domvpavlino.ru

Установка фрез. Закрепление фрез на станке Крепление фрезы на оправке


Цилиндрические фрезы устанавливаются на горизонтально-фрезерных станках при помощи центровых оправок. Центровая оправка состоит из хвостовика, шейки, рабочей части и резьбы.

Хвостовики оправок могут иметь коническую форму» с конусностью 7:24 для непосредственной установки в отверстие шпинделя или конус Морзе. В последнем случае оправки крепят на станке при помощи переходных втулок. Резьбовое отверстие служит для затяжки хвостовика в отверстие шпинделя шомполом.

На шейках оправок предусмотрены фланцы с прямоугольными пазами или две лыски, предназначенные для восприятия крутящего момента непосредственно от поводковых шпонок шпинделя станка или от торцового паза переходной втулки (см. рис. 1, размер S).

Цилиндрическая рабочая часть оправок выполняется соответственно стандартным диаметрам d посадочных отверстий фрез (13, 16, 22, 27, 32, 40 и 50 мм) и различной длины, что позволяет подбирать их в зависимости от условий выполняемых работ. Для передачи крутящего момента фрезе рабочая часть оправок снабжена длинной призматической шпонкой.

На резьбовой части оправок обычно нарезается левая метрическая резьба с мелким шагом. Благодаря этому уменьшается вероятность самоотвинчивания гайки во время работы, так как при наиболее часто употребляемом левом вращении шпинделя силы резания будут стремиться затянуть ее, усиливая тем самым крепление фрезы.

Центровые оправки комплектуются набором установочных колец различной ширины (1...50 мм), которые позволяют располагать фрезу вдоль оправки на необходимом расстоянии от шпинделя,

При установке цилиндрической фрезы на станке (рис. 2) фреза 17 при помощи установочных колец 9, поддерживающей втулки 8 и гайки 1 закреплена на рабочей части центровой оправки. Хвостовик 13 оправки установлен в отверстие шпинделя 12 и затянут шомполом 14, снабженным для этой цели шестигранной головкой 16 и гайкой 15. Передача крутящего момента от шпинделя на оправку осуществляется поводковыми шпонками 10, которые входят в пазы фланца 11. Свободный конец оправки совместно с поддерживающей втулкой введен в отверстие подшипника 7 серьги 5. Для повышения износостойкости подшипник серьги изготовлен из бронзы и имеет форму втулки с наружным конусом и продольным разрезом, что позволяет периодически регулировать его (по мере износа) гайкой 2. В серьге предусмотрена фитильная смазка 6 подшипника, смотровой глазок 3 для контроля уровня масла и заливное отверстие 4.



Устанавливая цилиндрические фрезы на станке, необходимо соблюдать определенную последовательность действий:

1. Протереть ветошью оправку; конический участок отверстия шпинделя, установочные кольца, фрезу.

2. Установить хвостовик оправки в отверстие шпинделя так, чтобы поводковые шпонки последнего вошли в пазы фланца оправки.

3. Ввернуть шомпол в резьбовое отверстие хвостовика оправки и затянуть до отказа гайку 15 ключом (см. рис. 2). Чтобы шпиндель при этом не проворачивался, коробку скоростей станка следует настроить на наименьшую частоту вращения.

4. Надеть на рабочую часть оправки установочные кольца, поддерживающую втулку, фрезу. Слегка смазать резьбу оправки и навернуть на нее гайку. При этом необходимо учитывать, что для повышения жесткости и прочности крепления фрезы ее следует располагать на оправке возможно ближе к переднему концу шпинделя так, чтобы осевая составляющая силы сопротивления резанию P 0 (рис. 3) была направлена в его сторону. Последнее условие обеспечивается, если направления винтовых зубьев фрезы и вращения шпинделя разноименны. Поэтому при работе фрезами с правым направлением винтовых зубьев шпиндель должен иметь левое вращение (против хода часовой стрелки, если смотреть со стороны его заднего конца) (рис. 3, а) и, наоборот, для фрез с левым направлением винтовых зубьев оно должно быть правым (рис. 3, б).

5. Выдвинуть хобот на необходимую длину и закрепить его.

6. Установить серьгу па хобот и закрепить ее так, чтобы поддерживающая втулка или цапфа оправки вошла в подшипник серьги.

7. Закрепить фрезу, затянув до отказа гайку оправки ключом.

8. Проверить уровень масла в резервуаре серьги и при необходимости долить.

9. Проверить радиальное биение зубьев фрезы индикатором 1 (рис. 4). Для этого установить индикатор на стол станка так, чтобы его измерительный штифт 2 коснулся режущей кромки зуба фрезы с небольшим натягом (1...2 мм по малой отсчетной шкале). Рукоятки коробки скоростей поставить в такое положение, чтобы шпиндель легко проворачивался. Вращая оправку вручную в направлении, обратном направлению резания, определить биение фрезы, которое не должно превышать 0,05 мм.

Насадные инструменты насаживаются па цилиндрическую или коническую оправку. Соответственно этому они снабжаются базовым отверстием цилиндрической или конической формы.

К инструментам с цилиндрическим отверстием относятся насадные фрезы, дисковые шеверы, дисковые зуборезные долбяки, накатные ролики, круглые фасонные резцы , резьбонарезные гребенки.

Из инструментов с коническим отверстием следует отметить насадные зенкеры и развертки , резцовые головки для конических колес.

Согласно ГОСТу 9472-60 для насадных фрез применяется ряд диаметров отверстий: 8, 10, 13, 16, 19, 22, 27, 32, 40, 50, 60, 70, 80 и 100 мм. Ряд принят в качестве стандартного всеми странами.

Как видно из приведенного перечня, количество размеров оправок строго ограничено. Делается это для того, чтобы сократить до минимума количество оправок, обращающихся в производстве.

Рис. 9. Силы, действующие на фрезу с прямыми зубьями

Диаметр справки оказывает большое влияние на работу фрезы. В процессе фрезерования оправка находится под действием крутящего и изгибающего моментов. На зуб прямозубой фрезы действует окружная сила Р, касательная к траектории (окружности) движения точки ее приложения, и радиальная сила Р, направленная по радиусу (рис. 9, а). Равнодействующая этих сил Кг вызывает изгибающий момент оправки. В этом можно убедиться, если приложить к центру оправки две равные, но противоположно направленные силы Р. Тогда пара сил Р будет создавать крутящий момент, а оставшаяся третья сила Р вместе с радиальной даст равнодействующую силу f которая и вызывает изгиб оправки.

