domvpavlino.ru

Взрыв сверхновой звезды. Переменные Звезды

Одним из важных достижений XX столетия стало понимание того факта, что почти все элементы, которые тяжелее водорода и гелия, образуются во внутренних частях звезд и поступают в межзвездную среду в результате взрыва сверхновых — одного из наиболее мощных явлений во Вселенной.

На фото: Сверкающие звезды и клочья газа создают захватывающий дух фон для картины саморазрушения массивной звезды, названной сверхновой 1987A. Ее взрыв астрономы наблюдали в Южном полушарии 23 февраля 1987 года. Это изображение, полученное телескопом «Хаббл», показывает остатки сверхновой, окруженные внутренним и внешним кольцами вещества в диффузных облаках газа. Этот трехцветный снимок составлен из нескольких фотографий сверхновой и соседней с ней области, которые были сделаны в сентябре 1994, феврале 1996 и июле 1997 года. Многочисленнные яркие голубые звезды вблизи сверхновой — это массивные звезды, каждая из которых возрастом около 12 млн. лет и в 6 раз тяжелее Солнца. Все они относятся к тому же поколению звезд, что и взорвавшаяся. Присутствие ярких газовых облаков — еще один признак молодости этой области, которая все еще являетя плодородной почвой для рождения новых звезд.

Первоначально все звезды, блеск которых внезапно увеличивался более чем в 1 000 раз, называли новыми. Вспыхивая, такие звезды неожиданно появлялись на небе, нарушая привычную конфигурацию созвездия, и увеличивали свой блеск в максимуме, в несколько тысяч раз, затем их блеск начинал резко падать, а через несколько лет они становились такими же слабыми, какими были до вспышки. Повторяемость вспышек, при каждой из которых звезда с большой скоростью выбрасывает до одной тысячной своей массы, является для новых звезд характерной. И все же при всей грандиозности явления подобной вспышки оно не бывает связано ни с коренным изменением структуры звезды, ни с ее разрушением.

За пять тысяч лет сохранились сведения о более чем 200 ярких вспышках звезд, если ограничиться такими, которые не превышали по блеску 3-ю звездную величину. Но когда была установлена внегалактическая природа туманностей, стало ясно, что вспыхивающие в них новые звезды по своим характеристикам превосходят обычные новые, так как их светимость часто оказывалась равной светимости всей галактики, в которой они вспыхивали. Необычайность таких явлений привела астрономов к мысли, что такие события — нечто совсем не похожее на обычные новые звезды, а потому в 1934 году по предложению американских астрономов Фрица Цвикки и Вальтера Бааде те звезды, вспышки которых в максимуме блеска достигают светимостей нормальных галактик, были выделены в отдельный, самый яркий по светимости и редкий класс сверхновых звезд.

В отличие от вспышек обыкновенных новых звезд вспышки сверхновых в современном состоянии нашей Галактики — явление крайне редкое, происходящее не чаще чем раз в 100 лет. Наиболее яркими были вспышки в 1006 и 1054 годах, сведения о них содержатся в китайских и японских трактатах. В 1572 году вспышку такой звезды в созвездии Кассиопеи наблюдал выдающийся астроном Тихо Браге, последним же, кто следил за явлением сверхновой в созвездии Змееносца в 1604 году, был Иоганн Кеплер. За четыре столетия «телескопической» эры в астрономии подобных вспышек в нашей Галактике не наблюдалось. Положение Солнечной системы в ней таково, что нам оптически доступны наблюдения вспышек сверхновых примерно в половине объема, а в остальной ее части яркость вспышек приглушена межзвездным поглощением. В.И. Красовский и И.С. Шкловский подсчитали, что вспышки сверхновых звезд в нашей Галактике происходят в среднем раз в 100 лет. В других галактиках эти процессы происходят примерно с той же частотой, поэтому основные сведения о сверхновых в стадии оптической вспышки были получены по наблюдениям за ними в других галактиках.

