domvpavlino.ru

Углекислый газ свойства. Углекислый газ (диоксид углерода)

Прежде чем рассматривать химические свойства углекислого газа, выясним некоторые характеристики данного соединения.

Общие сведения

Является важнейшим компонентом газированной воды. Именно он придает напиткам свежесть, игристость. Данное соединение является кислотным, солеобразующим оксидом. углекислого газа составляет 44 г/моль. Этот газ тяжелее воздуха, поэтому скапливается в нижней части помещения. Данное соединение плохо растворяется в воде.

Химические свойства

Рассмотрим химические свойства углекислого газа кратко. При взаимодействии с водой происходит образование слабой угольной кислоты. Она практически сразу после образования диссоциирует на катионы водорода и анионы карбоната или гидрокарбоната. Полученное соединение вступает во взаимодействие с активными металлами, оксидами, а также со щелочами.

Каковы основные химические свойства углекислого газа? Уравнения реакций подтверждают кислотный характер данного соединения. (4) способен образовывать карбонаты с основными оксидами.

Физические свойства

При нормальных условиях данное соединение находится в газообразном состоянии. При повышении давления можно перевести его до жидкого состояния. Этот газ не имеет цвета, лишен запаха, обладает незначительным кислым вкусом. Сжиженная углекислота является бесцветной, прозрачной, легкоподвижной кислотой, аналогичной по своим внешним параметрам эфиру либо спирту.

Относительная молекулярная масса углекислого газа составляет 44 г/моль. Это практически в 1,5 раза больше, чем у воздуха.

В случае понижения температуры до -78,5 градусов по Цельсию происходит образование Он по своей твердости аналогичен мелу. При испарении данного вещества образуется газообразный оксид углерода (4).

Качественная реакция

Рассматривая химические свойства углекислого газа, необходимо выделить его качественную реакцию. При взаимодействии данного химического вещества с известковой водой происходит образование мутного осадка карбоната кальция.

Кавендишу удалось обнаружить такие характерные физические свойства оксида углерода (4), как растворимость в воде, а также высокий удельный вес.

Лавуазье был проведен в ходе которого он пытался из оксида винца выделить чистый металл.

Выявленные в результате подобных исследований химические свойства углекислого газа стали подтверждением восстановительных свойств данного соединения. Лавуазье при прокаливании окиси свинца с оксидом углерода (4) сумел получить металл. Для того чтобы удостовериться в том, что второе вещество является оксидом углерода (4), он пропустил через газ известковую воду.

Все химические свойства углекислого газа подтверждают кислотный характер данного соединения. В земной атмосфере данное соединение содержится в достаточном количестве. При систематическом росте в земной атмосфере данного соединения возможно серьезное изменение климата (глобальное потепление).

Именно диоксид углерода играет важную роль в живой природе, ведь данное химическое вещество принимает активное участие в метаболизме живых клеток. Именно это химическое соединение является результатом разнообразных окислительных процессов, связанных с дыханием живых организмов.

Углекислый газ, содержащийся в земной атмосфере, является основным источником углерода для живых растений. В процессе фотосинтеза (на свету) происходит процесс фотосинтеза, который сопровождается образованием глюкозы, выделением в атмосферу кислорода.

Диоксид углерода не обладает токсичными свойствами, он не поддерживает дыхания. При повышенной концентрации данного вещества в атмосфере у человека возникает задержка дыхания, появляются сильные головные боли. В живых организмах углекислый газ имеет важное физиологическое значение, к примеру, он необходим для регуляции сосудистого тонуса.

Особенности получения

В промышленных масштабах углекислоту можно выделять из дымового газа. Кроме того, СО2 является побочным продуктом разложения доломита, известняка. Современные установки для производства углекислого газа предполагают использование водного раствора этанамина, адсорбирующего газ, содержащийся в дымовом газе.

В лаборатории диоксид углерода выделяют при взаимодействии карбонатов или гидрокарбонатов с кислотами.

Применение углекислого газа

Данный кислотный оксид применяется в промышленности в качестве разрыхлителя или консерванта. На упаковке продукции данное соединение указывается в виде Е290. В жидком виде углекислоту используют в огнетушителях для тушения пожаров. Оксид углерода (4) используют для получения газированной воды и лимонадных напитков.

Диоксид углерода, оксид углерода, углекислота – все эти названия одного вещества, известного нам, как углекислый газ. Так какими же свойствами обладает этот газ, и каковы области его применения?

Углекислый газ и его физические свойства

Углекислый газ состоит из углерода и кислорода. Формула углекислого газа выглядит так – CO₂. В природе он образуется при сжигании или гниении органических веществ. В воздухе и минеральных источниках содержание газа также достаточно велико. кроме того люди и животные также выделяют диоксид углерода при выдыхании.

Рис. 1. Молекула углекислого газа.

Диоксид углерода является абсолютно бесцветным газом, его невозможно увидеть. Также он не имеет и запаха. Однако при его большой концентрации у человека может развиться гиперкапния, то есть удушье. Недостаток углекислого газа также может причинить проблемы со здоровьем. В результате недостатка это газа может развиться обратное состояние к удушью – гипокапния.

Если поместить углекислый газ в условия низкой температуры, то при -72 градусах он кристаллизуется и становится похож на снег. Поэтому углекислый газ в твердом состоянии называют «сухой снег».

Рис. 2. Сухой снег – углекислый газ.

Углекислый газ плотнее воздуха в 1,5 раза. Его плотность составляет 1,98 кг/м³ Химическая связь в молекуле углекислого газа ковалентная полярная. Полярной она является из-за того, что у кислорода больше значение электроотрицательности.

Важным понятием при изучении веществ является молекулярная и молярная масса. Молярная масса углекислого газа равна 44. Это число формируется из суммы относительных атомных масс атомов, входящих в состав молекулы. Значения относительных атомных масс берутся из таблицы Д.И. Менделеева и округляются до целых чисел. Соответственно, молярная масса CO₂ = 12+2*16.

Чтобы вычислить массовые доли элементов в углекислом газе необходимо следовать формулерасчета массовых долей каждого химического элемента в веществе.

n – число атомов или молекул.
Ar – относительная атомная масса химического элемента.
Mr – относительная молекулярная масса вещества.
Рассчитаем относительную молекулярную массу углекислого газа.

Mr(CO₂) = 14 + 16 * 2 = 44 w(C) = 1 * 12 / 44 = 0,27 или 27 % Так как в формулу углекислого газа входит два атома кислорода, то n = 2 w(O) = 2 * 16 / 44 = 0,73 или 73 %

Ответ: w(C) = 0,27 или 27 %; w(O) = 0,73 или 73 %

Химические и биологические свойства углекислого газа

Углекислый газ обладает кислотными свойствами, так как является кислотным оксидом, и при растворении в воде образует угольную кислоту:

CO₂+H₂O=H₂CO₃

Вступает в реакцию со щелочами, в результате чего образуются карбонаты и гидрокарбонаты. Этот газ не подвержен горению. В нем горят только некоторые активные металлы, например, магний.

При нагревании углекислый газ распадается на угарный газ и кислород:

2CO₃=2CO+O₃.

Как и другие кислотные оксиды, данный газ легко вступает в реакцию с другими оксидами:

СaO+Co₃=CaCO₃.

