domvpavlino.ru

Структура атома: что такое нейтрон? Протоны и нейтроны - физика в школе

Нейтрон (элементарная частица)

Данная статья была написана Владимиром Горунович для сайта "Викизнание", помещена на этот сайт в целях защиты информации от вандалов, а затем дополнена на этом сайте.

Полевая теория элементарных частиц, действуя в рамках НАУКИ, опирается на проверенный ФИЗИКОЙ фундамент:

  • Классическую электродинамику,
  • Квантовую механику,
  • Законы сохранения - фундаментальные законы физики.
В этом принципиальное отличие научного подхода, использованного полевой теорией элементарных частиц - подлинная теория должна строго действовать в рамках законов природы: в этом и заключается НАУКА.

Использовать не существующие в природе элементарные частицы, выдумывать не существующие в природе фундаментальные взаимодействия, или подменять существующие в природе взаимодействия сказочными, игнорировать законы природы, занимаясь математическими манипуляциями над ними (создавая видимость науки) - это удел СКАЗОК, выдаваемых за науку . В итоге физика скатывалась в мир математических сказок.

    1 Радиус нейтрона
    2 Магнитный момент нейтрона
    3 Электрическое поле нейтрона
    4 Масса покоя нейтрона
    5 Время жизни нейтрона
    6 Новая физика: Нейтрон (элементарная частица) - итог

Нейтрон - элементарная частица квантовое число L=3/2 (спин = 1/2) - группа барионов, подгруппа протона, электрический заряд +0 (систематизация по полевой теории элементарных частиц).

Согласно полевой теории элементарных частиц (теории - построенной на научном фундаменте и единственной получившей правильный спектр всех элементарных частиц), нейтрон состоит из вращающегося поляризованного переменного электромагнитного поля с постоянной составляющей. Все голословные утверждения Стандартной модели о том, что нейтрон якобы состоит из кварков, не имеют ничего общего с действительностью . - Физика экспериментально доказала, что нейтрон обладает электромагнитными полями (нулевая величина суммарного электрического заряда, еще не означает отсутствие дипольного электрического поля, что косвенно вынуждена была признать даже Стандартная модель, введя электрические заряды у элементов структуры нейтрона), и еще гравитационным полем. О том, что элементарные частицы не просто обладают - а состоят из электромагнитных полей, физика гениально догадалась еще 100 лет назад, но вот построить теорию никак не удавалось до 2010 года. Теперь в 2015 году появилась еще и теория гравитации элементарных частиц, установившая электромагнитную природу гравитации и получившая уравнения гравитационного поля элементарных частиц, отличные от уравнений гравитации, на основании которых была построена не одна математическая сказка в физике.

Структура электромагнитного поля нейтрона (E-постоянное электрическое поле,H-постоянное магнитное поле, желтым цветом отмечено переменное электромагнитное поле).

Энергетический баланс (процент от всей внутренней энергии):

  • постоянное электрическое поле (E) - 0,18%,
  • постоянное магнитное поле (H) - 4,04%,
  • переменное электромагнитное поле - 95,78%.
Наличие мощного постоянного магнитного поля объясняет обладание нейтроном ядерными силами. Структура нейтрона приведена на рисунке.

Несмотря на нулевой электрический заряд, нейтрон обладает дипольным электрическим полем.

1 Радиус нейтрона

Полевая теория элементарных частиц определяет радиус (r) элементарной частицы как расстояние от центра до точки в которой достигается максимум плотности массы.

Для нейтрона это будет 3,3518 ∙10 -16 м. К этому надо добавить еще толщину слоя электромагнитного поля 1,0978 ∙10 -16 м.

Тогда получится 4,4496 ∙10 -16 м. Таким образом, внешняя граница нейтрона должна находиться от центра на расстоянии более 4,4496 ∙10 -16 м. Получилась величина почти равная радиусу протона и это не удивительно. Радиус элементарной частицы определяется квантовым числом L и величиной массы покоя. У обеих частиц одинаковый набор квантовых чисел L и M L , а массы покоя незначительно отличаются.

