньше предела огнестойкости колонн при одностороннем нагреве; предел огнестойкости балок при воздействии на них огня с трех сторон меньше предела огнестойкости балок, нагреваемых с одной стороны.

2.14. Минимальные размеры элементов и расстояния от оси арматуры до поверхностей элемента принимаются по таблицам настоящего раздела, но не менее требуемых главой СНиП II-21-75 "Бетонные и железобетонные конструкции".

2.15. Расстояние до оси арматуры и минимальные размеры элементов для обеспечения требуемого предела огнестойкости конструкций зависят от вида бетона. Легкие бетоны имеют теплопроводность на 10-20%, а бетоны с крупным карбонатным заполнителем на 5-10% меньше, чем тяжелые бетоны с силикатным заполнителем. В связи с этим расстояние до оси арматуры для конструкции из легкого бетона или из тяжелого бетона с карбонатным заполнителем может быть принято меньше, чем для конструкций из тяжелого бетона с силикатным заполнителем при одинаковом пределе огнестойкости выполненных из этих бетонов конструкций.

Величины пределов огнестойкости, приведенные в табл.2-6, 8, относятся к бетону с крупным заполнителем из силикатных пород, а также к плотному силикатному бетону. При применении заполнителя из карбонатных пород минимальные размеры как поперечного сечения, так и расстояние от осей арматуры до поверхности изгибаемого элемента могут быть уменьшены на 10%. Для легких бетонов уменьшение может быть на 20% при плотности бетона 1,2 т/м 3 и на 30% для изгибаемых элементов (см. табл.3, 5, 6, 8) при плотности бетона 0,8 т/м 3 и керамзитоперлитобетона с плотностью 1,2 т/м 3 .

2.16. Во время пожара защитный слой бетона предохраняет арматуру от быстрого нагрева и достижения ее критической температуры, при которой наступает предел огнестойкости конструкции.

Если принятое в проекте расстояние до оси арматуры меньше требуемого для обеспечения необходимого предела огнестойкости конструкций, следует его увеличить или применить дополнительные теплоизоляционные покрытия по подвергаемым огню поверхностям элемента *. Теплоизоляционное покрытие из известково-цементной штукатурки (толщиной 15 мм), гипсовой штукатурки (10 мм) и вермикулитовой штукатурки или теплоизоляции из минерального волокна (5 мм) эквивалентны увеличению на 10 мм толщины слоя тяжелого бетона. Если толщина защитного слоя бетона больше 40 мм для тяжелого бетона и 60 мм для легкого бетона, защитный слой бетона должен иметь дополнительное армирование со стороны огневого воздействия в виде сетки арматуры диаметром 2,5-3 мм (ячейками 150х150 мм). Защитные теплоизоляционные покрытия толщиной более 40 мм также должны иметь дополнительное армирование.

* Дополнительные теплоизоляционные покрытия могут выполняться в соответствии с "Рекомендациями по применению огнезащитных покрытий для металлических конструкций" - М.; Стройиздат, 1984.

В табл.2, 4-8 приведены расстояния от обогреваемой поверхности до оси арматуры (рис.1 и 2).

Рис.1. Расстояния до оси арматуры

Рис.2. Среднее расстояние до оси арматуры

В случаях расположения арматуры в разных уровнях среднее расстояние до оси арматуры a должно быть определено с учетом площадей арматуры (A 1 , A 2 , …, A n ) и соответствующих им расстояний до осей (a 1 , a 2 , …, a n ), измеренных от ближайшей из обогреваемых (нижней или боковой) поверхностей элемента, по формуле

.

2.17. Все стали снижают сопротивление растяжению или сжатию при нагреве. Степень уменьшения сопротивления больше для упрочненной высокопрочной арматурной проволочной стали, чем для стержневой арматуры из малоуглеридостой стали.

Предел огнестойкости изгибаемых и внецентренно сжатых с большим эксцентриситетом элементов по потере несущей способности зависит от критической температуры нагрева арматуры. Критической температурой нагрева арматуры является температура, при которой сопротивление растяжению или сжатию уменьшается до величины напряжения, возникающего в арматуре от нормативной нагрузки.