Углекислый газ входит в состав всех органических веществ. Круговорот этого газа в природе осуществляется с помощью продуцентов, консументов и редуцентов. В процессе жизнедеятельности человек вырабатывает примерно 1 кг углекислого газа в сутки. При вдохе мы получаем кислород, однако в этот момент в альвеолах образуется углекислый газ. В этот момент происходит обмен: кислород попадает в кровь, а углекислый газ выходит наружу.

Получение углекислого газа происходит при производстве алкоголя. Также этот газ является побочным продуктом при получении азота, кислорода и аргона. Применение углекислого газа необходимо в пищевой промышленности, где углекислый газ выступает в качестве консерванта, а также углекислый газ в виде жидкости содержится в огнетушителях.

Углекислый газ, или диоксид углерода (СО 2) жизненно необходим растениям. Углерод растения получают именно из СО 2 , в ходе процесса фотосинтеза, а атомы углерода являются основным строительным материалом для органических молекул. И аквариумные растения тут не исключение. При дефиците углекислого газа им будет просто не из чего строить свои ткани, что сильно замедлит или совсем прекратит их рост. С другой стороны, при избытке диоксида углерода в воде аквариума, рыбы начинают задыхаться даже тогда, когда содержание в ней кислорода велико. Происходит это из-за двух очень неприятных эффектов: Бора и Рута, которые обусловлены изменением свойств рыбьего гемоглобина при высоком содержании углекислого газа. Следовательно аквариумист, если только он хочет любоваться живыми, а не пластмассовыми растениями и рыбками, должен уметь поддерживать концентрацию СО 2 в воде своего аквариума в оптимальном диапазоне - таком, чтобы растения могли хорошо расти, а рыбы нормально дышать. О том, как это сделать будет рассказано в данной статье.

Для тех, кто не хочет вникать в суть дела, а хочет сразу получить ответ: оптимальное содержание углекислого газа в воде аквариума составляет 15 - 20 мг/л. А сколько СО 2 растворено в воде Вашего аквариума можно рассчитать по величинам и - КН. Чтобы ничего самому не считать , а только подставить определенные с помощью тестов значения рН и КН в нужные окошки и получить ответ, воспользуйтесь .
А надо ли вообще аквариумисту что-то измерять и затем что-то рассчитывать? Так ли уж необходимо "проверять алгеброй гармонию"? Ведь всё в природе способно к саморегуляции. Аквариум - это тоже по сути своей маленький "кусочек" природы и естественная гармония может установится в нем сама собой. В аквариуме нормальных (классических) пропорций с достаточным, но не чрезмерном количеством рыб, возникает естественным путем. Чтобы оно оставалось устойчивым, надо не , регулярно и не реже, чем раз в неделю примерно пятую часть объёма воды. И это действительно обеспечит стабильный биобаланс. В таком аквариуме рыбы в ходе своей жизнедеятельности будут выделять столько углекислого газа, аммиака и других веществ, сколько нужно для того, чтобы растения получали необходимое минеральное питание и не бедствовали. В свою очередь, хорошо себя чувствующие растения обеспечат рыб достаточным количеством кислорода. Начиная с последней четверти IXX века (со времён Н.Ф. Золотницкого) и на протяжении большей части века XX такие аквариумы были почти у всех аквариумистов и всё у них было хорошо. А что такое многие из них вообще не знали...
Современная же аквариумистика без использования средств определения параметров аквариумной воды (без тестов) просто немыслима.
Что же изменилось? Технические возможности! С помощью специального оборудования мы стали обманывать природу. В маленькой стеклянной коробочке, которую по сути представляет собой типичный комнатный аквариум (а даже солидный для комнатного водоёма объем в 200-300 л сравнительно с природным водоемом очень мал) появилась возможность содержать такое количество живых организмов, которое никак не соизмеримо с естественными ресурсами в ней имеющимися. Взять хотя бы кислород: как естественным путем восполняются его запасы в воде? Про фотосинтез мы уже упомянули, но это днем, а ночью? Без перемешивания или аэрации воды с помощью технических устройств восполнение запасов кислорода в воде происходит очень медленно. Так в совершенно неподвижной воде аквариума у самой его поверхности - на глубине 0.5-1 мм - количество кислорода может быть вдвое большим, чем на глубине всего только нескольких сантиметров. Переход кислорода из воздуха в воду сам по себе происходит крайне неспешно. По вычислениям некоторых исследователей, молекула кислорода в силу одной лишь диффузии за сутки может углубиться не более чем на 2 см! Поэтому без помп и аэраторов, которых в стародавние времена не было, аквариумисту было просто невозможно заселить аквариум "лишними" рыбами - они бы задохнулись. Современное же оборудование позволяет содержать немыслимое по прежнем временам количество рыб, а яркие лампы очень плотно засадить аквариум и даже покрыть все его дно почвопокровными растениями!


Фото 1. Это фрагмент дна современного аквариума. Оно плотно засажено почвопокровными растениями: глоссостигмой (Glossostigma elatinoides), яванским мхом (Vesicularia dubyana) и риччией (Riccia fluitans). Последняя обычно плавает у поверхности, но можно добиться того (и тут это реализовано), чтобы она росла на дне. Для этого аквариум нужно ярко освещать и подавать в воду углекислый газ - СО 2 . Креветка Амано тоже не случайно попала в кадр, надо же кому аккуратно и бережно выбирать остатки корма из гущи рогулек.

Но нельзя забывать, что обманутая природа с того самого мига, как мы живыми организмами ни за что больше уже не отвечает! Устойчивая жизнеспособность такой системы теперь отнюдь не гарантирована. За тот экологический беспредел, который аквариумист устроил в своём аквариуме, в ответе будет он и только он. Даже незначительная его ошибка приведет к экологической катастрофе. А чтобы не ошибаться надо знать в чем нуждаются растения и рыбы и какие гидрохимические параметры воды им подходят. Своевременно контролируя , рН, КН, содержание в воде , , ионов калия и железа можно оперативно вмешиваться в работу перенаселенной и потому нестабильной системы, снабжая её недостающими ресурсами и удаляя избыточные отходы, которые аквариумный "биоценоз" сам не способен утилизировать. Одним из таких важнейших и необходимых для аквариума с живыми растениями ресурсов является углекислый газ - СО 2 .


Фото 2. Снимок сделан на . Это вид аквариума сзади. Искусственный задний фон здесь не предусмотрен. Его создадут растения, чрезвычайно плотно высаженные вдоль задней стенки. Для того, чтобы они могли расти не "задушив" друг друга использовано сразу несколько хитростей, основанных на аквариумных высоких технологиях. Это специальный многослойный не закисающий грунт, богатый доступными для растений минеральными веществами, очень яркий источник света со специально подобранным спектром, и конечно же устройство, обогащающее воду СО 2: баллон с редуктором, счетчик пузырьков, распылитель углекислого газа (реактор) - все произведено фирмой ADA.
Фото 3. Часть системы, обогащающей воду аквариума СО 2 , крупным планом. Снаружи крепится устройство, позволяющее визуально контролировать подачу газа в аквариум - счетчик пузырьков. Внутри расположен диффузор. Для наглядности, устроители семинара пустили газ очень сильно и от диффузора поднимается целый столб пузырьков. Столько углекислого газа аквариумным растениям не надо. В режиме нормальной работы, газа подается гораздо меньше. Таким образом, буйная растительность в "природном" аквариуме Такаси Амано не растет сама собой - для этого требуется специальное оборудование. Так что не такой уж этот аквариум "природный", он скорее техногенный!