Рис. 10. Силы, действующие на фрезу с винтовыми зубьями

Необходимо отметить, что оправки, удовлетворяющие условиям прочности, не всегда оказываются приемлемыми в отношении жесткости и виброустойчивости. Вот почему в последнее время стали применять оправки повышенных диаметров. Такие оправки не только позволяют фрезам снимать более значительную по размерам стружку, но и гарантируют получение большей точности и чистоты обработки из-за отсутствия вибраций. В связи с широким внедрением скоростных методов обработки вопрос о жесткости и виброустойчивости инструмента, как одного из факторов системы СПИД приобретает особо важное значение. Для пояснения рассмотрим такой пример. Инструменты, оснащенные пластинками твердого сплава , работают при высоких скоростях резания, что часто является причиной появления вибраций. Для правильной эксплуатации этих инструментов необходимо, чтобы сечение стружки, снимаемое каждым зубом, было по возможности одинаковым. Однако из-за биения зубьев, в появлении которого не последнюю роль играет размер оправки и точность сопряжения ее с фрезой, сечение стружки, приходящееся на каждый зуб, меняется.

Передача крутящего момента

Передача крутящего момента осуществляется через продольную (рис. 11, а) или торцовую шпонку (рис. 11, б). Размеры сопряженной пары обозначены буквами. Отверстия с продольным шпоночным пазом получили пре обладающее распространение. При правильном изготовлении такая конструкция вполне удовлетворяет предъявляемым требованиям. Диаметр отверстия должен быть выполнен с предельными отклонениями не выше, чем по А1 или А, а размеры шпоночного паза - с отклонениями по ГОСТу 9472-60. С целью уменьшения биения зубьев фрезы торцы ее должны быть взаимно-параллельны и перпендикулярны к оси отверстия. Биение торцов относительно оси фрезы не должно превышать 0,02-0,04 мм в зависимости от размера и назначения фрезы. Во избежание концентрации напряжений и появления трещин при термической обработке шпоночный паз должен быть снабжен соответствующими закруглениями.

Для уменьшения посадочной поверхности отверстие для фрез длиной свыше 20 мм снабжается выточкой. Длина выточки принимается в пределах 0,2-0,3 длины фрезы. Тонкие фрезы, например, прорезные, обычно изготовляются без шпоночного паза, и крутящий момент передается трением между плоскостями фрезы и установочных колец.

Продольный паз оказывает влияние на выбор размера базового отверстия фрезы, что является существенным недостатком. Торцовый паз (ГОСТ 9472-60) в этом отношении обладает преимуществом, так как он не ослабляет тело фрезы. Однако в практике он применяется редко - в основном для специальных фрез, например для тяжелых работ. Нормальные фрезы изготовляются только с продольным пазом за исключением торцовых фрез диаметром от 100 до 250 мм.

Крепление терцевых фрез

На рис. 12 показаны различные варианты крепления торцевых фрез на фрезерных станках. Посадка фрез производится или непосредственно на конец шпинделя станка (рис. 12, а, 6), или на оправку, вставляемую в шпиндель (рис. 12, в, г). Посадочные поверхности выполняются или цилиндрическими (рис. 12, а, в), или коническими (рис. 12, и, г). В первом случае фрезы больших диаметров (250 - 630 мм) имеют па обоих торцах выточки (рис. 12, а), из которых одна

Рис. 12. Варианты крепления торцевых фрез

служит для входа конуса шпинделя, другая -для расположения четырех болтов, предназначенных для закрепления фрезы на станке. Фрезы малых диаметров (40-110 мм) снабжаются одной (рис. 12, в) или чаще двумя выточками для помещения шайбы и болта (ГОСТ 9304-59) Кроме того, для передачи крутящего момента предусмотрена продольная шпонка (для фрез малых диаметров) или торцовая шпонка (для крупных фрез). Во втором случае коническое посадочное место может быть выполнено или в виде конического отверстия с конусностью 7: 24 (рис. 12, г), или в виде конического хвостовика (рис. 12, б). Крепление при помощи конического соединения обладает большей жесткостью, надежностью и точностью по сравнению с цилиндрическим, но оно более трудоемко. Конический хвостовик применяется для средних размеров фрез в тех случаях, когда требуется особенно жесткое крепление. Посадочные размеры фрез должны быть согласованы с ГОСТом 836-47, по которому регламентированы размеры концов шпинделей и оправок.

Конические оправки

Насадные зенкеры и развертки закрепляются на конической оправке с конусностью 1: 30 (рис. 13). Размеры сопряженной пары обозначены буквами. Оправка снабжена торцовой шпонкой. Согласно ГОСТу 9472-60, размеры большого диаметра конуса установлены на основании данных ряда диаметров отверстий для фрез. Крепление достаточно надежное и вполне себя оправдывает на практике. Однако

Рис. 13. Коническая оправка с торцовым шпоночным креплением

для инструментов, оснащенных твердым сплавом , при работе на высоких скоростях оно показывает меньшую виброустойчивость по сравнению с концевыми инструментами.

Режущий инструмент па фрезерных станках базируют и закрепляют при помощи приспособлений - вспомогательного инструмента (центровых и концевых оправок, переходных втулок, установочных колец, цанговых патронов и др.).

Центровые оправки (рис. 3.46) применяют для установки цилиндрических, дисковых, угловых и фасонных фрез па горизонтально-фрезерном станке. Оправку коническим хвостовиком 2 устанавливают в коническом отверстии шпинделя и крепят натяжным винтом (тягой) 1. Для восприятия крутящего момента от сил резания прямоугольные пазы на фланце оправки совмещают с поводковыми шпонками 1 и 2 (рис. 3.47), расположенными в пазах торца шпинделя.

На цилиндрическую часть 4 (рис. 3.46) оправки со шпоночной канавкой насаживают установочные кольца 3 и фрезу. Комплект закрепляется гайкой 6. Второй сводный конец оправки поддерживается подшипником подвески, закрепляемой на хоботе (см. рис. 3.1).


Рис. 3.46.