2.18. Табл.5-8 составлены для железобетонных элементов с ненапрягаемой и преднапряженной арматурой в предположении, что критическая температура нагрева арматуры равна 500 °С. Это соответствует арматурным сталям классов A-I, A-II, А-Iв, А-IIIв, A-IV, Ат-IV, A-V, Ат-V. Отличие критических температур для других классов арматуры следует учитывать, умножая приведенные в табл.5-8 пределы огнестойкости на коэффициент j или деля приведенные в табл.5-8 расстояния до осей арматуры на этот коэффициент. Значения j следует принимать:

1. Для перекрытий и покрытий из сборных железобетонных плоских плит сплошных и многопустотных, армированных:

а) сталью класса A-III, равным 1,2;

б) сталями классов A-VI, AT-VI, AT-VII, B-I, ВР-I, равным 0,9;

в) высокопрочной арматурной проволокой классов B-II, Вр-II или арматурными канатами класса К-7, равным 0,8.

2. Для перекрытий и покрытий из сборных железобетонных плит с продольными несущими ребрами "вниз" и коробчатого сечения, а также балок, ригелей и прогонов в соответствии с указанными классами арматур: а) j = 1,1; б) j = 0,95; в) j = 0,9.

2.19. Для конструкций из любого вида бетона должны быть соблюдены минимальные требования, предъявляемые к конструкциям из тяжелого бетона с пределом огнестойкости 0,25 или 0,5 ч.

2.20. Пределы огнестойкости несущих конструкций в табл.2, 4-8 и в тексте приведены для полных нормативных нагрузок с соотношением длительно действующей части нагрузки G ser к полной нагрузке V ser , равной 1. Если это отношение равно 0,3, то предел огнестойкости увеличивается в 2 раза. Для промежуточных значений G ser / V ser предел огнестойкости принимается по линейной интерполяции.

2.21. Предел огнестойкости железобетонных конструкций зависит от их статической схемы работы. Предел огнестойкости статически неопределимых конструкций больше, чем предел огнестойкости статически определимых, если в местах действия отрицательных моментов имеется необходимая арматура. Увеличение предела огнестойкости статически неопределимых изгибаемых железобетонных элементов зависит от соотношения площадей сечения арматуры над опорой и в пролете согласно табл.1.

Таблица 1

Отношение площади арматуры над опорой к площади арматуры в пролете

Увеличение предела огнестойкости изгибаемого статически неопределимого элемента, %, по сравнению с пределом огнестойкости статически определимого элемента

Примечание. Для промежуточных отношений площадей увеличение предела огнестойкости принимается по интерполяции.

Влияние статической неопределимости конструкций на предел огнестойкости учитывается при соблюдении следующих требований:

а) не менее 20% требуемой на опоре верхней арматуры должно проходить над серединой пролета;

б) верхняя арматура над крайними опорами неразрезной системы должна заводиться на расстояние не менее 0,4l в сторону пролета от опоры и затем постепенно обрываться (l - длина пролета);

в) вся верхняя арматура над промежуточными опорами должна продолжаться к пролету не менее чем на 0,15l и затем постепенно обрываться.

Изгибаемые элементы, заделанные на опорах, могут рассматриваться как неразрезные системы.

2.22. В табл.2 приведены требования к железобетонным колоннам из тяжелого и из легкого бетона. Они включают требования по размерам колонн, подвергаемых воздействию огня со всех сторон, а также находящихся в стенах и нагреваемых с одной стороны. При этом размер b относится только к колоннам, нагреваемая поверхность которых находится на одном уровне со стеной, или для части колонны, выступающей из стены и несущей нагрузку. Предполагается, что в стене отсутствуют отверстия вблизи колонны в направлении минимального размера b .

Для колонн сплошного круглого сечения в качестве размера b следует принимать их диаметр.