В атмосфере земли СО 2 очень немного - всего 0.038%. В сухом атмосферном воздухе при стандартном барометрическом давлении (760 мм. рт. ст.) его парциальное давление составляет всего 0.23 мм. рт. ст. (0.038% от 760). Но и этого очень незначительного количества вполне достаточно, чтобы углекислый газ важным для аквариумиста образом обозначил своё присутствие. К примеру, дистиллированная или хорошо обессоленная вода, постояв в открытой таре достаточное время для того чтобы в ней растворились и пришли в равновесие с атмосферным воздухом газы из смеси которых этот воздух состоит, станет слегка кислой. Это произойдет потому, что в ней растворится углекислый газ.
При указанном выше парциальном давлении углекислого газа его концентрация в воде может достичь 0.6 мг в л, что приведет к снижению рН до значений близких к 5.6. Почему? Дело в том, что некоторые молекулы углекислого газа (не более 0.6%, но и этого достаточно для падения рН) взаимодействуют с молекулами воды с образованием угольной кислоты:

СО 2 +H 2 O <-> H 2 CO 3

Угольная кислота диссоциирует на ион водорода и гидрокарбонатный ион:

H 2 CO 3 <-> H + + HCO 3 -

Вот поэтому и происходит подкисление дистиллированной воды. Напомним, что как раз и отражает содержание ионов водорода в воде. Это отрицательный логарифм их концентрации.
В природе точно также . Поэтому даже в экологически чистых регионах, где в дождевой воде нет серной и азотной кислот, она все равно слегка кислая. Проходя затем через почву, где содержание углекислого газа во много раз выше, чем в атмосфере, вода еще больше им насыщается. Взаимодействуя затем с породами, содержащими известняк, такая вода переводит малорастворимый карбонат кальция в хорошо растворимый гидрокарбонат:

CaCO 3 + H 2 O + СО 2 <-> Ca(HCO 3) 2

Эта реакция обратима. Она может быть смещена в право или влево в зависимости от концентрации углекислого газа. Если содержание СО 2 достаточно продолжительное время остается стабильным, то в такой воде устанавливается углекислотно-известковое равновесие : новых гидрокарбонатных ионов не образуется.
Углекислотно-известковое равновесие может складываться при разных значениях рН, причем соотношение концентраций имеющихся в воде ионов CO 3 2- , HCO 3 - и свободного углекислога газа (СО 2) будет зависеть от рН водного раствора (в нашем случае от рН воды в аквариуме) и температуры. Эта зависимость от водородного показателя при температуре 25 о С представлена на Рис. 1.


Рис 1. Соотношение CO 3 2- , СО 2 и HCO 3 - при температуре 25 о С. Видно, что углекислый газ как таковой (свободная углекислота, или СО 2 ) может присутствовать в воде только в том случае, если рН<8,4 , а при значениях рН, меньших величины 4,3 вся растворенная в воде углекислота пред ставлена только свободным углекислым газом. При рН>8,4 свободной углекислоты в воде нет. Гидрокарбонатный ион (полусвязанная углекислота) присутствует в воде со значением показателя рН, большим чем 4,3, при рН=8,4 вся углекислота находится в полусвязанной форме ( HCO 3 - ). При рН>8,4 воде появляются ионы CO 3 2- (связанная углекислота) , концентрация которых растет вместе с увеличением показателя рН.
По материалам

Если в равновесную систему добавлять углекислый газ, то у глекислотно-известковое равновесие будет нарушено, что приведет к растворению карбонатов кальция и магния. Применительно к условиям аквариума, это означает, что начнут растворяться раковины у улиток, а также известковые грунт, камни и декорации - в таких случаях аквариумисты говорят - грунт " ". Немного забегая вперед, отмечу что "фонящие" грунты и декор непригодны для аквариумов с дополнительной подачей в воду СО 2 . А почему так, будет объяснено ниже.

Е сли тем или иным способом убрать СО 2 из равновесной системы, то из раствора, содержащего гидрокарбонаты, выпадет в виде осадка карбонат кальция. Так происходит, например, при кипячении воды (это известный способ снижения карбонатной жесткости , то есть концентрации в воде Ca(HCO 3) 2 и Mg(HCO 3) 2 . Этот же процесс наблюдается и при простом отстаивании артезианской воды, которая под землёй находилась при повышенном давлении и там в ней растворилось много СО 2 . Подобно газировке в открытой бутылке, оказавшись на поверхности, эта вода отдает лишний углекислый газ до тех пор пока его концентрация не будет соответствовать парциальному давлению СО 2 в окружающем воздухе. При этом в ней может появиться беловатая муть, состоящая из частичек известняка - СаСО 3 . Точно по такому же принципу образуются сталактиты и сталагмиты: сочащаяся из подземных пластов вода освобождается от лишнего углекислого газа и одновременно от карбонатов кальция и магния, которые осаждаются, увеличивая сталактит в размерах. И, по сути, эта же реакция происходит на листьях многих аквариумных растений, когда они активно фотосинтезируя на ярком свету, поглощают весь углекислый газ, растворенный в воде аквариума. Вот тут их листья начинают "седеть", так как они покрываются осадком из карбоната кальция (посмотреть, как это выглядит можно в ). Но раз из воды извлечен весь углекислый газ, то и угольной кислоты в ней больше нет. Если в воде отсутствуют в значимом количестве другие кислоты, то показатель рН должен подняться. Что и происходит. Активно фотосинтезирующие растения, потребив весь имевшийся в воде СО2, могут поднять рН аквариумной воды до 8,4. При таком показателе активной реакции воды в ней уже нет свободных молекул углекислого газа и угольной кислоты, поэтому растения для того, чтобы продолжать фотосинтезировать, вынуждены заниматься добычей диоксида углерода из гидрокарбонатов. Однако, это умеют делать не все виды аквариумных растений, хотя умеют многие.

Ca(HCO 3) 2 -> СО 2 (поглощается растением ) + CaCO 3 + H 2 O

Как правило, они не могут заметно поднять рН еще выше, так как дальнейший рост этого показателя сильно ухудшает функциональное состояние самих растений: фотосинтез, а следовательно изъятие СО 2 из воды аквариума замедляется, и находящийся в воздухе углекислый газ, растворяясь в воде, стабилизирует рН. Аквариумные растения, таким образом, могут буквально душить друг друга. Выигрывают те виды, что лучше извлекают диоксид углерода из гидрокарбонатов, а страдают не умеющие это делать, к примеру роталы, погостемоны и апоногетоны. Именно эти растения считаются у аквариумистов самыми нежными.

Фото 4. Водные растения в этом аквариуме не в лучшем состоянии. Долгое время он существовал в условиях острого дефицита углекислого газа, затем была организована его подача. Результаты очевидны. Свежая зелень макушек говорит сама за себя. Особенно сильно эффект подачи СО 2 заметен на роталах (Rotala macrandra). Лишенные свободного диоксида углерода, они почти погибли, о чем свидетельствуют оголившиеся участки стеблей, но ожили и дали красивые красноватые листья, очень быстро выросшие уже во время подачи углекислого газа.