а - с направляющей цапфой; 1 - натяжной винт (тяга); 2 - конический хвостовик (конусность 7:24); 3 - установочные кольца; 4 - цилиндрическая часть; 5 - шпонка; 6 - гайка; 7 - направляющая опора; б - с поддерживающей вращающейся буксой: 1-4, 6 - обозначения те же, что и в части а; 5 - гайка; 7 - поддерживающая букса

Рис. 3.47.

1,2 - поводковые шпонки

В подшипники подвески вводится направляющая опора 7 (см. рис. 3.46, а) или поддерживающая букса 7 (см. рис. 3.46, б).

Диаметр цилиндрической части оправки и отверстия установочных колец (от 13 до 50 мм) выбирают в зависимости от диаметра фрезы. Установочные кольца, прилагаемые к оправке, могут иметь ширину от 1 до 50 мм. Точные установочные кольца с допуском на ширину ±0,01 и ±0,013 мм применяют как промежуточные для установки заданного расстояния между дисковыми фрезами комплекта.

Концевые оправки (рис. 3.48) служат для закрепления насадных торцовых фрез на вертикально- и горизонтально-фрезерных станках. Их закрепляют в шпинделе станка так же, как и центровые оправки. Крутящий момент от сил резания концевая оправка воспринимает продольной призматической шпонкой 2 (см. рис. 3.48, а), торцовой шпонкой (рис. 3.48, б) или вкладышем 5 (см. рис. 3.48, в), который входит в торцовый паз фрезы. Последний вариант применяют для установки торцовых фрез большого диаметра с коническим посадочным отверстием.

Некоторые насадные торцовые фрезы большого диаметра крепят непосредственно на цилиндрическом буртике переднего конца шпинделя (рис. 3.49). Крутящий момент от сил резания воспринимается торцовой шпонкой 3. Шпиндель станка должен иметь четыре резьбовых отверстия (см. рис. 3.47).

Концевые фрезы 1 с коническим хвостовиком устанавливаются в шпиндель 5 станка (рис. 3.50, а), используя переходные втулки 4,

Рис. 3.48.

1 - установочный конус; 2 - шпонка; 3 - шейка для фрезы; 4 - винт; 5 - вкладыш; 6 - втулка; 7 - винт

внутренний конус которых соответствует конусу инструмента, а наружный - конусу шпинделя. Крутящий момент передается от шпинделя на ведомый фланец 2 посредством шпонки 3. Комплект закрепляется тягой 6. Концевые фрезы с цилиндрическим хвостовиком закрепляют в патроне, который своим коническим хвостовиком устанавливается в шпиндель станка. Конструкция одного из таких патронов показана на рис. 3.50, б. Фрезу устанавливают в цангу 7 и гайкой 8 закрепляют в корпусе патрона 9.

При фрезеровании пазов, точных по ширине, изношенными фрезами удобно использовать патрон (рис. 3.50, в ) с регулируемым эксцентриситетом. Фрезу закрепляют винтами 10 во втулке 13, которую устанавливают в корпус 11 и затягивают колпачковой гайкой 12. Так как ось отверстия в корпусе смещена по отношению к оси его посадочного конуса, а ось отверстия для фрезы во втулке не совпадает с осью втулки, то поворотом втулки можно смещать ось фрезы относительно оси ее вращения, изменяя ширину фрезеруемого паза.

Рис. 3.49. Закрепление фрез на шпинделе фрезерного станка: 1 - фреза; 2, 4 - винты; 3 - шпонка; 5 - шпиндель станка


Рис. 3.50.

а - с коническим хвостовиком; б - с цилиндрическим хвостовиком; в - с регулируемым эксцентриситетом; 1 - заготовка; 2 - подставка; 3 - тиски; 4 - верхняя плоскость; 5 - шпиндель; 6 - тяга; 7 - цанга; 8, 12 - гайки; 9 - патрон; 10 - винт; 11 - корпус; 13 - втулка

Рис. 3.51.

1 - фреза; 2 - гайка; 3 - патрон; 4 - винт; 5 - втулка

Значительные затраты времени связаны с затяжкой тяги при креплении инструмента, особенно на вертикально-фрезерных станках. Для сокращения этих затрат при креплении концевых фрез с коническим хвостовиком применяется патрон, показанный на рис. 3.51. В корпус патрона,?, установленного в шпинделе станка, вставляют сменную переходную втулку 5 с закрепленной в ней посредством винта 4 фрезой 1. При установке втулки в корпус патрона ее поводки проходят через соответствующие вырезы в гайке 2, навернутой на корпус 3 , и входят в пазы, имеющиеся в торце корпуса патрона. Закрепление сменной втулки в корпусе осуществляется поворотом гайки 2 на 45... 115°.

Размерную настройку при фрезеровании плоскостей инструментов выполняют методом пробных проходов (рис. 3.52). Коснувшись боковой плоскости 4 заготовки 1, установленной в тисках 3 на подставке 2, вращающейся концевой фрезой, выводят поперечной подачей заготовку из-под фрезы и поднимают стол на величину у Затем, коснувшись верхней плоскости 5, продольной подачей выводят заготовку от контакта с фрезой и поперечной подачей перемещают стол на величину А$ - А). Выполнив пробный проход (не обязательно на всей длине заготовки), измеряют полученные размеры и вводят коррекцию размерной настройки Ах = Л - А и Дг/ = - Н. Значения коррекционных перемещений

отсчитывают по лимбам поперечной и вертикальной подач.

Некоторые методы размерной настройки на расположение прямоугольного паза показаны на рис. 3.53. Положение дисковой

Рис. 3.52.

1 - тиски; 2 - заготовка; 3 - подставка; 4 - боковая плоскость; 5 - верхняя плоскость


Рис. 3.53. Методы размерной настройки на положение прямоугольного паза (а-е )

Рис. 3.54. Установка заготовок относительно фрезы при фрезеровании шпоночных пазов (а-г )

или концевой фрезы в горизонтальном направлении контролируется штангенциркулем (см. рис. 3.53, а, б) или угольником (исходное положение, см. рис. 3.53, в, г). Размерная настройка на глубину паза выполняется методом пробных проходов.

Исходные положения фрезы в горизонтальном направлении можно определить, коснувшись вращающейся фрезой вертикальной плоскости заготовки (см. рис. 3.53, д, е ).