Понимая важность изучения столь мощных явлений, астрономы В. Бааде и Ф. Цвикки, работавшие на Паломарской обсерватории в США, в 1936 году начали планомерный систематический поиск сверхновых. В их распоряжении был телескоп системы Шмидта, позволявший фотографировать области в несколько десятков квадратных градусов и дававший очень четкие изображения даже слабых звезд и галактик. За три года в разных галактиках ими были обнаружены 12 вспышек сверхновых, которые затем исследовались с помощью фотометрии и спектроскопии. По мере совершенствования наблюдательной техники количество вновь обнаруженных сверхновых неуклонно возрастало, а последующее внедрение автоматизированного поиска привело к лавинообразному росту числа открытий (более 100 сверхновых в год при общем количестве — 1 500). В последние годы на крупных телескопах был начат также поиск очень далеких и слабых сверхновых, так как их исследования могут дать ответы на многие вопросы о строении и судьбе всей Вселенной. За одну ночь наблюдений на таких телескопах можно открыть более 10 далеких сверхновых.

В результате взрыва звезды, который наблюдается как явление сверхновой, вокруг нее образуется туманность, расширяющаяся с огромной скоростью (порядка 10000 км/с). Большая скорость расширения — главный признак, по которому остатки вспышек сверхновых отличают от других туманностей. В остатках сверхновых все говорит о взрыве огромной мощности, разметавшем наружные слои звезды и сообщившем отдельным кускам выброшенной оболочки огромные скорости.

Крабовидная туманность

Ни один космический объект не дал астрономам столько ценнейшей информации, как относительно небольшая Крабовидная туманность, наблюдаемая в созвездии Тельца и состоящая из газового диффузного вещества, разлетающегося с большой скоростью. Эта туманность, являющаяся остатком сверхновой, наблюдавшейся в 1054 году, стала первым галактическим объектом, с которым был отождествлен источник радиоизлучения. Оказалось, что характер радиоизлучения ничего общего с тепловым не имеет: его интенсивность систематически возрастает с длиной волны. Вскоре удалось объяснить и природу этого явления. В остатке сверхновой должно быть сильное магнитное поле, которое удерживает созданные ею космические лучи (электроны, позитроны, атомные ядра), имеющие скорости, близкие к скорости света. В магнитном поле они излучают электромагнитную энергию узким пучком в направлении движения. Обнаружение нетеплового радиоизлучения у Крабовидной туманности подтолкнуло астрономов к поиску остатков сверхновых именно по этому признаку.

Особенно мощным источником радиоизлучения оказалась туманность, находящаяся в созвездии Кассиопеи, — на метровых волнах поток радиоизлучения от нее в 10 раз превышает поток от Крабовидной туманности, хотя она и значительно дальше последней. В оптических же лучах эта быстро расширяющаяся туманность очень слаба. Полагают, что туманность в Кассиопее — это остаток вспышки сверхновой, имевшей место около 300 лет назад.

Характерное для старых остатков сверхновых радиоизлучение показала и система волокнистых туманностей в созвездии Лебедя. Радиоастрономия помогла отыскать еще много других нетепловых радиоисточников, которые оказались остатками сверхновых разного возраста. Таким образом, был сделан вывод, что остатки вспышек сверхновых, случившихся даже десятки тысяч лет назад, выделяются среди других туманностей своим мощным нетепловым радиоизлучением.

Как уже говорилось, Крабовидная туманность стала первым объектом, у которого было обнаружено рентгеновское излучение. В 1964 году удалось обнаружить, что источник рентгеновского излучения, исходящего из нее, протяженный, хотя его угловые размеры в 5 раз меньше угловых размеров самой Крабовидной туманности. Из чего был сделан вывод, что рентгеновское излучение испускает не звезда, некогда вспыхнувшая как сверхновая, а сама туманность.

Влияние сверхновых

23 февраля 1987 года в соседней с нами галактике — Большом Магеллановом Облаке — вспыхнула сверхновая, ставшая чрезвычайно важной для астрономов, поскольку была первой, которую они, вооружившись современными астрономическими инструментами, могли изучить в деталях. И эта звезда дала подтверждение целой серии предсказаний. Одновременно с оптической вспышкой специальные детекторы, установленные на территории Японии и в штате Огайо (США), зарегистрировали поток нейтрино — элементарных частиц, рождающихся при очень высоких температурах в процессе коллапса ядра звезды и легко проникающих сквозь ее оболочку. Эти наблюдения подтвердили ранее высказанное предположение о том, что около 10% массы коллапсирующего ядра звезды излучается в виде нейтрино в тот момент, когда само ядро сжимается в нейтронную звезду. У очень массивных звезд при вспышке сверхновой ядра сжимаются до еще больших плотностей и, вероятно, превращаются в черные дыры, но сброс внешних слоев звезды все же происходит. В последние годы появились указания на связь некоторых космических гамма-всплесков со сверхновыми. Возможно, и природа космических гамма-всплесков связана с природой взрывов.