Те растения, что могут извлекать СО 2 из гидрокарбонатов более живучи. К таковым относят рдесты, валлиснерию, эхинодорусы, наяс, роголистник. Однако густые заросли элодеи способны и их задушить. И все потому, что элодея может еще эффективнее извлекать связанный в гидрокарбонатах углекислый газ:

Ca(HCO 3) 2 -> 2СО 2 (поглощается растением ) + Ca(OH) 2

Этот процесс может привести к опасному не только для других растений, но и для подавляющего большинства аквариумных рыб росту значения рН аквариумной воды до 10.
В аквариумной воде с высокими значениями рН невозможно выращивание целого ряда растений, да и очень многим видам аквариумных рыб щелочная вода определенно не нравится: в ней они могут заболеть и бранхиомикозом. Есть даже особое незаразное заболевание рыб, которое вызывается щелочной водой - . Особенно губительны резкие суточные колебания значения рН, которые происходят при ярком освещении и вызваны активностью растений, добывающих углекислый газ из гидрокарбонатов.

Можно ли исправить положение, усилив аэрацию аквариума, в расчете на то, что благодаря высокой растворимости углекислого газа вода аквариума обогатится СО 2 ? Действительно, при нормальном атмосферном давлении и температуре 20°С в одном литре воды могло бы растворится 1.7 г углекислоты. Но это произошло бы только в том случае, если бы газовая фаза, с которой соприкасалась эта вода, целиком состояла бы из СО 2, то есть парциальное давление углекислого газа составляло бы все 760 мм ртутного столба. А при контакте с атмосферным воздухом, в котором содержится всего 0.038% СО 2 , в 1 л воды может перейти из этого воздуха только 0.6 мг - это и есть равновесная концентрация, соответствующая парциальному давлению углекислого газа в атмосфере на уровне моря. Если концентрация СО 2 в аквариумной воде ниже, то аэрация действительно её поднимет до 0.6 мг/л, но не более! Однако, обычно содержание углекислого газа в воде аквариума все же выше указанной величины и аэрация приведет лишь к потере СО 2 .
Проблему дефицита углекислого газа можно решить путем подачи его в аквариум, тем более, что это отнюдь не сложно. В этом деле можно обойтись даже без дорогого фирменного оборудования, а просто воспользоваться процессами спиртового брожения в сахарном растворе с дрожжами и некоторыми другими крайне нехитрыми устройствами.
Тут, однако, надо отдавать себе отчет в том, что этим мы обманываем природу ещё раз. Бездумное насыщение воды аквариума углекислым газом ни к чему хорошему не приведет. Так можно быстро уморить рыб, а затем и растения. Процесс подачи углекислоты должен находиться под строгим контролем. Установлено, что для рыб концентрация СО 2 в воде аквариума не должна превышать 30 мг/л. А в целом ряде случаев эту величину следует уменьшить хотя бы ещё на треть. Вспомним, что колебания величины рН для рыб и растений вредны, а сильная подача углекислого газа быстро закисляет воду.
Как оценить содержание СО 2 и добиться того, чтобы при подаче этого газа в аквариум значения рН колебались незначительно и оставались в приемлемом и для рыб и для растений диапазоне? Тут нам не обойтись без формул и математических расчетов: гидрохимия аквариумной воды, увы, тема довольно "сухая".

Взаимосвязь между концентрациями в воде пресноводного аквариума углекислого газа, ионов водорода и гидрокарбонатных ионов в диапазоне значений рН от 5 до 8,4 отражает уравнение Хендерсона-Хассельбаха , которое применительно к нашему случаю будет иметь вид:

/ = K1 (1)

Где К1 - кажущаяся константа диссоциации угольной кислоты по первой ступени, учитывающая равновесие ионов со всем количеством углекислого газа в воде - общей аналитически определяемой углекислотой (то есть, как просто растворенными молекулами СО 2 , так и гидратированными молекулами в форме угольной кислоты - Н 2 СО 3). Для температуры 25°С эта константа равна 4.45*10 -7 . Квадратные скобки обозначают .
Преобразование формулы даёт:

(2)

Величины рН и можно узнать с помощью стандартных аквариумных тестов на рН и КН. в аквариумной воде определяет тест на карбонатную жесткость: КН-тест. Следует отметить, что слово "жесткость" в его названии - всего лишь дань традиции. К определению концентраций ионов кальция и магния он прямого отношения не имеет. На самом деле КН-тест определяет щелочность воды (подробнее об этом рассказано в ). В обычном аквариуме, если в воду не добавляли буферные растворы типа КН+ и рН+ и гумматы, основной вклад в щелочность вносят именно гидрокарбонатные ионы, поэтому КН-тест вполне подходит для наших целей. Единственное неудобство его использования связано с необходимостью пересчитывать градусы, в которых он выдает результат, в молярные концентрации (М), что, впрочем, вовсе не сложно. Для этого достаточно величину карбонатной жесткости в градусах , полученную после выполнения процедуры тестирования, разделить на 2.804. Концентрацию ионов водорода, выраженную в величине показателя рН, также надо перевести в М, для этого надо 10 возвести в степень, равную величине рН с отрицательным знаком:

Для перевода рассчитанной по формуле (2) величины из М в мг/л СО 2 надо умножить её на 44000.
Нельзя забывать, что с помощью уравнения Хендерсона-Хассельбаха можно рассчитать концентрацию общей аналитически определяемой углекислоты в аквариуме в том случае, если для стабилизации рН аквариумист не использовал специальных реактивов и содержание гуминовых и прочих органических кислот в его аквариуме умеренное (с достаточной для любителя степенью точности об этом можно судить по цвету аквариумной воды: если она не похожа на " " Амазонии, то есть бесцветна или окрашена только чуть-чуть - значит их там немного).
Те, кто на короткой ноге с компьютером, в частности с электронными таблицами Exel, могут на основе приведенной выше формулы и величины К1 составить подробные таблицы, отражающие содержание углекислоты в зависимости от карбонатной жесткости и рН. Мы же приведем тут сокращенный, но, надеемся, полезный для аквариумистов-любителей вариант такой таблицы и , позволяющий автоматически рассчитать содержание углекислого газа в воде:

Минимальные значения рН воды в аквариуме для заданной карбонатной жесткости, при которых содержание углекислого газа еще не опасно для рыб (красные цифры в столбцах ), и максимально допустимые величины рН при которых растения, не умеющие добывать СО 2 из гидрокарбонатов, хотя и медленно, но еще растут (зелёные цифры в столбцах ). Для 25°С.