2 Магнитный момент нейтрона

В противовес квантовой теории полевая теория элементарных частиц утверждает, что магнитные поля элементарных частиц не создаются спиновым вращение электрический зарядов, а существуют одновременно с постоянным электрическим полем как постоянная составляющая электромагнитного поля. Поэтому магнитные поля есть у всех элементарных частиц с квантовым числом L>0.

Полевая теория элементарных частиц не считает магнитный момент нейтрона аномальным - его величина определяется набором квантовых чисел в той степени, в какой квантовая механика работает в элементарной частице.

Так магнитный момент нейтрона создается током:

  • (0) с магнитным моментом -1 eħ/m 0n c
Далее умножаем его на процент энергии переменного электромагнитного поля нейтрона разделенный, на 100 процентов, и переводим в ядерные магнетоны. При этом не следует забывать, что ядерные магнетоны учитывают массу протона (m 0p), а не нейтрона (m 0n), так что полученный результат надо умножить на отношение m 0p /m 0n . В итоге получим 1,91304.

3 Электрическое поле нейтрона

Несмотря на нулевой электрический заряд, согласно полевой теории элементарных частиц у нейтрона должно быть постоянное электрическое поле. У электромагнитного поля, из которого состоит нейтрон, имеется постоянная составляющая, а, следовательно, у нейтрона должны быть постоянное магнитное поле и постоянное электрическое поле. Поскольку электрический заряд равен нулю то постоянное электрическое поле будет дипольным. То есть у нейтрона должно быть постоянное электрическое поле аналогичное полю двух распределенных параллельных электрических зарядов равных по величине и противоположного знака. На больших расстояниях электрическое поле нейтрона будет практически незаметно из-за взаимной компенсации полей обоих знаков заряда. Но на расстояниях порядка радиуса нейтрона это поле будет оказывать существенное влияние на взаимодействия с другими элементарными частицами близких по размерам. Это, прежде всего, касается взаимодействия в атомных ядрах нейтрона с протоном и нейтрона с нейтроном. Для нейтрон - нейтронного взаимодействия это будут силы отталкивания при одинаковом направлении спинов и силы притяжения при противоположном направлении спинов. Для нейтрон - протонного взаимодействия знак силы зависит не только от ориентации спинов, но еще и от смещения между плоскостями вращения электромагнитных полей нейтрона и протона.
Итак, у нейтрона должно быть дипольное электрическое поле двух распределенных параллельных симметричных кольцевых электрических зарядов (+0.75e и -0.75e), среднего радиуса , расположенных на расстоянии

Электрический дипольный момент нейтрона (согласно полевой теории элементарных частиц) равен:

где ħ - постоянная Планка, L - главное квантовое число в полевой теории элементарных частиц, e - элементарный электрический заряд, m 0 - масса покоя нейтрона, m 0~ - масса покоя нейтрона, заключенная в переменном электромагнитном поле, c - скорость света, P - вектор электрического дипольного момента (перпендикулярен плоскости нейтрона, проходит через центр частицы и направлен в сторону положительного электрического заряда), s - среднее расстояние между зарядами, r e - электрический радиус элементарной частицы.

Как видите, электрические заряды близки по величине к зарядам предполагаемых кварков (+2/3e=+0.666e и -2/3e=-0.666e) в нейтроне, но в отличие от кварков, электромагнитные поля в природе существуют, и аналогичной структурой постоянного электрического поля обладает любая нейтральная элементарная частица, независимо от величины спина и... .

Потенциал электрического дипольного поля нейтрона в точке (А) (в ближней зоне 10s > r > s приблизительно), в системе СИ равен:

где θ - угол между вектором дипольного момента P и направлением на точку наблюдения А, r 0 - нормировочный параметр равный r 0 =0.8568Lħ/(m 0~ c), ε 0 - электрическая постоянная, r - расстояние от оси (вращения переменного электромагнитного поля) элементарной частицы до точки наблюдения А, h - расстояние от плоскости частицы (проходящей через ее центр) до точки наблюдения А, h e - средняя высота расположения электрического заряда в нейтральной элементарной частице (равна 0.5s), |...| - модуль числа, P n - величина вектора P n . (В системе СГС отсутствует множитель .)

