domvpavlino.ru

Управление двигателем сверлильного станочка. Сверлильный станок для печатных плат на базе механизмов дисковых приводов. Назначение, устройство и принцип работы сверлильных станков

Разработка электронной схемы для управления электродвигателями постоянного тока в оптимизированном станке с ЧПУ.

Цель работы: оптимизация изготовления печатных плат с помощью оригинальной конструкции сверлильного станка с ЧПУ.

При изготовлении печатных плат в условиях любительской или учебной лаборатории имеется проблема быстрого сверления отверстии под ножки деталей, по рисунку предварительно спроектированной монтажной схемы. Проблема заключается в большой частоте и малом диаметре отверстий (допустим под микросхему), что делает неудобным и опасным (имеется вероятность скола сверла) проводить процесс сверления вручную.

В процессе работы, используя теоретический метод исследования, мы рассмотрели устройства, предлагаемые другими авторами для решения данной проблемы. Такими устройствами являются всевозможные станки с числовым программным управлением, которые высверливают отверстия на заготовке по предварительно внесенному в программу управления рисунку. Мы изучили основные отличительные особенности данных устройств и выявил их плюсы и минусы. Данные станки работают под управлением различных программ и имеют довольно-таки разное строение, но все же имеется одна черта, которая объединяет все предлагаемые конструкции. Этой чертой является использование в станках шаговых двигателей. Вариант самодельного станка с ЧПУ с применением шаговых двигателей показан на рисунке:

Это понижает плавность работы станка, так как шаговые двигатели работают рывками. Так же применение шаговых двигателей увеличивает стоимость станка, так как стоимость мощных шаговых двигателей начинается от 1500 рублей, а применять их нужно три штуки, либо, при условии применения двигателей меньшей мощности ставить их по два на каждую ось перемещения. Но замена шаговых двигателей на электродвигатели постоянного тока потребовала изменения драйверов управления. Принципиальная схема драйверов управления шаговыми двигателями показана на рисунке:

Электронная часть станка была изменена практически полностью.

Используя практический метод исследования, мы разработали электронную схему, где переключение направления вращения электродвигателей осуществляется с помощью магнитных реле, а сами реле управляются транзисторными ключами. Принципиальная схема драйверов управления электродвигателями постоянного тока показана на рисунке:

Схема работает следующим образом: разработанная в процессе проектирования станка программа управления выдает на выводы LPT порта логические уровни «0» и «1». К соответствующим выводам порта подключены базы транзисторных ключей VT1 – VT7.

Транзисторы VT1 и VT2 управляют электромагнитными реле К1 и К2, к контактом которых подключен двигатель поперечной подачи инструмента в горизонтальной плоскости. С помощью переключения электромагнитных реле осуществляется коммутация питающего напряжения (12В) с контактами электродвигателя М1. При включении реле К1 двигатель М1 начинает крутиться вправо, при включении К2 – влево. Когда оба реле выключены - двигатель находится в положении покоя, так как на оба его контакта подается отрицательный потенциал.

Управление двигателями продольной подачи в горизонтальной плоскости и подъёмом и опусканием инструмента в вертикальной плоскости осуществляется по тому же принципу. Двигатель продольной подачи М2 управляется транзисторами VT3 и VT4 и реле К3, К4. Двигатель подъема и опускания инструмента в вертикальной плоскости (М3) управляется транзисторами VT5 иVT6 и реле К5, К6.

Включение основного рабочего двигателя М4 осуществляется с помощью транзисторного ключа VT7, коллекторной нагрузкой которого, является двигатель.

Используя экспериментальный метод исследования, был собран малогабаритный сверлильный станок с ЧПУ с применением электродвигателей постоянного тока, управляемых с помощью разработанной схемы. Схема управления была собрана на макетной плате. Внешний вид станка с применением электродвигателей постоянного тока показан на рисунке:

Станок использовался в лаборатории объединения «Радиотехник» для изготовления печатных плат для выполнения плановых практических работ, таких как: усилитель постоянного тока, генератор звуковой частоты, мультивибратор и другие.

Авторы: Сорокин Максим, 9 класс (СОШ №30 города Костромы), Фёдоров Дмитрий, 10 класс (СОШ №38 города Костромы)
Руководитель: Шестаков Александр Александрович, педагог дополнительного образования ЦДТ «Содружество», педагог-новатор Российской научно-социальной программы «Шаг в будущее»

Центр детского творчества города Костромы «Содружество»
Объединение «Радиотехник»

К сверлильным станкам общего назначения относятся вертикально-сверлильные и радиально-сверлильные. В крупносерийном и массовом производстве применяются агрегатные и многошпиндельные сверлильные станки. Расточные станки предназначены для обработки крупных деталей и имеют, обычно, горизонтальное исполнение.