Карб. жестк. KH 0,5 1 2 3 4 5 6-7 8-9 10-11 12-13
Моль/л 0,18 0,36 0,71 1,07 1,43 1,78 2,14-2,5 2,85-3,21 3,57-3,92 4,28-5,35
min рН для рыб
(25-28 мг/л СО 2)
5,8 6,1 6,4 6,6 6,7 6,8 6,9 7,0 7,1 7,2
max рН для растений
(6-7 мг/л СО 2)
6,4 6,7 7,0 7,2 7,3 7,4 7,5 7,6 7,7 7,8
"Естественный" рН
(2-3 мг/л СО 2)
6,8 7,1 7,4 7,6 7,7 7,8 7,9 8,0 8,1 8,2
рН, соответствующий парциальному давлению углекислого газа в атмосфере
(0,6 мг/л СО 2)
7,4 7,7 8,0 8,2 8,3 8,4 _ _ _ _

Если Вы решили подавать углекислый газ, то воспользуйтесь этой таблицей для определения оптимального значения рН. Выберите столбец, соответствующий карбонатной жесткости воды в Вашем аквариуме. Отрегулируйте поступление СО 2 так, чтобы величина рН попадала в интервал между красными и зелеными цифрами. К примеру, если КН в аквариуме равен 4, то интервал дупустимых значений рН составит 6,7 - 7,3 . При рН= 6,7 концентрация углекислого газа в воде будет около 28 мг/л - это почти предельная величина для рыбок и очень комфортная для растений. Если концентрацию СО 2 еще немного увеличить (значение рН при этом станет меньше, чем "красная" цифра), то рыбки могут погибнуть. При рН=7,3 рыбкам, даже самым нежным, не грозит отравиться углекислым газом, так как его содержание будет для них абсолютно безопасным: всего лишь около 7 мг/л. Этой концентрации достаточно и для выживания растений, однако бурного роста они демонстрировать не будут. А вот при значениях показателя рН из середины интервала допустимых значений, например при 6,9 (концентрация СО2 будет при этом примерно 17 мг/л), отлично будут себя чувствовать и рыбы, и растения. Поддерживать такие значения как раз и нужно стремиться. Для этого уменьшают подачу СО 2 , если величина рН стремится к нижней границе и увеличивают , если она приближается к верхней . В ходе светового дня активная реакция воды обычно постепенно изменяется, так как количество подаваемого углекислого газа редко точно соответствует потребностям растений: концентрация газа или медленно растет, или падает. Исходная настройка на середину интервала будет способствавать тому, чтобы величина рН не выскочила за его границы. Если подача СО 2 регулируется рН-контроллером, автоматически перекрывающим подачу углекислого газа при снижении рН до заранее заданного уровня, то этот уровень должен быть выставлен так, чтобы он не был ниже допустимого для рыб (красные цифры в таблице). Использование рН-контроллера наиболее эффективно и безопасно, но сам он стоит относительно дорого, а входящий в комплект рН-электрод нуждается в ежемесячной калибровке.

Организовать подачу СО 2 в аквариум можно не только с помощью баллона, наполненного СО 2 , но также и с помощью специальных таблеток, помещаемых в аквариум в особом устройстве (Производство SERA), с помощью брагогенератора, с помощью электронного устройства, вырабатывающего углекислый газ из угольного картриджа и еще одного нехитрого устройства. В простейшем варианте с целью насыщения воды углекислым газом можно в начале светового дня подливать в аквариум слабоминерализованную газированную воду (естественно без пищевых добавок!). В небольших аквариумах это может дать видимый положительный эффект.

В таблице также указаны величины рН, которые при заданной карбонатной жесткости приобретает хорошо аэрируемая вода в комнатном аквариуме ("естественный" уровень рН), в том случае если он умеренно заселен рыбами и если окисляемость воды в нём не высока. Иными словами, если подачу углекислого газа в аквариум вдруг прекратить, а аэрацию включить "на полную", то можно ожидать, что рН воды в течение нескольких часов возрастет примерно до этих величин. Как видно из таблицы, перепад от нижней границы допустимого интервала до "естественного" уровня рН примерно равен 1. Для нежных видов креветок, рыбок и растений он может оказаться слишком сильным и, если не вызовет их гибель, то угнетающее действие окажет. Автоматический контроллер рН таких перепадов не допускает, но если контроллера нет, то они вполне вероятны. Поэтому, если на ночь Вы прекращаете подавать СО 2 в аквариум и включаете аэрацию, то будьте осторожны: рН может слишко резко вырасти. Чтобы этого не допустить, не настраивайте подачу углекислого газа так, чтобы величина показателя рН была вблизи нижней ("красной") границы допустимого интервала, ведь вполне достаточно держаться его середины и тогда перепад дневных и ночных значений рН не превысит 0,5, что совершенно безопасно. Сильная аэрация ночью также далеко не всегда бывает нужна. Но только наблюдения за аквариумом позволят установить необходима ли она (во многих случаях потока воды от помпы фильтра вполне хватает для обеспечения достаточного газообмена).
Цифры в последней строке этой таблицы - это рН воды заданной карбонатной жесткости, находящейся в равновесии с парциальным давлением СО 2 в атмосфере. Видно, что они еще выше. В природных водоемах, в порогах чистых рек, где вода бурлит и отдает в атмосферу весь лишний (неравновесный) углекислый газ, такие значения рН действительно имеют место. В помещениях же и парциальное давление углекислоты в воздухе выше, чем на открытом воздухе, и процессы, идущие в грунте и фильтре аквариума, приводят к образованию углекислого газа. Это обеспечивает большее, чем в естественных условиях, содержание СО 2 в воде аквариумов и вода в них при той же карбонатной жесткости оказывается более кислой.
Теперь разберем еще один важный вопрос: при каких исходных значениях рН воды в аквариуме в него можно подавать углекислый газ? Для этого вновь обратимся к рисунку 1 и нашей полезной табличке. Вспомним, что у гольная кислота, которая образуется при растворении атмосферного углекислого газа в воде, снижает рН дистиллированной воды, КН которой близко к 0, до 5.6, а вода с карбонатной жесткостью, к примеру, равной 5 kH, находясь в равновесии с атмосферными газами, имеет активную реакцию 8.4. Легко прослеживается такая закономерность: чем выше карбонатная жесткость воды, тем она более щелочная. Как видно из рисунка, при величинах рН, больших 8,4 в воде присутствуют карбонатные ионы(CO 3 2- ), которые реагируя со свободным углекислым газом, будут переводить его полусвязанную форму (HCO 3 - ), недоступную для нежных видов аквариумных растений. Мы будем расходовать углекислый газ зря. По этой же причине не подойдут для аквариума-травника и " " грунты. Подавая в аквариум с таким грунтом углекислый газ, мы опять же будем его расходовать на образование гидрокарбонатных ионов - HCO 3 - . Кроме того, высокие значения рН в принципе угнетают жизнедеятельность многих видов аквариумных растений, но зато отлично способствуют . Если у Вас дома из-под крана идет вода с высоким значением рН и, следовательно, с высокой карбонатной жесткостью, то для аквариума-травника с дополнительной подачей углекислого газа она не подходит. Придется использовать установку обратного осмоса для снижения ее минерализации и о том, как это сделать .

Итак, вода с высоким значением рН не подходит. А с низким? Тоже не подходит, так как при этом и карбонатная жесткость также слишком низкая. Объясним почему и это плохо. Из рисунка видно, что при рН=6,4 концентрации свободного углекислого газа и гидрокарбонатного иона примерно равны и они при низкой "карбонатке" совсем невелики - это хорошо видно из таблички: КН=0,5 , рН=6,4 , а содержание СО 2 при этом всего 6 мг/л - этого достаточно лишь для выживая нежных растений. Насыщение воды углекислотой до комфортной для них концентрации 28 мг/л приведет к падению рН до 5,8. Для многих рыб такое значение показателя рН - опасный предел - ниже падать уже нельзя, иначе из-за рыбы начнут испытывать недостаток кислорода и погибать. Однако вся штука в том, что при низкой карбонатной жесткости упасть ниже этого предела до чрезвычайности просто: легкая передозировка СО 2 и все!
Таким образом, теория подсказывает нам, что диапазон значений карбонатной жесткости, наиболее подходящий для аквариума-травника с дополнительной подачей углекислого газа лежит в пределах 2-4 о КН. Это же подтверждено и практическим опытом аквариумистов. Теория и практика в этом вопросе единодушны. Действительно, при оптимальных для рыб и растений концентрациях СО 2 , (это 15 - 20 мг/л), значения показателя рН будут в пределах 6,6 - 6,7 , если больше заботиться о растениях нежели о рыбках, то можно опустить рН и до 6,4. Такая величина рН еще не вызовет отравления () у рыб, подходящих для травника с СО 2 , некомфортна для водорослей и хороша для многих аквариумных растений.