Напряженность E электрического дипольного поля нейтрона (в ближней зоне 10s > r > s приблизительно), в системе СИ равна:

где n =r /|r| - единичный вектор из центра диполя в направлении точки наблюдения (А), точкой (∙) обозначено скалярное произведение, жирным шрифтом выделены вектора. (В системе СГС отсутствует множитель .)

Компоненты напряженности электрического дипольного поля нейтрона (в ближней зоне 10s>r>s приблизительно) продольная (| |) (вдоль радиус-вектора, проведенного от диполя в данную точку) и поперечная (_|_) в системе СИ:

Где θ - угол между направлением вектора дипольного момента P n и радиус-вектором в точку наблюдения (в системе СГС отсутствует множитель ).

Третья компонента напряженности электрического поля - ортогональная плоскости, в которой лежат вектор дипольного момента P n нейтрона и радиус-вектор, - всегда равна нулю.

Потенциальная энергия U взаимодействия электрического дипольного поля нейтрона (n) с электрическим дипольным полем другой нейтральной элементарной частицы (2) в точке (А) в дальней зоне (r>>s), в системе СИ равна:

где θ n2 - угол между векторами дипольных электрических моментов P n и P 2 , θ n - угол между вектором дипольного электрического момента P n и вектором r , θ 2 - угол между вектором дипольного электрического моментаP 2 и вектором r , r - вектор из центра дипольного электрического момента p n в центр дипольного электрического момента p 2 (в точку наблюдения А). (В системе СГС отсутствует множитель )

Нормировочный параметр r 0 вводится с целью уменьшения отклонения значения E, от рассчитанного с помощью классической электродинамики и интегрального исчисления в ближней зоне. Нормировка происходит в точке, лежащей в плоскости параллельной плоскости нейтрона, удаленной от центра нейтрона на расстояние (в плоскости частицы) и со смещением по высоте на h=ħ/2m 0~ c, где m 0~ - величина массы заключенной в переменном электромагнитном поле покоящегося нейтрона (для нейтрона m 0~ = 0.95784 m. Для каждого уравнения параметр r 0 рассчитывается самостоятельно. В качестве приблизительного значения можно взять полевой радиус:

Из всего вышесказанного следует, что электрическое дипольное поле нейтрона (о существовании которого в природе, физика 20 века и не догадывалась), согласно законам классической электродинамики, будет взаимодействовать с заряженными элементарными частицами .

4 Масса покоя нейтрона

В соответствии с классической электродинамикой и формулой Эйнштейна, масса покоя элементарных частиц с квантовым числом L>0, в том числе и нейтрона, определяется как эквивалент энергии их электромагнитных полей:

где определенный интеграл берется по всему электромагнитному полю элементарной частицы, E - напряженность электрического поля, H - напряженность магнитного поля. Здесь учитываются все компоненты электромагнитного поля: постоянное электрическое поле (которое у нейтрона есть), постоянное магнитное поле, переменное электромагнитное поле. Эта маленькая, но очень емкая для физики формула, на основании которой получены уравнения гравитационного поля элементарных частиц, отправит в утиль не одну сказочную "теорию" - поэтому ее возненавидят некоторые их авторы.

Как следует из приведенной формулы, величина массы покоя нейтрона зависит от условий, в которых нейтрон находится . Так поместив нейтрон в постоянное внешнее электрическое поле (например, атомное ядро), мы повлияем на E 2 , что отразится на массе нейтрона и его стабильности. Аналогичная ситуация возникнет при помещении нейтрона в постоянное магнитное поле. Поэтому некоторые свойства нейтрона внутри атомного ядра, отличаются от тех же свойств свободного нейтрона в вакууме, вдали от полей.

5 Время жизни нейтрона

Установленное физикой время жизни 880 секунд соответствует свободному нейтрону.