Привод главного движения: реверсивный асинхронный коротко-замкнутый двигатель, реверсивный асинхронный двигатель с переключением полюсов, система Г-Д с ЭМУ (у тяжелых станков). Общий диапазон регулирования: вертикально-сверлильных станков (2-12) : 1, радиально-сверлильных станков (20-70) : 1.

Привод подачи: механический от цепи главного движения, гидропривод (у агрегатных станков). Общий диапазон регулирования: вертикально-сверлильных станков 1: (2-24), радиально-сверлильных станков 1: (3-40).

насоса охлаждения, насоса гидросистемы, подъема и опускания рукава (у радиально-сверлильных станков), зажима колонны (у радиально-сверлильных станков), перемещения суппорта (у тяжелых радиально-сверлильных станков), поворота рукава (у тяжелых радиально-сверлильных станков), поворота стола (у агрегатных станков).

Специальные электромеханические устройства и блокировки : электромагниты управления гидросистемой, автоматизация цикла посредством путевых переключателей (у агрегатных станков), автоматическое управление фиксацией стола (у агрегатных станков), автоматическая установка координат посредством программного управления (у координатно-сверлильных станков и координатных столов).

Двигатель привода шпинделя у сверлильных и радиально-сверлильных станков устанавливается обычно сверху на станине или суппорте так, что шпиндель и вал электродвигателя параллельны.

Стремление к сокращению числа промежуточных передач в отдельных случаях приводит к непосредственной связи вала электродвигателя со сверлильным шпинделем. Это возможно, например, при использовании сверл малых диаметров и широко применяется на станках часовой промышленности.

У агрегатных сверлильных станков широко используют самодействующие головки с подачей, осуществляемой от кулачка, винта или рейки, а чаще с гидроприводом и электрогидравлическим управлением. У многошпиндельных сверлильных станков часто применяют отдельные электродвигатели для каждого шпинделя, а также самодействующие электрогидравлические головки.

Многодвигательный привод широко распространен на радиально-сверлильных станках, где привод шпинделя, подъем и опускание рукава, зажим колонн, а иногда поворот рукава и перемещение сверлильного суппорта осуществляют отдельные электродвигатели. Зажим колонны у радиально-сверлильных станков производят несколькими способами, например с помощью разрезного кольца, которое стягивается посредством дифференциального винта, вращаемого электродвигателем, или тормозной колодки. Применяется также зажим электромагнитом с освобождением посредством противодействующей пружины. Имеются также устройства, где зажим колонны осуществляет пружина, а освобождение - электромагнит.

Контроль силы зажима производится посредством реле тока или путевого переключателя, на который воздействует элемент устройства, смещающийся под действием возрастающей силы.

Для сверлильных станков автоматическое уменьшение подачи при выходе сверла имеет большое значение для предотвращения поломки сверла при выходе. Для этого использовали различные средства автоматизации, например контроль скорости шпинделя, крутящего момента, силы подачи, тока, потребляемого электродвигателем.

У многошпиндельных сверлильных станков, предназначенных для одновременного сверления многих отверстий малых и очень малых диаметров, иногда применяют блокировки, останавливающие станок в случае поломки одного из сверл. Для этого сверла изолируют от станины станка, при поломке сверла разрывается цепь проходящего по нему тока. Такие устройства получили некоторое применение на станках часовой промышленности.

Особую задачу представляет собой автоматизация процесса глубокого сверления отверстий малого диаметра (до 10 мм). При таком сверлении применяют сверла со спиральной канавкой, которая забивается стружкой, отчего резко увеличивается момент сопротивления при вращении сверла. Поэтому сверление производят с периодическими отводами сверла, при которых стружка удаляется охлаждающей жидкостью. Управление осуществляли посредством реле времени, которое, независимо от накопления стружки, подавало сигнал на отвод сверла.

В современных сверлильных станках для этих целей используют индуктивные измерительные преобразователи (датчики) момента. Такое автоматическое управление является более точным, так как отражает заполнение канавки стружкой. Оно дает возможность повысить скорость сверления и предотвратить поломку сверла.

Привод главного движения : асинхронный короткозамкнутый двигатель, асинхронный двигатель с переключением полюсов, система Г-Д с ЭМУ, тиристорный привод с двигателем постоянного тока. Торможение: механическое с применением фрикционной муфты, посредством электромагнита, противо-включением, динамическое и с рекуперацией (при постоянном токе). Общий диапазон регулирования до 150: 1.

Привод подачи: механический - от цепи главного движения, система ЭМУ - Д у современных станков, тиристорный привод с двигателем постоянного тока. Общий диапазон регулирования до 1: 2000 и более.