Колонны с параметрами, приведенными в табл.2, имеют внецентренно приложенную нагрузку или нагрузку со случайным эксцентриситетом при армировании колонн не более 3% от поперечного сечения бетона, за исключением стыков.

Предел огнестойкости железобетонных колонн с дополнительным армированием в виде сварных поперечных сеток, установленных с шагом не более 250 мм следует принимать по табл.2, умножая их на коэффициент 1,5.

Пожаробезопасность является одним из ключевых критериев, которые в первую очередь принимают во внимание при проведении оценки состояния объектов недвижимости. В России основными нормативами, определяющими степень огнестойкости здания, является от 22. 07. 2008 г. Помимо «Технического регламента о требованиях пожарной безопасности», включённого в свод его положений, специалисты используют « » СНиПа. Велик спрос на авторитетный «Справочник РТП» для руководителей, организующих тушение пожара.

Понятия и термины

Степень огнестойкости здания рассматривают, как классификационную нормируемую единицу, демонстрирующую его способность выдерживать воздействие пламени в случае возникновения пожара.

Для определения степенного показателя любого сооружения или его отдельного отсека, пользуются совокупностью и стройматериалов, применённых при его сооружении.

Устанавливают их по ряду физических признаков, свидетельствующих, что испытываемые на полигоне материальные образцы под действием высоких температур потеряли свои качественные особенности. При проведении тестирования учитывают время в течение которого происходят разрушительные изменения состояний. Полученные данные регистрируют. Из них формируют справочники, обозначая результаы буквенной маркировкой:

  • R – промежуток времени, в течение которого утрачиваются несущие способности;
  • E – период, приводящий к нарушению целостности;
  • I – разрушение теплоизоляционных свойств под действием возрастающей температуры;
  • W – скорость распространения максимально плотного теплового потока.

Общая картина возможной опасности конструкций складывается из совокупности функциональных и конструктивных особенностей. Наряду с ними учитывают и нормативные значения предела и степени огнестойкости зданий, представленные в таблицах «Техрегламента».

Какие задачи решают

Конструктивно любое сооружение является сложной системой, объединяющей множество элементов, изготовленных из различных материалов – металла, кирпича и прочих. Каждый составляющий компонент обладает уникальными свойствами и по-разному сопротивляется возгоранию.

Примером служат старинные деревянные дома. Ранее, в экстренных ситуациях они вспыхивали, как коробки со спичками и практически за минуты сгорали дотла, потому что не были обработаны специальными пропитками. В отличие от них стены каменного дома более стойко переносят пожары. Они сохраняют свои контуры, так как обладают более высокой огнестойкостью, степень которой, в данном контексте, следует рассматривать, как инструмент, позволяющий производить сравнения, оптимизировать затраты при проектировании, прогнозировать вероятность неоднозначных результатов.

Справочные данные о том, какими степенями огнестойкости обладают здания крайне важны как для работников пожарной отрасли, так и для эксплуатационных служб, строителей, выполняющих ремонтные работы, технических и судебных экспертов. Именно на них полагается правосудие определяя виновность или оправдывая администраторов, или субъектов хозяйственной деятельности в спорных или уголовных делах, основанных на получении ущерба в результате возгорания.

Методы оценки

Для того, чтобы установить насколько проверяемый объект соответствует необходимому уровню пожарной безопасности, инспектора идут путём сопоставления двух базовых величин:

  1. Требуемая степень огнестойкости здания определяется минимумом допустимых значений, включённых в нормативы, касающихся:
  • этажности;
  • назначения;
  • эксплуатационной категории по взрывопожарной безопасности;
  • размеров площадей по противопожарным отсекам;
  • объема и вместительности;
  • отсутствия или наличия установок, предназначенных для тушения огня.
  1. Фактическая степень огнестойкости здания – определяется действительными значениями, вычисленными посредством применения пределов огнестойкости, обобщенные сведения о которых представлены в сертификатах соответствия, техпаспортах, пособиях. Уточнённые показатели получают путём проведения огневых испытаний и выполнения профессиональных расчётов. При обследовании типовых построек ограничиваются экспериментальным тестированием.