Схема размерной настройки при фрезеровании шпоночных пазов показана на рис. 3.54. Перемещая стол в нужных направлениях, устанавливают заготовку под фрезой (см. рис. 3.54, а). Угольник располагают на столе так, чтобы его вертикальная полочка касалась боковой стороны заготовки. При помощи штангенциркуля или микрометра измеряют расстояние А. Затем, переставив угольник на другую сторону, измеряют расстояние Б. Смещение стола поперечной подачей выполняется на расстоянием = (Б-Л)/2. Тогда плоскость симметрии фрезы будет проходить через ось заготовки.

Возможен и другой способ размерной настройки дисковой шпоночной фрезы при помощи угольника (см. рис. 3.54, б). Перемещая стол поперечной подачей, совмещают угольник с торцом фрезы. Затем в обратном направлении перемещают стол на величину Н= (d- В )/2 (здесь В - ширина фрезы).

Исходные положения фрезы и заготовки можно определить путем соприкосновения торца дисковой или цилиндрической поверхности концевой (шпоночной) вращающейся фрезы с заготовкой (см. рис. 3.54, в, г). Затем стол перемещают на величину Н:

Рис. 3.55. Установка одноугловой фрезы в диаметральной плоскости: а - начальное положение; 6 - положение при смещении относительно

заготовки

H=(d + В) /2 - для дисковой фрезы; Н = (d + D )/2 - для концевой фрезы.

Аналогично осуществляют размерную настройку на начальное положение одноугловой фрезы (рис. 3.55, а), которую затем смещают относительно заготовки согласно рис. 3.55, 6.

Размерную настройку при обработке направляющих типа «ласточкин хвост» осуществляют методом пробных проходов. Однако измерение размера В (рис. 3.56) универсальным измерительным инструментом практически невозможно, а размер Л из-за заусенцев и сколов также нельзя точно измерить. Поэтому на практике

Рис. 3.56.


Рис. 3.57.

широко применяют косвенный метод с использованием гладких цилиндрических калиброванных роликов диаметром d. Тогда, если измерить размер С, размеры В и Л можно вычислить с помощью выражений

Для того чтобы соединение типа «ласточкин хвост» сопрягалось, необходимо обеспечить равенство В = (рис. 3.57). Измеряться при этом будут размеры С и С. Тогда должно соблюдаться равенство

Средства измерения для фрезерных работ приведены в табл. 3.5.

Характеристики некоторых средств измерения для фрезерных работ

Таблица 35

Инструмент

Внешний вид

измерения,

Точность

Назначение и краткая характеристика

измерительная

мм1 2 3 4 5 61 27 28 29 30 О ^ ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||1Ш _/

  • 0...150
  • 0...300
  • 0...500
  • 0...1000

Для измерения линейных размеров. Грубое измерение

Штангенциркуль

0 1 2 ЛП 7 8 9 10 11 12 13 14 15 мм® __

....................|.|imjiwi. l ln.......1щ|и...1.........1.........1.........1.........1.........1.........1.........1.........1 ® 4

Измерение наружных, внутренних размеров, глубин и высот

Штангенциркуль

Л и 1 гг "П гт-арп

Y №***?- ^ -il,I

  • 0...160
  • 0...250

Измерение наружных, внутренних размеров. Ширина губок для внутренних измерений - 10 мм. Точное измерение

З.б. Базирование, закрепление и размерная настройка инструмента

Окончание табл. 3.5

Штангеи- глубш io- мер

у// J 0 1 (3 4 5 6) 1 8 9 10 11 12 13 14 15 16 17 18 19 20

  • 0...160
  • 0...250

Измерение глубины пазов, уступов, канавок

Микрометр гладкий

0...300 с интервалом 25 мм, 300...600 с интервалом 100 мм

Для точных наружных измерений

Микрометр рычажный

Ф 1 -П II. И (ШП

-^

  • 0...25
  • 25...50

Для очень точных наружных измерений. Целые и сотые доли миллиметра отсчитываются по нониусу, а тысячные - по шкале скобы

Работа 3. Обработка заготовок фрезерованием

3 . 6 . Базирование, закрепление и размерная настройка инструмента

О том, как правильно установить фрезу на станок, расскажем в этом информационном выпуске.

Фреза – многозубый режущий инструмент, применяемый для обработки материалов резанием (фрезерованием) с целью снятия определенного припуска на обработку.

Типы фрез

В зависимости от геометрических параметров различают следующие типы фрез:

  • Цилиндрические
  • Конические
  • Торцевые
  • Концевые
  • Червячные

Большая часть всех фрез имеет отверстие в своей конструкции, благодаря которому имеет возможность одеваться на оправку. Их называют насадными .

Другая же часть фрез сравнительно небольших диаметров имеет в своей конструкции хвостовик. Такие фрезы называют концевыми . Их хвостовик может быть цилиндрическим и коническим.

При установке фрезы на станок оператору станка понадобится информация о номере конуса и типе шпинделя станка, его крепежные параметры. Все размеры, в том числе и крепёжного фланца, стандартизированы (ГОСТ 836-47).

Как правильно установить фрезу с коническим и цилиндрическим хвостовиком

Если размер хвостовика концевой фрезы совпадает с размерами конусного отверстия (гнезда) шпинделя, то в данном случае они сопрягаются без каких-либо дополнительных элементов. Хвостовик вставляют в коническую часть шпинделя и фиксируют с помощью затяжного винта. Этот способ является самым оптимальным и простым, применяется на фрезерных станках с горизонтальной и вертикальной установкой шпинделя, обеспечивая при этом достаточно простую смену фрезы .

В случае, когда размер конуса хвостовика фрезы меньше, чем конус шпинделя, для установки фрезы используют специальные переходные втулки.

Установка и закрепление концевых фрез с цилиндрическим хвостовиком осуществляется с применением цангового патрона, который способствует увеличению жесткости крепления.

Установка фрезы в цанговом патроне имеет следующий механизм действия:

  • В корпусе патрона установлена цанга, которая перемещается с закрепленным на ней цилиндрическим пальцем. На корпусе нарезана резьба, по которой осуществляется перемещение гайки при ее вращательном движении по часовой стрелке.
  • Оператор станка вставляет фрезу непосредственно в отверстие цанги, находящейся в патроне. И начинает закручивать гайку по часовой стрелке. Под воздействием упорного шарикоподшипника палец и цанга перемещаются до жесткого закрепления в ней фрезы. Цанга, установленная в патроне, позволяет надежно зафиксировать нужную фрезу, препятствует ее поломке и срыву.