Полевая теория элементарных частиц утверждает, что время жизни элементарной частицы зависит от условий, в которых она находится. Поместив нейтрон во внешнее поле (например, магнитное) мы изменяем энергию, содержащуюся в его электромагнитном поле. Можно выбрать направление внешнего поля так, чтобы внутренняя энергия нейтрона уменьшилась. В результате при распаде нейтрона выделится меньше энергии, что затруднит распад и увеличит время жизни элементарной частицы. Можно подобрать такую величину напряженности внешнего поля, что распад нейтрона будет требовать дополнительной энергии и, следовательно, нейтрон станет стабильным. Именно это наблюдается в атомных ядрах (например, дейтерия), в них магнитное поле соседних протонов не допускает распад нейтронов ядра. В прочем при внесении в ядро дополнительной энергии распады нейтронов вновь могут стать возможными.

6 Новая физика: Нейтрон (элементарная частица) - итог

Стандартная модель (опущенная в данной статье, но которая в 20 веке претендовала на истину) утверждает, что нейтрон является связанным состоянием трёх кварков: одного "верхнего" (u) и двух "нижних" (d) кварков (предполагаемая кварковая структура нейтрона: udd). Поскольку наличие кварков в природе экспериментально не доказано, электрический заряд, равный по величине заряду гипотетических кварков в природе не обнаружен, а имеются лишь косвенные свидетельства, которые можно интерпретировать как наличие следов кварков в некоторых взаимодействиях элементарных частиц, но можно и интерпретировать иначе, то утверждение Стандартной модели, что нейтрон обладает кварковой структурой остается всего лишь бездоказательным предположением. Любая модель, в том числе и Стандартная вправе предположить любую структуру элементарных частиц включая нейтрона, но пока на ускорителях не будут обнаружены соответствующие частицы, из которых якобы состоит нейтрон, утверждение модели следует считать не доказанным.

Стандартная модель, описывая нейтрон, вводит не найденные в природе кварки с глюонами (глюоны тоже никто не нашел), не существующие в природе поля и взаимодействия и вступает в противоречие с законом сохранения энергии;

Полевая теория элементарных частиц (Новая физика) описывает нейтрон исходя из существующих в природе полей и взаимодействий в рамках, действующих в природе законов - в этом и заключается НАУКА.

Владимир Горунович

А также составить электронную формулу. Для этого потребуется только периодическая система химических элементов Д.И. Менделеева, которая является обязательным справочным материалом.

Таблица Д.И. Менделеева разделена на группы (располагаются вертикально), которых всего восемь, а также на периоды, расположенные горизонтально. Каждый имеет свой порядковый и относительную атомную массу, что указано в каждой периодической таблицы. Количество протонов (р) и электронов (ē) численно совпадает с порядковым номером элемента. Для определения числа нейтронов (n) необходимо из относительной атомной массы (Ar) вычесть номер химического элемента.

Пример № 1. Вычислите количество протонов , электронов и нейтронов атома химического элемента № 7.Химический элемент № 7 – это азот (N). Сначала определите количество протонов (р). Если порядковый номер 7, значит, будет 7 протонов . Учитывая, что это число совпадает с количеством отрицательно заряженных частиц, электронов (ē) тоже будет 7. Для определения числа нейтронов (n) из относительной атомной массы (Ar (N) = 14) вычтите порядковый номер азота (№ 7). Следовательно, 14 – 7 = 7. В общем виде вся информация выглядит таким образом:р = +7;ē = -7;n = 14-7 = 7.

Пример № 2. Вычислите количество протонов , электронов и нейтронов атома химического элемента № 20.Химический элемент № 20 – это кальций (Са). Сначала определите количество протонов (р). Если порядковый номер 20, следовательно, будет 20 протонов . Зная, что это число совпадает с количеством отрицательно заряженных частиц, значит электронов (ē) тоже будет 20. Для определения числа нейтронов (n) из относительной атомной массы (Ar (Са) = 40) вычтите порядковый номер (№ 20). Следовательно, 40 – 20 = 20. В общем виде вся информация выглядит таким образом:р = +20;ē = -20;n = 40-20 = 20.