Важно! Результаты проверки признаются удовлетворительными, когда полученные значения по фактически полученным отчётам больше либо равны нормативам, определяющим требуемую огневую защищённость.

Порядок проведения оценочных изысканий

На практике работники пожарно-надзорной службы или ведомства, рассматривая конкретное задание, получают интересующие их сведения по степеням огневой стойкости из технического паспорта и проектной документации.

  • приложениях к Тех. регламенту имеются разъяснения, как правильно определить степень огнестойкости здания, воспользовавшись таблицей 21. ы видите её на рисунке.

В вертикальной структуре таблицы представлены пределы огнестойкости по всем позициям:

  • строительных конструкций, включая внутренние и наружные несущие стены, междуэтажные, чердачные, бесчердачные и подвальные перекрытия, колонны;
  • лестничных клеток с учётом маршей, площадок;
  • настилов, теплоизоляционных и утепляющих элементов.

Вся информация сопряжена относительно строчек, где представлены пять основных степеней огнестойкости, предусмотренных для зданий различного типа. Основной фактор, определяющий ту или иную из них – это величина пожарной нагрузки.

Пользоваться таблицей несложно для человека, имеющего минимальный опыт или знающего теорию. Символы, REI 30 обозначают, что временной ресурс предметов, попавших в зону возгорания, предельно органичен интервалом в 30 мин., независимо оттого в какой именно последовательности произойдёт разрушение:

  • утрата несущей способности;
  • нарушения целостности;
  • утеря теплоизоляционных защит и пр. или наоборот.

Однако не всё так просто. В любом деле неожиданно всплывают скрытые нюансы, неучтённые моменты. Рассмотрим пример распространённых ошибок, связанных с расчётом степени огнестойкости в зависимости от качества и состава перекрытий.

Обратите внимание! Многие хозяйственники выплачивают крупные штрафы, только из-за досадных огрехов, допущенных непрофессиональными расчётами. Деловые люди теряют средства, которые могли бы вложить в развитие бизнеса. Избежать лишних трат несложно. Обратитесь к специалистам для . Положитесь на их компетентность. Они приведут объект и документы в полный порядок, и вы забудете о неприятных моментах, связанных с надзором и инспекциями.

Материалы перекрытий

В деловой среде исторически сложилось мнение, что все строительные объекты, имеющие железобетонные перекрытия относятся, как минимум, ко II степени огнезащиты. В свою очередь деревянные перекрытия – это позиции от III и ниже. Это – пример заблуждения, которое необходимо прояснить.

Рассмотрим правильный порядок отнесения. Обратимся к таб. 21 в приложении к Техн. регламенту. В её строках указаны категории степени огнестойкости зданий, а как определить эти показатели указывают минимальные допуски пределов, приведённые в столбцах. На основании чего можно сделать только один вывод, что относящиеся ко II и III строке, не имеют различий в значениях пределов по перекрытиям. Он равен REI 45 – в обеих позициях. Почему?

Очевидно, что искомая величина не слишком зависит от материала перекрытия. Есть другие конструктивные элементы. Они более значимы.

Методика устарела, стереотип остался

Действительно ранее были применимы методики отнесения по примерным конструктивным особенностям, определяющим степень огнестойкости здания по СНИП 2.01.02-85, которые допускали проводить анализ состояния, как бы «на глазок».

Подобный подход посчитали сомнительным. Он давал возможность самостоятельно устанавливать планку соответствия. Что не формировало объективного порядка отнесения к определённой категории.

Отсутствие нужной информации вводило РТП в затруднительные ситуации при выборе программы огнетушения. Норматив 1985 отменили ещё в 1997 г. Сегодня действуют новые четко прописанные положения. Однако выработанное ранее стереотипное мышление сохранилось. Железобетонные панели по-прежнему признают неоспоримым фактором для отнесения здания ко II. В свою очередь , продолжают ошибочно вносить в III или IV строку.