Существенным преимуществом в конструкции такого патрона является:

  • Использование упорного подшипника, который обеспечивает значительное увеличение силы зажима фрезы.
  • Удобство для крепления в нём мелких фрез.
  • Достаточно прост в изготовлении.
  • Имеет небольшие габаритные размеры.

При установке фрезы в цангу необходимо:

  • Использовать зажимную цангу строго в соответствии с диаметром закрепляемого инструмента
  • Предпочтительно устанавливать фрезу по всей длине цанги, что обеспечит более надежную фиксацию. Но не менее, чем на 2/3 всей длины.
  • Выбор размера и конструкции цанги для закрепления в ней фрезы производится только в соответствии с ГОСТ17201-71.

Прежде всего нужно учитывать, что диаметр цанги должен максимально соответствовать диаметру устанавливаемой в ней фрезы для более плотного контакта.

Необходимо учитывать тот факт, что сам по себе цанговый механизм является самоцентрирующим, что обеспечивает высокую точность установки инструмента и не требует дополнительной калибровки.

Поэтому после закрепления фрезы в патроне остается проверить ее на биение. Для этого используют индикатор часового типа. Проверку этим методом осуществляют в двух случаях: при установке фрезы в шпиндель фрезерного станка, а также в случае ее переточки. Для контроля биения используют самый простой индикатор, который закреплен на штативе. Измерения фиксируют между зубьями фрезы по всей ее длине.

В процессе обработки металла фреза может работать исправно при правильной ее установке и эксплуатации. А точная ее фиксация с проверкой на биение позволяет:

  • повысить качество фрезерования;
  • увеличить производительность;
  • избежать брака в изделии;
  • снизить риски преждевременного износа.

Министерство образования Российской Федерации

Пермский государственный технический университет
Кафедра: «Технология, Конструирование и Автоматизация

В специальном машиностроении»
ОТЧЕТ

По лабораторной работе № 3

По курсу «технологические процессы в машиностроении»

Составил: студент группы ТКА-07 Гилев Р.А.

Принял: преподаватель Ярушин С.Г.

Пермь, 2009г.

Типы фрезерных станков…………………………………………………………3

Схема расположения станков в цехе……………………………………………13

Приспособления для выполнения фрезерных работ..…………………………14

Фрезы……………………………………………………………………………..17

Схемы закрепления фрез………………………………………………………..21

Схемы фрезерования поверхностей…………………………………………….23

Некоторые типы фрезерных станков, имеющихся в ОКБ «***»…………...24
^ Краткая характеристика метода фрезерования
Фрезерование является распространенным видом механической обработки. Фрезерованием в большинстве случаев обрабатываются плоские или фасонные линейчатые поверхности. Фрезерование ведется многолезвийными инструментами – фрезами. Фреза представляет собой тело вращения, у которого режущие зубья расположены на цилиндрической или на торцовой поверхности. В зависимости от этого фрезы соответственно называются цилиндрическими или торцовыми, а само выполняемые ими фрезерование – цилиндрическим или торцовым. Главное движение придается фрезе, движение подачи обычно придается обрабатываемой детали, но может придаваться и инструменту – фрезе. Чаще всего оно является поступательным, но может быть вращательным или сложным.

Процесс фрезерования отличается от других процессов резания тем, что каждый зуб фрезы за один ее оборот находится в работе относительно малый промежуток времени. Большую часть оборота зуб фрезы проходит, не производя резания. Это благоприятно сказывается на стойкости фрез. Другой отличительной особенностью процесса фрезерования является то, что каждый зуб фрезы срезает стружку переменной толщины.

^ Типы фрезерных станков
Фрезерные станки́ - группа металлорежущих станков в классификации по виду обработки. Фрезерные станки предназначены для обработки с помощью фрезы плоских и фасонных поверхностей, тел вращения, зубчатых колёс и т. п. металлических и других заготовок. При этом фреза вместе со шпинделем фрезерного станка совершает вращательное (главное) движение, а заготовка, закреплённая на столе, совершает движение подачи прямолинейное или криволинейное. Управление может быть ручным, автоматизированным или осуществляться с помощью системы ЧПУ (CNC).

Во фрезерных станках главным движением является вращение фрезы, а движение подачи - относительное перемещение заготовки и фрезы.

Вспомогательные движения необходимы в станке для подготовки процесса резания. К вспомогательным движениям относятся движения, связанные с настройкой и наладкой станка, его управлением, закреплением и освобождением детали и инструмента, подводом инструмента к обрабатываемым поверхностям и его отводом; движения приборов для автоматического контроля размеров и т. д. Вспомогательные движения можно выполнять на станках как автоматически так и вручную. На станках-автоматах все вспомогательные движения в определенной последовательности выполняются автоматически.

Различают:


  • горизонтально-фрезерные консольные станки (с горизонтальным шпинделем и консолью)

  • универсальные - с поворотным столом

  • широкоуниверсальные - с дополнительными фрезерными головками

  • вертикально-фрезерные станки (с вертикальным шпинделем) в том числе консольные

  • бесконсольные называемые также с крестовым столом

  • с передвижным порталом

  • широкоуниверсальные инструментальные станки - с вертикальной рабочей плоскостью основного стола и поперечным движением шпиндельных узлов

  • копировально-фрезерные станки

  • фрезерные станки непрерывного действия, в том числе карусельно-фрезерные

  • барабанно-фрезерные

Рис.1. Схемы универсальных фрезерных станков и их основные

Формообразующие движения:

а ~ универсальный консольный горизонтально-фрезерный; б - широкоуниверсаль-ный консольный горизонтально-фрезерный; в - широкоуниверсальный бесконсольно-фрезерный; г - консольный вертикально-фрезерный; д - бесконсольный вертикально-фрезерный; е - бесконсольный горизонтально-фрезерный; ж - продольно-фрезерный; з - карусельно-фрезерный; и - барабанно-фрезерный.