Пример № 3. Вычислите количество протонов , электронов и нейтронов атома химического элемента № 33.Химический элемент № 33 – это мышьяк (As). Сначала определите количество протонов (р). Если порядковый номер 33, значит, будет 33 . Учитывая, что это число совпадает с количеством отрицательно заряженных частиц, электронов (ē) тоже будет 33. Для определения числа нейтронов (n) из относительной атомной массы (Ar (As) = 75) вычтите порядковый номер азота (№ 33). Следовательно, 75 – 33 = 42. В общем виде вся информация выглядит таким образом:р = +33;ē = -33;n = 75 -33 = 42.

Обратите внимание

Относительную атомную массу, указанную в таблице Д.И. Менделеева, необходимо округлять до целого числа.

Источники:

  • протон и нейтроны составляют ответ

Колбу отставьте в сторону для остывания. Достаточно полторы-две минуты. В противном случае образуется нерастворимый осадок.

Лейте по стенке воду, промывая ею воронку. Взболтайте до полного смешивания, подогревая колбу при необходимости.

Соберите , присоедините приемник. В приемник пустите 10 мл 0,01 н. раствора серной кислоты. Внесите одну или две капли метилрота. После соединения всех ингредиентов, пристройте водоструйный насос к приемнику.

По истечении десяти минут перегонку прекратите. Закройте кран водоструйного , откройте пробку приемника, смойте серную кислоту с конца холодильной трубки. Замените другим приемником с таким же объемом 0,01 н. раствора серной кислоты, сделайте вторую перегонку.

Вывод: 1 мл 0,01 н. серной кислоты или едкого натрия соответствует 0,14 мг .
Разность между количеством серной кислоты, помещенной в приемник, и количеством едкого натрия, взятого при титровании, произведенная на 0,14 мг, равна количеству остаточного азота в исследуемом 1 мл крови. Чтоб показать количество азота в - , надо умножить на 100.

Валентность - это способность химических элементов удерживать определенное количество атомов других элементов. В то же самое время, это число связей, образуемое данным атомом с другими атомами. Определить валентность достаточно просто.

Инструкция

Примите к сведению, что валентность атомов одних элементов постоянна, а других - переменна, то есть, имеет свойство меняться. Например, водород во всех соединениях одновалентен, поскольку образует только одну . Кислород способен образовывать две связи, являясь при этом двухвалентным. А вот у может быть II, IV или VI. Все зависит от элемента, с которым она соединяется. Таким образом, сера - элемент с переменной валентностью.

Заметьте, что в молекулах водородных соединений вычислить валентность очень просто. Водород всегда одновалентен, а этот показатель у связанного с ним элемента будет равняться количеству атомов водорода в данной молекуле. К примеру, в CaH2 кальций будет двухвалентен.

Запомните главное правило определения валентности: произведение показателя валентности атома какого-либо элемента и количества его атомов в какой-либо молекуле произведению показателя валентности атома второго элемента и количества его атомов в данной молекуле.

Посмотрите на буквенную формулу, обозначающую это равенство: V1 x K1 = V2 x K2, где V - это валентность атомов элементов, а К - количество атомов в молекуле. С ее помощью легко определить показатель валентности любого элемента, если известны остальные данные.

Рассмотрите пример с молекулой оксида серы SО2. Кислород во всех соединениях двухвалентен, поэтому, подставляя значения в пропорцию: Vкислорода х Кислорода = Vсеры х Ксеры, получаем: 2 х 2 = Vсеры х 2. От сюда Vсеры = 4/2 = 2. Таким образом, валентность серы в данной молекуле равна 2.

Видео по теме

Электрон – самая легкая электрически заряженная частица, которая участвует практически во всех электрических явлениях. Он, благодаря своей малой массе, наиболее вовлечен в развитие квантовой механики. Эти быстрые частицы нашли широкое применение в области современной науки и техники.