1.1. Здания, сооружения, а также части зданий и сооружений, выделенные противопожарными стенами 1–го типа (пожарные отсеки), подразделяются по степеням огнестойкости. Степень огнестойкости зданий определяется минимальными пределами огнестойкости строительных конструкций и максимальными пределами распространения огня по этим конструкциям.

Пределы огнестойкости самонесущих стен, учитывающих при расчете жесткости и устойчивости зданий, необходимо принимать по гр. 2 табл. 10.1.

В случаях, когда в табл. 10.1. минимальный предел огнестойкости конструкций равен 0.25 ч, допускается применять незащищенные стальные конструкции, а в труднодоступных пунктах строительства, кроме того, кроме того, наружные ограждающие конструкции из алюминиевых листов независимо от их предела огнестойкости.

В зданиях 2 степени огнестойкости производственного и складского назначения допускается применять колонны с пределом огнестойкости 0.75 ч.

Допускается в зданиях всех степеней огнестойкости применять гипсокартонные листы по ГОСТ 6266 – 89 для облицовки металлических конструкций с целью повышения их предела огнестойкости.

В зданиях всех степеней огнестойкости для выделения рабочих мест в пределах помещения допускается применять перегородки (остекленные или с сеткой при высоте глухой части не более 1.2 м, сборно-разборные и раздвижные) с ненормируемыми пределами огнестойкости и пределами распространения огня.

1.2. Степень огнестойкости зданий принимается в проекте в зависимости от их назначения, категории по взрывопожарной и пожарной опасности, этажности, площади этажа в пределах пожарного отсека, кроме случаев, установленных в нормативных документах.

Примерные конструктивные характеристики зданий в зависимости от их степени огнестойкости приведены в табл. 10.1.

Таблица 10.1. Пределы огнестойкости строительных конструкций

Степень огнестойкости зданий

Минимальные пределы огнестойкости строительных конструкций, ч (над чертой), и максимальные пределы распространения огня под ним, см (под чертой)

Лестничные площадки, косоуры, ступени, балки и марши лестничных клеток

Плиты настилы (в том числе с утеплителем) и и другие несущие конструкции

Элементы покрытий

Несущие лестничных клеток

самонесущие

Наружные ненесущие (в том числе из навесных панелей)

Внутренние ненесущие перегородки

Плиты, настилы (в том числе с утеплителем) и прогоны

Балки, фермы, арки, рамы

0,25/0;0,5/25(40)

Не нормируется

Таблица 10.2. Примерные конструктивные характеристики зданий в зависимости от их степени огнестойкости.

Степень огнестой-кости

Конструктивные характеристики

Здания с несущими и ограждающими конструкциями из естественных или искусственных каменных материалов, бетона или железобетона с применением листовых и плитных негорючих материалов

То же. В покрытиях зданий допускается применять незащищенные стальные конструкции.

Здания с преимущественно каркасной конструктивной схемой. Элементы каркаса – из стальных незащищенных конструкций. Ограждающие конструкции – из стальных профилированных листов или других негорючих листовых материалов с трудногорючим утеплителем.

Здания преимущественно одноэтажные с каркасной конструктивной схемой. Элементы каркаса – из цельной или клееной древесины, подвергнутой огнезащитной обработке, обеспечивающей требуемый редел распространения огня. Ограждающие конструкции – из панелей или поэлементной сборки, выполненные с применением древесины или материалов на ее основе. Древесина и другие горючие материалы ограждающих конструкций должны быть подвергнуты огнезащитной обработке или защищены от воздействия огня и высоких температур таким образом, чтобы обеспечить требуемый предел распространения огня.

Здания с несущими и ограждающими конструкциями из цельной или клееной древесины и других горючих или трудно горючих материалов, защищенных от огня и высоких температур штукатуркой или другими листовыми или плитными материалами. К элементам покрытий не предъявляются требования по пределам огнестойкости и пределам распространения огня, при этом элементы чердачного покрытия из древесины подвергаются огнезащитной обработке.