^ Шлицефрезерный станок, металлорежущий станок для изготовления шлицев. Прямобочные шлицы и шлицы эвольвентного профиля на валах образуют червячной фрезой методом обкатывания. Фреза вращается и одновременно совершает движение подачи (перемещение вдоль оси заготовки), заготовка также вращается с частотой, зависящей от числа образуемых шлицев. Существует автоматический Ш. с. для прорезывания дисковой фрезой шлицев на головках шурупов и винтов.
Шлицефрезерный станок 5Б352ПФ2

^ Резьбофрезерный станок (рис 2), металлорежущий станок, предназначенный для нарезания наружной и внутренней резьбы резьбовой фрезой. При получении резьбы на Р. с. заготовка и фреза совершают несколько движений: вращение фрезы вокруг своей оси (главное движение), медленное вращение заготовки (круговая подача), продольное (осевое) перемещение заготовки или фрезы (продольная подача, равная шагу нарезаемой резьбы за один оборот заготовки) и врезание фрезы на глубину резьбы (радиальная подача). Изготовляются полуавтоматические и автоматические Р. с., предназначенные для нарезания наружной и внутренней резьб с крупным шагом на большой длине дисковыми фрезами и резьб с мелким шагом на коротких участках гребенчатыми фрезами, у которых шаг витков равен шагу нарезаемой резьбы за 1,25-1,5 оборота заготовки.

Рис.2 Станок резьбофрезерный патронный 5Д63

^ Широкоуниверсальный консольный горизонтально-фрезерный ста-нок (рис.3) также предназначен для обработки плоских и фасонных по-верхностей различными фрезами. Используется в условиях единичного и мелкосерийного производства, в инструментальных и ремонтных цехах. Ста-нок помимо горизонтального шпинделя имеет шпиндельную головку, которая может поворачиваться на хоботе в двух взаимно перпендикулярных направлениях, благодаря чему шпиндель с фрезой можно устанавливать под любым углом к плоскости стола и к обрабатываемой заготовке. На головке 1 монтируют накладную головку,для сверления, рассверливания, зенкерования, растачивания и фрезерования. В качестве примера современного широкоуниверсального фрезерного станка на рис.3 показана модель ОРША-Ф32Ш11. У этой модели есть возможность быстрой переналадки станка с операции вертикального фрезерования, на наклонное или горизонтальное.

Рис.3. Широкоуниверсальный фрезерный станок ОРША-Ф32Ш11

^ Консольные вертикально-фрезерные станки (рис.4) предназначены для выполнения различных фрезерных работ, а также сверлильных и несложных расточных работ в единичном и серийном производстве. Станок имеет вертикальный шпиндель, который размещен в поворотной шпиндельной головке, установленной на стойке. На рис.4 в качестве примера показан вертикально консольно-фрезерный станок модели ВМ-127.

^ Рис.4 Станок консольный вертикально-фрезерный ВМ-127.

Бесконсольные вертикально и горизонтально-фрезерные станки (рис.5), служащие для обработки крупногабаритных деталей, имеют са-лазки и стол, которые перемещаются по направляющим станины. Шпиндельная головка перемещается по направляющим стойки. Шпин-дель имеет осевые перемещения при установке фрезы. На рис.5 показана модель бесконсольного станка ХА7140.

Рис.5 , Бесконсольный вертикально-фрезерный станок ХА7140
Продольно-фрезерные станки предназначены для обработ-ки крупногабаритных деталей в условиях единичного и массового производ-ства. Они делятся на одностоечные и двухстоечные. Фрезерование заготовок осуществляется в основном торцевыми твердосплавными фрезами, а также цилиндрическими, концевыми и другими фрезами. Станки обладают высокой мощностью и жесткостью, что позволяет вести обработку с большими сече-ниями среза. На станине установлены две вертикальные стойки, соеди-ненные поперечиной. На направляющих стоек смонтированы фрезерные головки с горизонтальными шпинделями и траверса (поперечина). На по-следней установлены фрезерные головк с вертикальными шпинделями. Стол перемещается по направляющим станины.

Карусельно-фрезерные станки предназначены для обработки поверхностей торцевыми фрезами, имеют один или несколько шпинделей для черновой и чистовой обработки. По направляющим стойки перемеща-ется шпиндельная головка. Стол, вращаясь непрерывно, сообщает уста-новленным на нем заготовкам движение подачи. Стол с салазками имеет установочное перемещение по направлению станины.

^ Барабанно-фрезерные станки используются в крупносерий-ном и массовом производстве. Заготовки устанавливают на вращающемся барабане, имеющем движение подачи. Фрезерные головки (для черновой обработки) перемещаются по направляющим стоек.

^ Копировально-фрезерные станки предназначены для обработки дета-лей сложной конфигурации, например, штампов, пресс-форм, лопаток турбин и других в крупносерийном и массовом производстве. Обработка ведется концевыми фрезами. На рис.7 показан копировально-фрезерный станок DOLBY 90


^ Рис.7 . Копировально-фрезерный станок DOLBY 90.

Станок вертикально-фрезерный консольный 6Р13

6Р13
Размеры рабочей поверхности стола, мм........400х1600
Перемещение стола, мм........15…415
продольное (Х)........800
поперечное (Y)..........320
вертикальное (Z)..........420
Угол поворота шпиндельной головки, град.........45
Частота вращения шпинделя, об/мин.........31,5…1600
Конус шпинделя...........50
Мощность главного привода, кВт............7,5
Габариты станка, мм.............2570х2250х2430
Масса станка, кг..........4300
Название: Станок вертикально-фрезерный 6Р13
Год. Вып. : 1983
Цена: 160.000

Станки предназначены для выполнения разнообразных фрезерных,сверлильных и расточных работ при обработке деталей любой формы из стали, чугуна, цветных металлов, их сплавов и других материалов.


^ Наименование параметров

Ед.изм.