Слово ἤλεκτρον - греческое. Именно оно дало имя электрону. Переводится это как «янтарь». В времена греческие естествоиспытатели проводили различные эксперименты, которые заключались в шерстью кусков янтаря, которые затем начинали притягивать к себе разные мелкие предметы. Электрон ом названа отрицательно заряженная частица, которая является одной из основных единиц, составляющих структуру вещества. Электрон ные оболочки атомов состоят из электронов, при этом их положение и число являются определяющими химических свойств вещества.О числе электронов в атомах различных веществ можно узнать из таблицы химических элементов, составленной Д.И. Менделеевым. Число протонов в ядре атома всегда равно числу электронов, которое должно быть в электронной оболочке атома данного вещества. Электрон ы вращаются вокруг ядра с огромной скоростью, и поэтому они не « » на ядро. Это наглядно сравнимо Луной, которая не падает, несмотря на то, что Земля ее притягивает.Современные представления физики элементарных частиц свидетельствуют о бесструктурности и неделимости . Движение этих частиц в полупроводниках и разрешает легко переносить и управлять энергией. Это свойство повсеместно используется в электронике, быту, промышленности, и связи. Несмотря на то, что в проводниках скорость движения электронов очень маленькая, электрическое поле способно распространяться со скоростью света. Благодаря этому ток по всей цепи устанавливается моментально.Электрон ы, помимо корпускулярных, обладают еще и волновыми свойствами. Они участвуют в гравитационном, слабом и электромагнитном взаимодействиях. Устойчивость электрона следует из законов энергии и сохранения заряда. Эта частица – самая легкая из заряженных, и поэтому не может ни на что распасться. Распад на частицы более легкие законом сохранения заряда, а на более тяжелые, чем частицы запрещен законом сохранения энергии. О точности, с которой выполнен закон сохранения заряда, судить можно по тому, что электрон, по крайней мере, за десять лет, своего заряда не теряет.

Видео по теме

Водорода, элемента, который имеет наиболее простое строение. Оно имеет положительный заряд и практически неограниченное время жизни. Это самая стабильная частица во Вселенной. Протоны, образовавшиеся в результате Большого Взрыва, до сих пор не распались. Масса протона составляет 1,627*10-27 кг или 938,272 эВ. Чаще эту величину выражают в электронвольтах.

Протон был открыт «отцом» ядерной физики Эрнестом Резерфордом. Он выдвинул гипотезу о том, что ядра атомов всех химических элементов состоят из протонов, так как по массе они превышают ядро атома водорода в целое число раз. Резерфорд поставил интересный опыт. В те времена уже была открыта естественная радиоактивность некоторых элементов. С помощью альфа-излучения (альфа-частицы представляют собой ядра гелия с высокими энергиями) ученый облучал атомы азота. В результате такого взаимодействия вылетала частица. Резерфорд предположил, что это протон. Дальнейшие опыты в пузырьковой камере Вильсона подтвердили его предположение. Так в 1913 году была открыта новая частица, но гипотеза Резерфорда о составе ядра оказалась несостоятельной.

Открытие нейтрона

Великий ученый нашел ошибку в своих расчетах и выдвинул гипотезу о существовании еще одной частицы, входящей в состав ядра и обладающей практически той же массой, что и протон. Экспериментально он не смог ее обнаружить.

Это сделал в 1932 году сделал английский ученый Джеймс Чедвик. Он поставил опыт, в ходе которого бомбардировал атомы бериллия высокоэнергетическими альфа-частицами. В результате ядерной реакции из ядра бериллия вылетала частица, впоследствии названная нейтроном. За свое открытие Чедвик уже через три года получил Нобелевскую премию.

Масса нейтрона действительно мало отличается от массы протона (1,622*10-27 кг), но эта частица не обладает зарядом. В этом смысле она нейтральна и в то же время способна вызывать деление тяжелых ядер. Из-за отсутствия заряда нейтрон может легко пройти через высокий кулоновский потенциальный барьер и внедриться в структуру ядра.

Протон и нейтрон обладают квантовыми свойствами (могут проявлять свойства частиц и волн). Нейтронное излучение используют в медицинских целях. Высокая проникающая способность позволяет этому излучению ионизировать глубинные опухоли и другие злокачественные образования и обнаруживать их. При этом энергия частиц относительно маленькая.

Нейтрон, в отличие от протона, нестабильная частица. Ее время жизни составляет около 900 секунд. Она распадается на протон, электрон и электронное нейтрино.