Вспомогательные приводы применяют для: насоса охлаждения, ускоренного перемещения расточного шпинделя, насоса смазки, переключения зубчатых колес коробки скоростей, перемещения и зажима стойки, перемещения движка регулировочного реостата.

Специальные электромеханические устройства и блокировки: автоматизация управления главным приводом при переключении зубчатых колес коробки скоростей, устройства для освещения микроскопов, устройства для отсчета координат с индуктивным преобразователем.

Для привода подач, установочных и быстрых перемещений передней и задней стойки, суппорта, бабки и стола применяют двигатели постоянного тока. Каждый из них может поочередно подключаться к одному из двух ЭМУ, причем один ЭМУ обеспечивает рабочие подачи, а другой - установочные ускоренные перемещения. Таким образом, во время рабочей подачи одного элемента можно производить установочные перемещения других узлов станка. Широкий диапазон электрического регулирования такого привода позволяет полностью отказаться от применения коробок подач. Управление станком чрезвычайно облегчается вследствие замены штурвалов, рукояток и маховичков элементами электрического управления.

Вот уже более года я являюсь счастливым обладателем 3D принтера Prusa i4. Если честно, я сегодня не представляю, как раньше справлялся без него. Кстати, это подарок моей любимой супруги!
Но оставим лирику. Сегодня я представляю Вашему вниманию свой вариант сверлильного станка для печатных плат. Всем радиолюбителям хорошо известно, что сверлить плату, держа мотор с патроном в руке дело, как минимум хлопотное. Тут не годятся твердоспланые свёрла из-за их хрупкости. Чуть перекосил и сверло пополам. А обычные свёрла быстро тупятся. Да и ещё входное отверстие получается не ровное, а выходное рваное. Если дорожки на плате тонкие это совершенно не допустимо. От этих проблем избавит-сверлильный станок.
На просторах интернета имеется много готовых проектов. Но все они казались мне (да простят меня их авторы) примитивными игрушками. Один из достойных кандидатов для повторения я нашёл вот здесь: https://www.youtube.com/watch?v=xlxfG9IEH7Y&t=34s .
Однако царапала эстетика. Ведь на принтере можно напечатать всё, что угодно. Так почему бы не сделать это красиво? Я плотно засел Solid Works, а потом и за печать. Ошибки исправлял по ходу дела. И так это третий вариант:

Я разработал несколько вариантов кожухов для различных двигателей. Сразу скажу, что не все движки, что продают на АллиЭкспресс здесь годятся. Вот этот например не пойдёт:

А вот это то,что надо. Движок- 775. Надёжная ось. Передний подшипник. Отсутствие биений.Мощность.

Нужно уточнить у продавца установлен ли подшипник? Двигатели идут в разных исполнениях, в том числе и на втулках.

Верхняя и нижняя крышка легко накручивается на несущий кронштейн и надёжно фиксируют мотор внутри.

Подвижная часть осевого кронштейна собрана на двух продольных подшипниках, которые обеспечивают лёгкость скольжения по осям и закрыты сверху и снизу декоративными накладками:

Кстати на тягах тоже стоят маленькие подшипники.

Станина алюминиевая. В новом очередном варианте станину сделал наборную из оргстекла. Выглядит лучше на мой взгляд. Резал на лазерном станке. Пластик ABS. Печатал слоем 0.1мм. После печати все детали обработаны нулёвкой и тетрагидрофураном.
Ну а это станочек в работе:
https://drive.google.com/file/d/1eVnMHNLl5y7OgC58LfgzOF5cP6kgi_jb/view?usp=sharing
Проект продолжает жить. В следущей модификации я хочу отказаться от рычага. Заменю его шаговым двигателем и беспроводной педалью для управления станком. Всех парней с наступающим Праздником!

Надоело, в общем то, сверлить платы ручной сверлилкой поэтому решено было изготовить небольшой сверлильный станок исключительно для печатных плат. Конструкций в интернете полным полно, на любой вкус.Посмотрев несколько описаний подобных сверлилок, пришел к решению повторить сверлильный станок на основе элементов от ненужного, старого CD ROM’a. Разумеется, для изготовления этого сверлильного станочка придется использовать материалы те, что находятся под рукой.

От старого CD ROM’a для изготовления сверлильного станочка берем только стальную рамку со смонтированными на ней двумя направляющими и каретку, которая передвигается по направляющим. На фото ниже все это хорошо видно.

На подвижной каретке будет укреплен электродвигатель сверлилки. Для крепления электродвигателя к каретке был изготовлен Г-образный кронштейн из полоски стали толщиной 2 мм.