Видео 1. Пример из жизни аквариумной. Аквариум на 300 л с красными неонами, отоцинклюсами, креветками вишнями и "Аманками", там еще и апистограммы Виджета есть (в кадр не попали). Карбонатная жесткость воды в этом аквариуме ниже, чем оптимальная для подачи углекислого газа, и это ограничивает максимально допустимую концентрацию СО 2 величиной 14 мг/л. При карбонатной жесткости KH=1 я не рискую более увеличивать содержание СО2, так как это привело бы к падению показателя рН ниже значения 6,4. Красные неоны легко бы это понижение пережили, а вот в отношении других обитаталелей аквариума у меня такой уверенности нет. Но надо признать, что и 14 мг/л очень хорошо способствует росту растений, хотя "пузыряет" только нимфея, на ротале "Вьетнам" пузырей почти нет. Для того, чтобы они появились, надо еще чуть-чуть подбавить газку..., но нельзя. Будь КН=2, при рН=6,4 содержание углекислого газа составило бы уже 28 мг/л. При такой концентрации роталы пузыряли бы вовсю. СО 2 в этом аквариуме растворяется при помощи флиппера от Деннерле () - "лесенки" , которая работает очень эффективно.

Какое оборудование нужно для подачи углекислого газа в аквариум? Тут лучше всего обратиться к практическому опыту наших форумчан. Читайте:

* Классические пропорции аквариума таковы: ширина равна или не более чем на четверть меньше высоты. Высота не превышает 50 см. Длинна же, в принципе, не ограничена. В качестве примера можно привести аквариум длинной 1 м, шириной 40 см и высотой 50 см. Биологическое равновесие в таком комнатном водоёме установится относительно легко. О конкретных моделях аквариумов с правильными пропорциями можно прочитать .

** Под равновесием с атмосферным воздухом мы понимаем такое состояние воды, когда концентрации (напряжения) растворенных в ней газов соответствуют парциальным давлениям этих газов в атмосфере. Если давление какого-либо газа уменьшится, то молекулы этого газа начнут покидать воду, до тех пор пока снова не будет достигнута равновесная концентрация. И наоборот, если парциальное давление газа над водой увеличится, то большее количество этого газа растворится в воде.


. Это СО2-система для аквариумов объемом до 120 л. В комплекте: реакционный баллон для производства СО2 с контролируемым гелем, стартовая капсула, термоконтейнер, реактор СО2 Dennerle Mini-Flipper, СО2-шланг, счетчик пузырьков, комплект удобрений Dennerle PerfectPlant SystemSet.

, двуокись углерода , свойства диоксида углерода , получение диоксида углерода

Он не пригоден для поддержания жизни. Однако именно им «питаются» растения, превращая его в органические вещества. К тому же он является своеобразным «одеялом» Земли. Если этот газ вдруг исчезнет из атмосферы, на Земле станет гораздо прохладнее, а дожди практически исчезнут.

«Одеяло Земли»

(двуокись углерода, диоксид углерода, CO 2) формируется при соединении двух элементов: углерода и кислорода. Он образуется в процессе сжигания угля или углеводородных соединений, при ферментации жидкостей, а также как продукт дыхания людей и животных. В небольших количествах он содержится и в атмосфере, откуда он ассимилируется растениями, которые, в свою очередь, производят кислород.

Углекислый газ бесцветен и тяжелее воздуха. Замерзает при температуре −78.5°C с образованием снега, состоящего из двуокиси углерода. В виде водного раствора он образует угольную кислоту, однако она не обладает достаточной стабильностью для того, чтобы ее можно было легко изолировать.

Углекислый газ — это «одеяло» Земли. Он легко пропускает ультрафиолетовые лучи, которые обогревают нашу планету, и отражает инфракрасные, излучаемые с ее поверхности в космическое пространство. И если вдруг углекислый газ исчезнет из атмосферы, то это в первую очередь скажется на климате. На Земле станет гораздо прохладнее, дожди будут выпадать очень редко. К чему это в конце концов приведет, догадаться нетрудно.

Правда, такая катастрофа нам пока еще не грозит. Скорее даже, наоборот. Сжигание органических веществ: нефти, угля, природного газа, древесины - постепенно увеличивает содержание углекислого газа в атмосфере. Значит, со временем надо ждать значительного потепления и увлажнения земного климата. Кстати, старожилы считают, что уже сейчас заметно теплее, чем было во времена их молодости...

Двуокись углерода выпускается жидкая низкотемпературная, жидкая высокого давления и газообразная . Ее получают из отбросных газов производств аммиака, спиртов, а также на базе специального сжигания топлива и других производств. Газообразная двуокись углерода - газ без цвета и запаха при температуре 20°С и давлении 101,3 кПа (760 мм рт. ст.), плотность - 1,839 кг/м 3 . Жидкая двуокись углерода - просто бесцветная жидкость без запаха.

Нетоксичен и невзрывоопасен. При концентрациях более 5% (92 г/м 3) двуокись углерода оказывает вредное влияние на здоровье человека — она тяжелее воздуха и может накапливаться в слабо проветриваемых помещениях у пола. При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья.

Получение двуокиси углерода

В промышленности углекислый газ получают из печных газов , из продуктов разложения природных карбонатов (известняк, доломит). Смесь газов промывают раствором карбоната калия, который поглощает углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании разлагается, высвобождая углекислоту. При промышленном производстве газ закачивается в баллоны.

В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами , например мрамора с соляной кислотой.

«Сухой лед» и прочие полезные свойства диоксида углерода

В повседневной практике углекислый газ используется достаточно широко. Например, газированная вода с добавками ароматных эссенций - прекрасный освежающий напиток. В пищевой промышленности диоксид углерода используется и как консервант — он обозначается на упаковке под кодом Е290 , а также в качестве разрыхлителя теста.

Углекислотными огнетушителями пользуются при пожарах. Биохимики нашли, что удобрение... воздуха углекислым газом весьма эффективное средство для увеличения урожайности различных культур. Пожалуй, такое удобрение имеет единственный, но существенный недостаток: применять его можно только в оранжереях. На заводах, производящих диоксид углерода, сжиженный газ расфасовывают в стальные баллоны и отправляют потребителям. Если открыть вентиль, то из отверстия с шипением вырывается... снег. Что за чудо?

Все объясняется просто. Работа, затраченная на сжатие газа, оказывается значительно меньше той, которая требуется на его расширение. И чтобы как-то компенсировать возникающий дефицит, углекислый газ резко охлаждается, превращаясь в «сухой лед» . Он широко используется для сохранения пищевых продуктов и перед обычным льдом имеет значительные преимущества: во-первых, «хладопроизводительность» его вдвое выше на единицу веса; во-вторых, он испаряется без остатка.