Источники:

  • Открытие протона и нейтрона

Очень часто в разных ситуациях люди слышат слово протон, а также ядро, нейтрон, электрон. Не всегда ученики и даже взрослые люди знают, откуда пошло это название и когда мир узнал про такие элементы.

Прошло большое количество времени прежде, чем ученые согласились, что все вещества состоят из молекул. Со временем даже смогли установить, что в своем составе атомы. После чего возник вопрос, из чего состоит атом. Атом включает в себя ядро и некоторое количество электронов, которые вращаются вокруг ядра.

Ядро атома водорода

Резерфорд, который был одним из первооткрывателем данного раздела физики и всю свою жизнь работал над развитием данного направления, предполагал, что в составе ядра любого химического элемента находится ядро водорода, что и сумел подтвердить с помощью опытов.

Эти опыты требовали значительной подготовки, и, проводя эксперименты, ученный и его ученики, часто приносили в жертву свое здоровье. Опыт проводился таким образом: с помощью альфа- происходила бомбардировка атомов азота. В итоге из ядер атомов азота выбивались разные частицы, которые фиксировались на светочувствительной пленке. Из-за слабого свечения Резерфорду приходилось по восемь часов сидеть в комнате без освещения, чтобы глаза лучше фиксировали световые следы.

Благодаря этим экспериментам Резерфорд смог по следам выбивания определить, что в атоме любого вещества есть именно атомы водорода и кислорода.

Протон

Частицу протон Резерфорд в 1919 году при проведении опыта, который доказал наличие в любом химическом элементе ядра атома водорода. Протон по сути является электроном, но с положительным знаком, он уравновешивает количество электронов, в такой ситуации атом называется нейтральным или незаряженным.

Название протон происходит от «протос», которое переводится с греческого как первый. Изначально, данную частицу хотели назвать от греческого слова «барос», которое означает тяжесть. Но в итоге было принято решение, что «протон» лучше описывает все качества данного элемента. Важно помнить, что масса протона приблизительно в 1840 раз больше, чем .

Нейтрон

Нейтрон также является одним из элементов атома. Данный элемент открыл Чедвик, после того как провел серию бомбардировок над ядром атома . При такой бомбардировке вылетали элементы, которые никак не реагировали на электрическое поле, поэтому их в итоге и назвали нейтронами.

Вселенная, которую порой называют космосом, состоит из галактик, то есть звездных систем. Сегодня есть различные гипотезы о возникновении Вселенной, но нет ни одного научно доказанного факта. Все эти теории строятся на основании предположений и расчетов различных ученых.

Инструкция

Основоположником изучения Вселенной стал польский астроном Николай Коперник, написавший труд о гелиоцентрической системе, в котором говорилось, что Земля является частью большой . В последующие времена труды Н. Коперника совершенствовали и дополняли другие ученые, но именно поляк сумел дать человечеству базовые знания о космическом мироустройстве.

Наиболее всестороннее и полное изучение Вселенной началось лишь в 20 веке. Это было связано с развитием технологий в науке. На данный момент известно, что основной химический элемент, который входит в состав Вселенной, - это водород. Его объем составляет 75% от общего условного объема, на втором месте стоит гелий, объем которого составляет 23%. Остальное занимают незначительные химические примеси. Долгие годы человечество наблюдает за развитием Вселенной для того, чтобы понять причины ее возникновения.

Как только случается встретиться с неизвестным предметом, так обязательно возникает меркантильно-житейский вопрос - а сколько это весит. А вот если это неизвестное - элементарная частица, что тогда? А ничего, вопрос остается прежним: какая же масса этой частицы. Если бы кто-то занялся подсчетом затрат, понесенных человечеством для удовлетворения своего любопытства на исследования, точнее, измерения, массы элементарных частиц, то мы бы узнали, что, например, масса нейтрона в килограммах с умопомрачительным количеством нулей после запятой, обошлось человечеству дороже, чем самое дорогое строительство с таким же количеством нулей до запятой.