Величины

Класс точности

Н

Длина рабочей поверхности стола

мм

1600

Ширина стола

мм

400

Перемещение стола X,Y,Z

мм

1000 х 320

Расстояние от оси горизонтального шпинделя до рабочей поверхности стола

мм

80..500

Мощность главного привода

кВт

11

Пределы частот вращения шпинделя

об/мин

31,5..1600

Габариты станка

мм

- длина

2560

- ширина

2260

- высота

2430

Вес станка

кг

4200

Аналоги

Изготовитель: ЗеФС, ОАО

Прежние названия:

Горьковский завод фрезерных станков (ГЗФС)

Горьковское станкостроительное производственное объединение (ГСПО)

Нижегородский завод фрезерных станков


Размеры рабочей поверхности стола, мм:

400х1600

Наибольший ход стола, мм:
продольный
поперечный

1000
320

Расстояние от оси горизонтального шпинделя до рабочей поверхности стола, мм:

80-500

Пределы частот вращения шпинделя, об/мин:

31,5-1600

Пределы подач стола, мм/мин
продольных и поперечная
вертикальная

25-1250
8,3-416,6

Мощность электродвигателя главного движения, кВт

11

Габаритные размеры, мм

2560х2260х2430

Масса, кг

4200

Дата выпуска

1978, 1979, 1980


Схема расположения станков в цехе


1) М6Р13Ф337 №152 (СССР)

2) М24К40 СФИ

3) Станок фрезерный расточной

4) Станок фрезерный карусельнорасточной М:1512 №1574

6) М24135 №81878

7) Тип ВМ-121 №292

9) М6Т12-29-УХЛЧ

10) «Жальгирис» М6Р80 №Р863

11) Тип ВМ-127 №295

12) М6750 №9194

13) М2Е440А №809

^ Приспособления для выполнения фрезерных работ
На фрезерных станках в зависимости от масштаба изготовления деталей применяют различные универсальные и специальные приспособления.

В условиях единичного и мелкосерийного производства используют пневматические и гидравлические зажимные устройства с приставными унифицированными приводами, когда силовой агрегат используют в качестве универсального привода, от которого могут работа различные приспособления.

Используют также приспособления с ручным зажимом.

^ Универсальные поворотные тиски

Универсальные тиски используют для углового фрезерования и шлифо-вания различных деталей. Тиски (рис.8) со сменными губками обеспечивают расположение обрабатываемых заготовок в трех взаимно пер-пендикулярных плоскостях под углом ±90°. Круглые валики закрепляют в зависимости от размеров обрабатываемой заготовки.

Рис. 8. Универсальные поворотные трехосевые тиски JC-24-001

Синусные тиски

Тиски (рис. 9) применяют для точного углового фрезерования и шлифо-вания с допуском на угол ±1’ с точностью ±0,005 мм и ставят клеймо на торце
верхней плиты 5.

Синусный угольник имеет две плиты (нижнюю и верхнюю), соеди-ненные валиком через втулки. Поверхность плиты доводят по высо-те так, чтобы осевая линия, соединяющая центры валиков, располага-лась горизонтально с допуском 0,01 мм на всей длине плиты.

Рис.9 синусные тиски SVN/150
В зависимости от необходимого угла установки подсчитывают размер Н=17581па. Мерные плитки набирают высотой до размера Н и устанавливают между плитой и валиком, после чего закрепляют боковые планки. При этом плитки должны перемещаться при легком нажиме руки.

Синусный угольник может быть закреплен на столе станка с помощью двух болтов с потайной головкой и двух цилиндрических шпонок, входящих в паз стола станка, или на магнитной плите. Обрабатываемую деталь закреп-ляют на плите или в специальных тисках, устанавливаемых на плите с упором в боковые планки. Подвижная губка с планкой перемещает-ся в тисках, которые можно закрепить на магнитной плите. Приспособле-ние позволяет обрабатывать детали размером 100* 100*250 мм, а также валики диаметром до 100 мм. При наладке приспособления тиски можно повернуть на угол 90°.

^ Пневматический зажим (рис.10) предназначен для механизированного зажима деталей в приспособлении. Пневмопривод устанавливают на столе станка рядом с приспособлением так, что рычаг приспособления опирается на винт рычага пневматического привода. Детали зажимаются при повороте рукоятки 9. При этом сжатый воздух поступает в цилиндр и давит на поршень. Рычаг, вращаясь вокруг оси, поворачивает рычаг на оси и толкатель прижимает деталь к вертикальным базовым планкам приспо-собления. При повороте рукоятки в обратную сторону воздух выходит из цилиндра в окружающую среду, пружина поднимает поршень, и дета-ли освобождаются. Пневматический зажим применяют для закрепления кор-пусных деталей (например, станин и салазок) при фрезеровании или строга-нии поверхностей.

Рис. 10. Пневматический зажимGH-101-A

^ Фрезы.
Общие сведения о фрезах:

Фрезерование осуществляется вращающимся режущим инструментом, называемым фрезой. Фреза́ - режущий многолезвийный инструмент в виде тела вращения с зубьями для фрезерования. Бывают цилиндрические, торцевые, червячные и др. Материал режущей части - быстрорежущая сталь, твёрдый сплав, минералокерамика, алмаз. В зависимости от конструкции и типа зубьев фрезы бывают цельные (полностью из одного материала), сварные (хвостовик и режущая часть состоит из различного материала, сваренные вместе), сборные (из различного материала, но соединённые стандартными крепёжными элементами - винтами, болтами, гайками, клиньями). На рисунке представлена сборная фреза для торцевого фрезерования..

У зубьев торцевых фрез (рис. 11,б) различают главную режущую кромку 1, расположенную под углом ф к направлению подачи; вспомогательную ре-жущую кромку 5, расположенную под углом ф 1 к направлению подачи; пе-реходную режущую кромку 4, соединяющую кромки 7 и 5.

В зависимости от поверхности, по которой выполняется затачивание, зубья фрезы бывают затыловочными (имеющими форму задней поверхности, которая обеспечивает постоянство профиля режущей кромки при повторном затачивании рис.12 а) и не затыловочные (остроконечные, затачиваемые по задней поверхности рис. 12,б).


^ Классификация и конструкция фрез

Конструкция фрезы оказывает большое влияние на работоспособность фрезы и эффективность ее применения.

Основным направлением в разработке новых конструкций твердосплавных фрез является применение сборных конструкций с неперетачиваемыми пластинками твердого сплава.

Механическое крепление пластинок дает возможность поворота их с целью обновления режущей кромки и позволяет использовать фрезы без затачивания. После полного износа пластинки она может быть быстро заменена новой. Резко сокращается время на восстановление фрез, так как в этих конструкциях оно сводится к замене износившихся пластинок или повороту на следующую грань, не прибегая к шлифовальным и заточным операциям. Завод-изготовитель каждую фрезу снабжает 8-10 комплектами запасных пластинок.