Вспышки сверхновых оказывают сильное и многообразное влияние на окружающую межзвездную среду. Сбрасываемая с огромной скоростью оболочка сверхновой сгребает и сжимает окружающий ее газ, что может дать толчок к образованию из облаков газа новых звезд. Группа астрономов во главе с доктором Джоном Хьюгесом (Rutgers University), используя наблюдения на орбитальной рентгеновской обсерватории «Чандра» (NASA), сделала важное открытие, проливающее свет на то, как при вспышках сверхновой звезды образуются кремний, железо и другие элементы. Рентгеновское изображение остатка сверхновой Cassiopeia А (Cas A) позволяет увидеть сгустки кремния, серы и железа, выброшенные при взрыве из внутренних областей звезды.

Высокое качество, четкость и информативность получаемых обсерваторией «Чандра» изображений остатка сверхновой Cas A позволили астрономам не только определить химический состав многих узлов этого остатка, но и узнать, где именно эти узлы образовались. Например, самые компактные и яркие узлы состоят главным образом из кремния и серы с очень малым содержанием железа. Это указывает на то, что они образовались глубоко внутри звезды, где температура достигала трех миллиардов градусов во время коллапса, закончившегося взрывом сверхновой. В других узлах астрономы обнаружили очень большое содержание железа с примесями некоторого количества кремния и серы. Это вещество образовалось еще глубже — в тех частях, где температура во время взрыва достигала более высоких значений — от четырех до пяти миллиардов градусов. Сравнение расположений в остатке сверхновой Cas A богатых кремнием как ярких, так и более слабых узлов, обогащенных железом, позволило обнаружить, что «железные» детали, происходящие из самых глубоких слоев звезды, располагаются на внешних краях остатка. Это означает, что взрыв выбросил «железные» узлы дальше всех остальных. И даже сейчас они, по-видимому, удаляются от центра взрыва с большей скоростью. Изучение полученных «Чандрой» данных позволит остановиться на одном из нескольких предложенных теоретиками механизмов, объясняющих природу вспышки сверхновой, динамику процесса и происхождение новых элементов.

Сверхновые SN I имеют весьма сходные спектры (с отсутствием водородных линий) и формы кривых блеска, в то время как спектры SN II содержат яркие линии водорода и отличаются разнообразием как спектров, так и кривых блеска. В таком виде классификация сверхновых существовала до середины 80-х годов прошлого столетия. А с началом широкого применения ПЗС-приемников количество и качество наблюдательного материала существенно возросли, что позволило получать спектрограммы для недоступных прежде слабых объектов, с гораздо большей точностью определять интенсивность и ширину линий, а также регистрировать в спектрах более слабые линии. В результате казавшаяся установившейся двоичная классификация сверхновых стала быстро изменяться и усложняться.

Различаются сверхновые и по типам галактик, в которых они вспыхивают. В спиральных галактиках вспыхивают сверхновые обоих типов, а вот в эллиптических, где почти нет межзвездной среды и процесс звездообразования закончился, наблюдаются только сверхновые типа SN I, очевидно, до взрыва — это очень старые звезды, массы которых близки к солнечной. А так как спектры и кривые блеска сверхновых этого типа очень похожи, то, значит, и в спиральных галактиках взрываются такие же звезды. Закономерный конец эволюционного пути звезд с массами, близкими к солнечной, — превращение в белого карлика с одновременным образованием планетарной туманности. В составе белого карлика почти нет водорода, поскольку он является конечным продуктом эволюции нормальной звезды.