А начиналось все очень буднично: в руководимой Дж. Дж.Томсоном лаборатории в 1897 г. проводились исследования катодных лучей. В результате была определена универсальная константа для Вселенной - величина отношения массы электрона к его заряду. До определения массы электрона осталось совсем немного - определить его заряд. Через 12 лет сумел это сделать. Он проводил эксперименты с падающими в электрическом поле капельками масла, и ему удалось не только уравновесить их вес величиной поля, но и провести необходимые и чрезвычайно тонкие измерения. Их результат - численное значение массы электрона:

me = 9,10938215(15) * 10-31кг.

К этому времени относятся и исследования структуры где первопроходцем был Эрнест Резерфорд. Именно он, наблюдая за рассеянием заряженных частиц, предложил модель атома с внешней электронной оболочкой и положительным ядром. Частица, которой в была предложена роль ядра простейшего атома, получалась при бомбардировке азота Это была первая ядерная реакция, полученная в лаборатории - в ее результате из азота получался кислород и ядра будущих названных протонами. Однако, альфа-лучи состоят из сложных частиц: кроме двух протонов они содержат еще два нейтрона. Масса нейтрона почти равна и общая масса альфа-частицы получается вполне солидной для того, чтоб разрушить встречное ядро и отколоть от него «кусочек», что и случилось.

Поток положительных протонов отклонялся электрическим полем, компенсируя его отклонение, вызываемое В этих экспериментах определить массу протона уже не составляло труда. Но самым интересным был вопрос о том, какое соотношение имеют масса протона и электрона. Загадка была тут же решена: масса протона превышает массу электрона чуть больше, чем 1836 раз.

Итак, первоначально, модель атома предполагалась, по Резерфорду, как электронно-протонный комплект с одинаковым числом протонов и электронов. Однако совсем скоро оказалось, что первичная ядерная модель не полностью описывает все наблюдаемые эффекты по взаимодействиям элементарных частиц. Только в 1932 году подтвердил гипотезу о дополнительных частицах в составе ядра. Их назвали нейтронами, нейтральными протонами, т.к. они не имели заряда. Именно это обстоятельство обуславливает их большую проникающую способность - они не расходуют свою энергию на ионизацию встречных атомов. Масса нейтрона совсем незначительно превышает массу протона - всего примерно на 2,6 электронных массы больше.

Химические свойства веществ и соединений, которые образуются данным элементом, определяются числом протонов в ядре атома. Со временем подтвердилось участие протона в сильных и других фундаментальных взаимодействиях: электромагнитном, гравитационном и слабом. При этом, несмотря на то, что заряд нейтрона отсутствует, при сильных взаимодействиях протон и нейтрон рассматривают как элементарную частицу нуклон в различных квантовых состояниях. Отчасти сходство поведения этих частиц объясняется и тем, что масса нейтрона очень мало отличается от массы протона. Стабильность протонов позволяет использовать их, предварительно ускорив до высоких скоростей, в качестве бомбардирующих частиц для осуществления ядерных реакций.

Атом - это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z - порядковый номер данного элемента в периодической системе химических элементов, е - величина элементарного электрического заряда.

Электрон - это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10 -19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К - оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.

Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц - протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны - это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента - водорода. Число протонов в ядре равно Z. Нейтрон - это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А - Z, где А - массовое число данного изотопа (см. ). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).

Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны - . Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

Атом (греч. atomos - неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки. Величина электрического заряда ядра равна Z-e, где е - элементарный электрический заряд, равный по величине заряду электрона (4,8·10 -10 эл.-ст. ед.), и Z - атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см. Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10 -28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.). Число нуклонов в ядре называется массовым числом и обозначается буквой А. Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А-Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z. Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются:

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10 -8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу. Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С 12 , принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа. Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба. Опыты показали, что микрочастицы - электроны, протоны, атомы и т. д.,- кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е. характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона. Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии. Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е 0 , в какое-либо из возбужденных состояний E i происходит при поглощении определенной порции энергии Е i - Е 0 . Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= E i - Е k где h - постоянная Планка (6,62·10 -27 эрг·сек), v - частота света.

Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.

Загрузка...