Применение неперетачиваемых пластинок имеет ряд преимуществ перед напаянными пластинками:


  • более высокая стойкость (на 30% и более) по сравнению с напаянными пластинками за счет исключения операций пайки и переточек, снижающих режущие свойства твердых сплавов;

  • быстросменность;

  • возможность использования более износостойких марок твердого сплава, склонных к образованию трещин при пайке и заточке;

  • возможность нанесения на пластинку износостойких покрытий (карбиды титана, нитриды титана и др.);

  • резкое увеличение процента возврата твердого сплава на переточку (с 15-20% для напаянного инструмента до 90% для многогранников);

  • сокращение вспомогательного времени на смену и наладку затупившегося инструмента;

  • сокращение номенклатуры режущего инструмента и упрощение инструментального хозяйства;

  • возможность централизованного производства сменных элементов для различных видов режущего инструмента (резцы, фрезы, протяжки и др.);

  • возможность централизованной заточки на базе широкой механизации и автоматизации;

  • постоянство размерных и геометрических параметров режущего инструмента, что особенно важно для станков с числовым программным управлением и др.
По конструктивным признакам фрезы подразделяют следующим образом:

  • по расположению зубьев на исходном цилиндре (торцовые, цилиндрические, дисковые, двухсторонние, угловые, фасонные, концевые и др.;

  • по конструкции зуба (с острозаточенными и затылованными зубьями);

  • по направлению зуба (с прямыми, наклонными, винтовыми, равнонаправленными зубьями);

  • по внутреннему устройству: фрезы цельные, составные, со вставны-ми зубьями, сборные);

  • по способу крепления: фрезы с отверстием (насадные), концевые с
    коническим или цилиндрическим хвостовиком;

  • по виду инструментального материала режущей части (из быстрорежущей стали, твердых сплавов, режущей керамики, сверхтвердых материалов).

Основные типы фрез

Основные типы фрез показаны на рис. 13.

Рис. 13. Основные типы фрез: 1 - цилиндрическая; 2 - торцовая; 3 и 4 - дисковые пазовые; 5 - прорезная; 6 и 7 - концевые; 8 - угловая; 9 и 10 - фасонные; 11 - шпоночная.
Цилиндрические и торцовые фрезы предназначены для обработки плос-костей. Дисковые фрезы (пазовые, двухсторонние, трехсторонние) применя-ют для фрезерования пазов, уступов и боковых плоскостей. Прорезные и от-резные фрезы используют для прорезания узких пазов и разрезания материа-лов. Концевые фрезы применяют для обработки пазов, уступов и плоскостей шириной В<0,8D , где D - диаметр концевой фразы. Угловые фрезы приме-няют в основном для фрезерования стружечных канавок режущих инструментов и скосов. Фасонные фрезы предназначены для фрезерования фасон-ных поверхностей.

Фрезы изготовляют цельными и сборными. Широкое распространение получили сборные фрезы со вставными ножами из быстрорежущей стали или твердого сплава (рис.19,a-е) и с механическим креплением режущих пластин.

Для одновременного фрезерования нескольких поверхностей применяют набор фрез, состыкованных с помощью цилиндрических выточек на торцах фрез. Широко применяют сборные конструкции фрез с неперетачиваемыми твердосплавными пластинами. Механическое крепление пластин дает воз-можность их поворота для обновления ревущей кромки и позволяет исполь-зовать фрезы без перетачивания. После полного износа пластина быстро за-меняется новой. Торцевые фрезы общего назначения оснащаются круглыми, шестигранными, пятигранными, четырехгранными, трехгранными твердо-сплавными пластинами.

Конструкция фрез оказывает большое влияние на работоспособность фрезы и эффективность ее применения. Основным направлением в разработ-ке новых конструкций твердосплавных фрез является применение сборных конструкций с неперетачиваемыми пластинками твердого сплава. Механиче-ское крепление пластинок дает возможность поворота их с целью обновления режущей кромки и позволяет использовать фрезы без переточки. После пол-ного износа пластинки она может быть быстро заменена новой. Резко сокра-щается время на восстановление фрез, так как в этих конструкциях оно сво-дится к времени замены износившихся пластинок или повороту на следую-щую грань, не прибегая к шлифовальным и заточным операциям. Завод-изготовитель снабжает каждую фрезу 8-10 комплектами запасных пластинок.
^ Схемы закрепления фрез
Конструкция фрезы определяет способ ее закрепления на станке. Насад-ную фрезу (с осевым отверстием) - цилиндрическую, дисковую, угловую и т.д. - закрепляют на центровой оправке 2 (рис. 21), которую устанавливают в коническое отверстие шпинделя 3 и затягивают болтом 4.


Сухари 5, входящие в пазы фланца шпинделя и оправки, удерживают ее от проворота. Вращение фрезы передается через шпонку 6. Правый конец оправки поддерживают подшипники 7 и серьги 8. Осевое положение фрезы на оправке фиксируют гайкой 9 и установочными кольцами 10. Этот способ закрепления используют в основном на горизонтально-фрезерных станках.

Торцовые 8 и дисковые 6 фрезы с коническим хвостовиком 2 закрепля-ют на кольцевой оправке 3 с помощью шпонки 4 и винта 5 (рис.22,а) или че-рез переходную втулку 7 (рис.22,б).

Для закрепления фрез с цилиндрическим хвостовиком используют раз-личные по конструкции патроны: цанговые (рис.23,б), с регулируемым экс-центриситетом е втулки 4 и корпуса оправки 5 (рис.23,в), которые устанавли-вают в шпинделе станка как концевые оправки. При закручивании гайки 2, последняя сжимает цангу 3, которая закрепляет фрезу.


^ Схемы фрезерования поверхностей.
Схемы фрезерования поверхностей показаны на рис.24.

а, б- плоскости цилиндрической и торцевой фрезой, в, г- паза концевой и дисковой фрезой, д - профильной поверхности фасонной фрезой, е - поверхности двойной кривизны концевой фрезой при перемещении ее по сложной траектории, ж- фрезерование вращающейся заготовки.


Рис.24. Схемы фрезерования поверхностей

Некоторые типы фрезерных станков, имеющихся в ОКБ « *** »




Загрузка...