Углекислый газ используется в качестве активной среды при сварке проволокой , так как при температуре дуги углекислота разлагается на угарный газ СО и кислород, который, в свою очередь, и входит во взаимодействие с жидким металлом, окисляя его.

Углекислота в баллончиках применяется в пневматическом оружии и в качестве источника энергии для двигателей в авиамоделировании.

Вещество с химическое формулой СО2 и молекулярной массой 44,011 г/моль, которое может существовать в четырёх фазовых состояниях - газообразном, жидком, твёрдом и сверхкритическом.

Газообразное состояние СО2 носит общеупотребительное название «углекислый газ». При атмосферном давлении это бесцветный газ без цвета и запаха, при температуре +20 ?С плотностью 1,839 кг/м? (в 1,52 раза тяжелее воздуха), хорошо растворяется в воде (0,88 объёма в 1 объёме воды), частично взаимодействуя в ней с образованием угольной кислоты. Входит в состав атмосферы в среднем 0,035% по объёму. При резком охлаждении за счёт расширения (детандирование) СО2 способен десублимироваться - переходить сразу в твёрдое состояние, минуя жидкую фазу.

Газообразный диоксид углерода ранее нередко хранили в стационарных газгольдерах. В настоящее время такой способ хранения не применяется; углекислый газ в необходимом количестве получают непосредственно на месте - путём испарения жидкой углекислоты в газификаторе. Далее газ можно легко перекачать по любому газопроводу под давлением 2-6 атмосфер.

Жидкое состояние СО2 носит техническое название «жидкая углекислота » или просто «углекислота». Это бесцветная жидкость без запаха, средней плотностью 771 кг/м3, которая существует только под давлением 3 482…519 кПа при температуре 0…-56,5 град.С («низкотемпературная углекислота»), либо под давлением 3 482…7 383 кПа при температуре 0…+31,0 град.С («углекислота высокого давления»). Углекислоту высокого давления получают чаще всего путём сжатия углекислого газа до давления конденсации, при одновременном охлаждении водой. Низкотемпературную углекислоту, являющейся основной формой диоксида углерода для промышленного потребления, чаще всего получают по циклу высокого давления путём трехступенчатого охлаждения и дросселирования в специальных установках.

При небольшом и среднем потреблении углекислоты (высокого давления),т для её хранения и транспортировки используют разнообразные стальные баллоны (от баллончиков для бытовых сифонов до ёмкостей вместимостью 55 л). Самым распространенным является 40 л баллон с рабочим давление 15 000 кПа, вмещающим 24 кг углекислоты. За стальными баллонами не требуется дополнительный уход, углекислота сохраняется без потерь в течение длительного времени. Баллоны с углекислотой высокого давления окрашивают в чёрный цвет.

При значительном потреблении, для хранения и транспортировки низкотемпературной жидкой углекислоты используют изотермические цистерны самой разнообразной вместимости, оснащённые служебными холодильными установками. Существуют накопительные (стационарные) вертикальные и горизонтальные цистерны вместимостью от 3 до 250 т, транспортируемые цистерны вместимостью от 3 до 18 т. Цистерны вертикального исполнения требуют строительства фундамента и используются преимущественно в условиях ограниченного пространства для размещения. Применение горизонтальных цистерн позволяет снизить затраты на фундаменты, особенно при наличии общей рамы с углекислотной станцией. Цистерны состоят из внутреннего сварного сосуда, изготовленного из низкотемпературной стали и имеющего пенополиуретановую или вакуумную теплоизоляцию; наружного кожуха из пластика, оцинкованной или нержавеющей стали; трубопроводов, арматуры и приборов контроля. Внутренняя и наружная поверхности сварного сосуда подвергаются специальной обработке, благодаря чему снижена до вероятность поверхностной коррозии металла. В дорогих импортных моделях наружный герметичный кожух выполнен из алюминия. Использование цистерн обеспечивает заправку и слив жидкой углекислоты; хранение и транспортировку без потерь продукта; визуальный контроль массы и рабочего давления при заправке, в процессе хранения и выдачи. Все типы цистерн оснащены многоуровневой системой безопасности. Предохранительные клапаны позволяют производить проверку и ремонт без остановки и опорожнения цистерны.

При мгновенном снижении давления до атмосферного, происходящем при впрыске в специальную расширительную камеру (дросселировании), жидкий диоксид углерода мгновенно превращается в газ и тончайшую снегообразную массу, которую прессуют и получают диоксид углерода в твёрдом состоянии, который носит общеупотребительное название «сухой лёд». При атмосферном давлении это белая стекловидная масса плотностью 1 562 кг/м?, с температурой -78,5 ?С, которая на открытом воздухе сублимируется - постепенно испаряется, минуя жидкое состояние. Сухой лёд может быть также получен непосредственно на установках высокого давления, применяемых для получения низкотемпературной углекислоты, из газовых смесей, содержащих СО2 в количестве не менее 75-80%. Объёмная холодопроизводительность сухого льда почти в 3 раза больше, чем у водяного льда, и составляет 573,6 кДж/кг.

Твёрдый диоксид углерода обычно выпускают в брикетах размером 200?100?20-70 мм, в гранулах диаметром 3, 6, 10, 12 и 16 мм, редко в виде тончайшего порошка («сухой снег»). Брикеты, гранулы и снег хранят не более 1-2 суток в стационарных заглублённых хранилищах шахтного типа, разбитых на небольшие отсеки; перевозят в специальных изотермических контейнерах с предохранительным клапаном. Используются контейнеры разных производителей вместимостью от 40 до 300 кг и более. Потери на сублимацию составляют, в зависимости от температуры окружающего воздуха 4-6% и более в сутки.

При давлении свыше 7,39 кПа и температуре более 31,6 град.С диоксид углерода находится в так называемом сверхкритическом состоянии, при котором его плотность как у жидкости, а вязкость и поверхностное натяжение как у газа. Эта необычная физическая субстанция (флюид) является отличным неполярным растворителем. Сверхкритический CO2 способен полностью или выборочно экстрагировать любые неполярные составляющие с молекулярной массой менее 2 000 дальтон: терпеновые соединения, воски, пигменты, высокомолекулярные насыщенные и ненасыщенные жирные кислоты, алкалоиды, жирорастворимые витамины и фитостерины. Нерастворимыми веществами для сверхкритического CO2 являются целлюлоза, крахмал, органические и неорганические полимеры с высоким молекулярным весом, сахара, гликозидные вещества, протеины, металлы и соли многих металлов. Обладая подобными свойствами, сверхкритический диоксид углерода всё шире применяется в процессах экстракции, фракционирования и импрегнации органических и неорганических веществ. Он является также перспективным рабочим телом для современных тепловых машин.