В кронштейне сверлим отверствия для вала двигателя и винтов его крепления.

В первом варианте для сверлильного станочка был выбран электродвигатель типа ДП25-1,6-3-27 с напряжением питания 27 В и мощностью 1,6 Вт. Вот он на фото:

Как показала практика, этот двигатель слабоват для выполнения сверлильных работ. Мощности его (1,6 Вт) недостаточно- при малейшей нагрузке двигатель просто останавливается.

Вот так выглядел первый вариант сверлилки с двигателем ДП25-1,6-3-27 на стадии изготовления:

Поэтому пришлось искать другой электродвигатель-помощнее. А изготовление сверлилки застопорилось…

Продолжение процесса изготовления сверлильного станочка.

Через некоторое время попал в руки электродвигатель от разобранного неисправного струйного принтера Canon:

На двигателе нет маркировки, поэтому его мощность неизвестна. На вал двигателя насажена стальная шестерня. Вал этого двигателя имеет диаметр 2,3 мм. После снятия шестерни, на вал двигателя был надет цанговый патрончик и сделано несколько пробных сверлений сверлом диаметром 1 мм. Результат был обнадеживающим- «принтерный» двигатель был явно мощнее двигателя ДП25-1,6-3-27 и свободно сверлил текстолит толщиной 3мм при напряжении питания 12 В.

Поэтому изготовление сверлильного станочка было продолжено…

Крепим электродвигатель с помощью Г-образного кронштейна к подвижной каретке:


Основание сверлильного станочка изготовлено из стеклотекстолита толщиной 10мм.

На фото – заготовки для основания станочка:

Для того, чтобы сверлильный станочек не ёрзал по столу во время сверления, на нижней стороне установлены резиновые ножки:

Конструкция сверлильного станочка –консольного типа, то есть несущая рамка с двигателем закреплена на двух консольных кронштейнах, на некотором расстоянии от основания. Это сделано для того, чтобы обеспечить сверление достаточно больших печатных плат. Конструкция ясна из эскиза:



Рабочая зона станочка, виден белый светодиод подсветки:

Вот так реализована подсветка рабочей зоны. На фото наблюдается избыточная яркость освещения. На самом деле-это ложное впечатление (это бликует камера)- в реальности все выглядит очень хорошо:

Консольная конструкция позволяет сверлить платы шириной не менее 130 мм и неограниченной (в разумных пределах) длиной.

Замер размеров рабочей зоны:

На фото видно, что расстояние от упора в основание сверлильного станочка до оси сверла составляет 68мм, что и обеспечивает ширину обрабатываемых печатных плат не менее 130мм.

Для подачи сверла вниз при сверлении имеется нажимной рычаг-виден на фото:

Для удержания сверла над печатной платой перед процессом сверления, и возврата его в исходное положение после сверления, служит возвратная пружина, которая надета на одну из направляющих:

Система автоматической регулировки оборотов двигателя в зависимости от нагрузки.

Для удобства пользования сверлильным станочком было собрано и испытано два варианта регуляторов частоты вращения двигателя. В первоначальном варианте сверлилки с электродвигателем ДП25-1,6-3-27 регулятор был собран по схеме из журнала Радио №7 за 2010 год:

Этот регулятор работать как положено не захотел, поэтому был безжалостно выброшен в мусор.

Для второго варианта сверлильного станка, на основе электродвигателя от струйного принтера Canon, на сайте котов-радиолюбителей была найдена еще одна схема регулятора частоты вращения вала электродвигателя:

Данный регулятор обеспечивает работу электродвигателя в двух режимах:

  1. При отсутствии нагрузки или, другими словами, когда сверло не касается печатной платы, вал электродвигателя вращается с пониженными оборотами (100-200 об/мин).
  2. При увеличении нагрузки на двигатель регулятор увеличивает обороты до максимальных, тем самым обеспечивая нормальный процесс сверления.

Регулятор частоты вращения электродвигателя собранный по этой схеме заработал сразу без настройки. В моем случае частота вращения на холостом ходу составила около 200 об/мин. В момент касания сверла печатной платы-обороты увеличиваются до максимальных. После завершения сверления, этот регулятор снижает обороты двигателя до минимальных.

Регулятор оборотов электродвигателя был собран на небольшой печатной платке:

Транзистор КТ815В снабжен небольшим радиатором.

Плата регулятора установлена в задней части сверлильного станочка:

Здесь резистор R3 номиналом 3,9 Ом был заменен на МЛТ-2 номиналом 5,6 Ом.

Испытания сверлильного станка прошли успешно. Система автоматической регулировки частоты вращения вала электродвигателя работает четко и безотказно.

Небольшой видеоролик о работе сверлильного станка.

Загрузка...