Здания преимущественно одноэтажные с каркасной конструктивной схемой. Элементы каркаса – из стальных незащищенных конструкций. Ограждающие конструкции – из стальных профилированных листов или других негорючих материалов с горючим утеплителем.

Здания, к несущим и ограждающим конструкциям которых не предъявляются требования по пределам огнестойкости и пределам распространения огня.

Как определить степень огнестойкости здания, от каких факторов зависит предел огнестойкости? Ответы на эти вопросы должен знать любой архитектор или собственник. Благодаря этим знаниям, можно легко разработать путь пожарной эвакуации, положение аварийных выходов и т.д. Но в наше время существует множество архитурных решений для постройки однотипных зданий, поэтому определение огнестойкости каждого может вызывать некоторые затруднения.


Что такое огнестойкость здания и зачем она определяется?

Здания вместимостью более 100 мест и высотой 3 м должны иметь С1 пожарной безопасности и III степень огнестойкости здания. Как определить число мест? Этот показатель зависит от населённости района. По СНиП количество мест в яслях разрешается увеличивать до 120 на 1000 жителей района, в среднем 60-90 .
Сады вместимостью более 150 мест должны иметь II степень огнестойкости и С1 пожарной безопасности. При высоте не менее 6 м.

Детские учреждения с более чем 350 детскими местами и высотой 9 м имеют II или I уровень стойкости и С0 или С1 безопасности.

Определение стойкости районной больницы

Уже известно, как определить степень огнестойкости здания, если это школа или детский сад, а что делать с больницами? Для них есть свои правила и нормы.
У общественных зданий подобного типа максимальная допустимая высота 18 м, при этом степень огнестойкости должна быть I или II, а безопасности С0.
При высоте до 10 м огнестойкость понижается до II, а конструктивная безопасность до С1.


Если высота здания 5 и менее метров, то степень огнестойкости может быть III, IV или V, а уровень конструктивной безопасности соответственно С1, С1-С2, С1-С3.
Нет ничего более сложного в изучении темы «Степень огнестойкости здания», как определить рб (районной больницы) уровень безопасности.

Вывод

Не так сложно на самом деле определить степень огнестойкости здания. Трудности возникают только на практическом этапе, однако это менее половины и даже менее трети общей работы. После изучения архитектурного плана, состояния здания в целом и состояния несущих конструкций, испытателем уже проделана большая часть работы!

Условия развития пожара в зданиях и сооружениях во многом определяется степенью их огнестойкости. Степенью огнестойкости называется способность здания (сооружения) в целом сопротивляться разрушению при пожаре. Здания и сооружения по степени огнестойкости подразделяются на пять степеней (I, II, III, IV, V). Степень огнестойкости здания (сооружения) зависит от возгораемости и огнестойкости основных строительных конструкций и от пределов распространения огня по этим конструкциям.

По возгораемости строительные конструкции подразделяются на несгораемые, трудносгораемые и сгораемые. Несгораемыми являются строительные конструкции, выполненные из несгораемых материалов. Трудносгораемыми считаются конструкции, выполненные из трудносгораемых материалов или из сгораемых материалов, защищенных от огня и высоких температур несгораемыми материалами (например, противопожарная дверь, выполненная из дерева и покрытая листовым асбестом и кровельной сталью).

Огнестойкость строительных конструкций характеризуется их пределом огнестойкости , под которым понимают время в часах, по истечении которого при пожаре имеет место 1 из 3-х признаков:

1. Обрушение конструкции;

2. Образование в конструкции сквозных трещин или отверстий. (Продукты горения проникают в соседние помещения);

3. Прогрев конструкции до температур, вызывающих самовоспламенение веществ в смежных помещениях (140-220 о).

Пределы огнестойкости :

Кирпич керамический - 5 ч (25 см-5,5; 38-11ч)

Кирпич силикатный - ~5 ч

Бетон толщиной 25 см - 4 ч (причина разрушений - наличие до 8 % воды);

Дерево, покрытое гипсом толщиной 2 см (всего 25 см) 1 ч 15 мин;

Металлические конструкции - 20 мин (1100-1200 о С-металл становится пластичным);

Входная дверь, обработанная антипиреном -1 ч.