  • Удельный вес . Удельный вес углекислоты зависит от давления, температуры и агрегатного состояния, в котором она находится.
  • Критическая температура углекислоты +31 град. Удельный вес углекислого газа при 0 град и давлении 760 мм рт.ст. равен 1, 9769 кг/м3.
  • Молекулярный вес углекислого газа 44,0. Относительный вес углекислого газа по сравнению с воздухом составляет 1,529.
  • Жидкая углекислота при температурах выше 0 град. значительно легче воды, и ее можно хранить только под давлением.
  • Удельный вес твердой углекислоты зависит от метода ее получения. Жидкая углекислота при замораживании превращается в сухой лед, представляющий прозрачное, стеклообразное твердое тело. В этом случае твердая углекислота имеет наибольшую плотность (при нормальном давлении в сосуде, охлаждаемом до минус 79 град., плотность равна 1,56). Промышленная твердая углекислота имеет белый цвет, по твердости близка к мелу,
  • ее удельный вес колеблется в зависимости от способа получения в пределах 1,3 - 1,6.
  • Уравнение состояния. Связь между объемом, температурой и давлением углекислого газа выражается уравнением
  • V= R T/p - A, где
  • V - объем, м3/кг;
  • R - газовая постоянная 848/44 = 19,273;
  • Т - температура, К град.;
  • р давление, кг/м2;
  • А - дополнительный член, характеризующий отклонение от уравнения состояния для идеального газа. Он выражается зависимостью А =(0, 0825 + (1,225)10-7 р)/(Т/100)10/3.
  • Тройная точка углекислоты. Тройная точка характеризуется давлением 5,28 ата (кг/см2) и температурой минус 56,6 град.
  • Углекислота может находиться во всех трех состояниях (твердом, жидком и газообразном) только в тройной точке. При давлениях ниже 5,28 ата (кг/см2) (или при температуре ниже минус 56,6 град.) углекислота может находиться только в твердом и газообразном состояниях.
  • В парожидкостной области, т.е. выше тройной точки, справедливы следующие соотношения
  • i" x + i"" у = i,
  • x + у = 1, где,
  • x и у - доля вещества в жидком и парообразном виде;
  • i" - энтальпия жидкости;
  • i"" - энтальпия пара;
  • i - энтальпия смеси.
  • По этим величинам легко определить величины x и у. Соответственно для области ниже тройной точки будут действительны следующие уравнения:
  • i"" у + i"" z = i,
  • у + z = 1, где,
  • i"" - энтальпия твердой углекислоты;
  • z - доля вещества в твердом состоянии.
  • В тройной точке для трех фаз имеются также только два уравнения
  • i" x + i"" у + i""" z = i,
  • x + у + z = 1.
  • Зная значения i," i"," i""" для тройной точки и используя приведенные уравнения можно определить энтальпию смеси для любой точки.
  • Теплоемкость. Теплоемкость углекислого газа при температуре 20 град. и 1 ата составляет
  • Ср = 0,202 и Сv = 0,156 ккал/кг*град. Показатель адиабаты k =1,30.
  • Теплоемкость жидкой углекислоты в диапазоне температур от -50 до +20 град. характеризуется следующими значениями, ккал/кг*град. :
  • Град.С -50 -40 -30 -20 -10 0 10 20
  • Ср, 0,47 0,49 0,515 0,514 0,517 0,6 0,64 0,68
  • Точка плавления. Плавление твердой углекислоты происходит при температурах и давлениях, соответствующих тройной точке (t = -56,6 град. и р = 5,28 ата) или находящихся выше ее.
  • Ниже тройной точки твердая углекислота сублимирует. Температура сублимации является функцией давления: при нормальном давлении она равна -78,5 град., в вакууме она может быть -100 град. и ниже.
  • Энтальпия. Энтальпию пара углекислоты в широком диапазоне температур и давлений определяют по уравнению Планка и Куприянова.
  • i = 169,34 + (0,1955 + 0,000115t)t - 8,3724 p(1 + 0,007424p)/0,01T(10/3), где
  • I - ккал/кг, р - кг/см2, Т - град.К, t - град.С.
  • Энтальпию жидкой углекислоты в любой точке можно легко определить путем вычитания из энтальпии насыщенного пара величины скрытой теплоты парообразования. Точно так же, вычитая скрытую теплоту сублимации, можно определить энтальпию твердой углекислоты.
  • Теплопроводность . Теплопроводность углекислого газа при 0 град. составляет 0,012 ккал/м*час*град.С, а при температуре -78 град. она понижается до 0,008 ккал/м*час*град.С.
  • Данные о теплопроводности углекислоты в 10 4 ст. ккал/м*час*град.С при плюсовых температурах приведены в таблице.
  • Давление, кг/см2 10 град. 20 град. 30 град. 40 град.
  • Газообразная углекислота
  • 1 130 136 142 148
  • 20 - 147 152 157
  • 40 - 173 174 175
  • 60 - - 228 213
  • 80 - - - 325
  • Жидкая углекислота
  • 50 848 - - -
  • 60 870 753 - -
  • 70 888 776 - -
  • 80 906 795 670
    Теплопроводность твердой углекислоты может быть вычислена по формуле:
    236,5/Т1,216 ст., ккал/м*час*град.С.
  • Коэффициент теплового расширения. Объемный коэффициент расширения а твердой углекислоты рассчитывают в зависимости от изменения удельного веса и температуры. Линейный коэффициент расширения определяют по выражению b = a/3. В диапазоне температур от -56 до -80 град. коэффициенты имеют следующие значения: а *10*5ст. = 185,5-117,0, b* 10* 5 cт. = 61,8-39,0.
  • Вязкость. Вязкость углекислоты 10 *6ст. в зависимости от давления и температуры (кг*сек/м2)
  • Давление, ата -15 град. 0 град. 20 град. 40 град.
  • 5 1,38 1,42 1,49 1,60
  • 30 12,04 1,63 1,61 1,72
  • 75 13,13 12,01 8,32 2,30
  • Диэлектрическая постоянная. Диэлектрическая постоянная жидкой углекислоты при 50 - 125 ати, находится в пределах 1,6016 - 1,6425.
  • Диэлектрическая постоянная углекислого газа при 15 град. и давлении 9,4 - 39 ати 1,009 - 1,060.
  • Влагосодержание углекислого газа. Содержание водяных паров во влажном углекислом газе определяют с помощью уравнения,
  • Х = 18/44 * p’/p - p’ = 0,41 p’/p - p’ кг/кг, где
  • p’ - парциальное давление водяных паров при 100%-м насыщении;
  • р - общее давление паро-газовой смеси.
  • Растворимость углекислоты в воде. Растворимость газов измеряется объемами газа, приведенными к нормальным условиям (0 град, С и 760 мм рт. ст.) на объем растворителя.
  • Растворимость углекислоты в воде при умеренных температурах и давлениях до 4 - 5 ати подчиняется закону Генри, который выражается уравнением
  • Р = Н Х, где
  • Р - парциальное давление газа над жидкостью;
  • Х - количество газа в молях;
  • Н - коэффициент Генри.
  • Жидкая углекислота как растворитель. Растворимость смазочного масла в жидкой углекислоте при температуре -20град. до +25 град. составляет 0,388 г в100 СО2,
  • и увеличивается до 0,718 г в 100 г СО2 при температуре +25 град. С.
  • Растворимость воды в жидкой углекислоте в диапазоне температур от -5,8 до +22,9 град. составляет не более 0,05% по весу.

Техника безопасности

По степени воздействия на организм человека газообразный диоксид углерода относится к 4-му классу опасности по ГОСТу 12.1.007-76 «Вредные вещества. Классификация и общие требования безопасности». Предельно допустимая концентрация в воздухе рабочей зоны не установлена, при оценке этой концентрации следует ориентироваться на нормативы для угольных и озокеритовых шахт, установленные в пределах 0,5%.

При применении сухого льда, при использовании сосудов с жидкой низкотемпературной углекислотой должно обеспечиваться соблюдение мер безопасности, предупреждающих обморожение рук и других участков тела работника.

Загрузка...