Пористый бетон, пустотелый кирпич имеют большую огнестойкость.

Наименьший предел огнестойкости имеют незащищенные металлические конструкции, а наибольший - железобетонные.

Согласно ДБН 1.1.7-2002 «Защита от пожара. Пожарная безопасность объектов строительства», все здания и сооружения подразделяются по огнестойкости на восемь степеней (см. табл. 3).

Таблица 3

Огнестойкость зданий и сооружений

Степень огнестойкости Конструктивная характеристика
I Здания с несущими и оградительными конструкциями из естественных или искусственных каменных материалов, бетона или железобетона с использованием листовых и плитных негорючих материалов
II То же самое. В покрытиях зданий допускается использовать незащищенные стальные конструкции
III Здания с несущими и оградительными конструкциями из естественных или искусственных каменных материалов, бетона или железобетона Для перекрытий допускается использование деревянных конструкций, защищенных штукатуркой или трудно горючими листовыми, а также плитными материалами К элементам покрытий не устанавливаются требования относительно границы огнестойкости и границ распространения огня, при этом элементы чердачных покрытий из древесины поддаются огнезащитной обработке
III а Здания преимущественно с каркасной конструктивной схемой Элементы каркаса - из стальных незащищенных конструкций Ограждающие конструкции - из стальных профилированных листов или других негорючих листовых материалов с трудногорючим утеплителем
III б Здания преимущественно одноэтажные с каркасной конструктивной схемой Элементы каркаса - из цельной или клеенной древесины, подвергнутые огнезащитной обработке, которая обеспечивает нужную, границу распространения огня Оградительные конструкции - из панелей или поэлементной сборки, выполненного с использованием древесины или материалов на ее основе Древесина и другие горючие материалы оградительных конструкций должны быть подвергнуты огнезащитной обработке или защищены от влияния огня и высоких температур таким образом, чтобы обеспечить нужную границу распространения огня
IV Здания с несущими и оградительными конструкциями из цельной или клеенной древесины и других горючих и трудногорючих материалов, защищенных от влияния огня и высоких температур штукатуркой и другими листовыми и плитными материалами К элементам покрытий не предъявляются требования относительно границ огнестойкости и границ распространения пламени, при этом элементы чердачных перекрытий из древесины поддаются огнезащитной обработке
IV а Здания преимущественно одноэтажные с каркасной конструктивной схемой Элементы каркаса - из стальных незащищенных конструкций Оградительные конструкции - из стальных профилированных листов или других негорючих материалов с горючим утеплителем
V Здания, к несущим и оградительным конструкциям которых не предъявляются требования относительно границ огнестойкости и границ распространения огня

Защита деревянных конструкций от возгорания:

Для защиты деревянных конструкций от возгорания применяют:

Пропитку антипиренами;

Облицовку;

Штукатурку.

Антипирены - химические вещества, предназначенные для придания древесине свойств невозгораемости (французский физик Гей-Люссак.1820 г. Соли аммония).

Антипирены - снижают скорости выделения газообразных продуктов, уменьшают выход смолы в результате химического взаимодействия с целлюлозой.

Для пропитки древесины применяют:

Фосфорнокислый аммоний (NH 4) 2 HPO 4

Сернокислый аммоний (NH 4) 2 SO4

Буру Na 2 B 4 O 7* 10H 2 O.

Глубокая пропитка производится в автоклавах при давлении 10-15 атм в течение 2-20 ч.

Вымачивание производится в растворе антипирена при температуре 90 о С в течение 24 ч.

Пропитка антипиренами переводит древесину в разряд трудно сгораемых материалов. Поверхностная обработка - предупреждает загорание древесины в течении нескольких мин.

Облицовка и штукатурка - защищают деревянные конструкции от возгорания (замедленный прогрев).

Мокрая штукатурка - огнезащита 15-20 мин.

Загрузка...