Ежегодно в нашей Галактике образуется несколько планетарных туманностей, следовательно, большая часть звезд такой массы спокойно завершает свой жизненный путь, и только раз в сто лет происходит вспышка сверхновой SN I типа. Какие же причины определяют совершенно особый финал, не схожий с судьбой других таких же звезд? Знаменитый индийский астрофизик С. Чандрасекар показал, что в том случае, если белый карлик имеет массу, меньшую, чем примерно 1,4 массы Солнца, он будет спокойно «доживать» свой век. Но если он находится в достаточно тесной двойной системе, его мощная гравитация способна «стягивать» материю со звезды-компаньона, что приводит к постепенному увеличению массы, и когда она переходит допустимый предел — происходит мощный взрыв, приводящий к гибели звезды.

Сверхновые SN II явно связаны с молодыми, массивными звездами, в оболочках которых в большом количестве присутствует водород. Вспышки этого типа сверхновых считают конечной стадией эволюции звезд с начальной массой более 8—10 масс Солнца. Вообще же, эволюция таких звезд протекает достаточно быстро — за несколько миллионов лет они сжигают свой водород, затем — гелий, превращающийся в углерод, а затем и атомы углерода начинают преобразовываться в атомы с более высокими атомными номерами.

В природе превращения элементов с большим выделением энергии заканчиваются на железе, ядра которого являются самыми стабильными, и выделения энергии при их слиянии не происходит. Таким образом, когда ядро звезды становится железным, выделение энергии в нем прекращается, сопротивляться гравитационным силам оно уже не может, а потому начинает быстро сжиматься, или коллапсировать.

Процессы, происходящие при коллапсе, все еще далеки от полного понимания. Однако известно, что если все вещество ядра превращается в нейтроны, то оно может противостоять силам притяжения — ядро звезды превращается в «нейтронную звезду», и коллапс останавливается. При этом выделяется огромная энергия, поступающая в оболочку звезды и вызывающая расширение, которое мы и видим как вспышку сверхновой.

Из этого следовало ожидать генетическую связь между вспышками сверхновых и образованием нейтронных звезд и черных дыр. Если эволюция звезды до этого происходила «спокойно», то ее оболочка должна иметь радиус, в сотни раз превосходящий радиус Солнца, а также сохранить достаточное количество водорода для объяснения спектра сверхновых SN II.

Сверхновые и пульсары

О том, что после взрыва сверхновой кроме расширяющейся оболочки и различных типов излучений остаются и другие объекты, стало известно в 1968 году благодаря тому, что годом раньше радиоастрономы открыли пульсары — радиоисточники, излучение которых сосредоточено в отдельных импульсах, повторяющихся через строго определенный промежуток времени. Ученые были поражены строгой периодичностью импульсов и краткостью их периодов. Наибольшее же внимание вызвал пульсар, координаты которого были близки к координатам очень интересной для астрономов туманности, расположенной в южном созвездии Парусов, которая считается остатком вспышки сверхновой звезды — его период составлял всего лишь 0,089 секунды. А после открытия пульсара в центре Крабовидной туманности (его период составлял 1/30 секунды) стало ясно, что пульсары каким-то образом связаны с взрывами сверхновых. В январе 1969 года пульсар из Крабовидной туманности был отождествлен со слабой звездочкой 16-й величины, изменяющей свой блеск с таким же периодом, а в 1977 году удалось отождествить со звездой и пульсар в созвездии Парусов.

Периодичность излучения пульсаров связана с их быстрым вращением, но ни одна обычная звезда, даже белый карлик, не могла бы вращаться с периодом, характерным для пульсаров — она была бы немедленно разорвана центробежными силами, и только нейтронная звезда, очень плотная и компактная, могла бы устоять перед ними. В результате анализа множества вариантов ученые пришли к заключению, что взрывы сверхновых сопровождаются образованием нейтронных звезд — качественно нового типа объектов, существование которых было предсказано теорией эволюции звезд большой массы.

Сверхновые и черные дыры

Первое доказательство прямой связи между взрывом сверхновой и образованием черной дыры удалось получить испанским астрономам. В результате исследования излучения, испускаемого звездой, вращающейся вокруг черной дыры в двойной системе Nova Scorpii 1994, обнаружилось, что она содержит большое количество кислорода, магния, кремния и серы. Есть предположение, что эти элементы были захвачены ею, когда соседняя звезда, пережив взрыв сверхновой, превратилась в черную дыру.

Сверхновые (в особенности же сверхновые типа Ia) являются одними из самых ярких звездообразных объектов во Вселенной, поэтому даже самые удаленные из них вполне можно исследовать с помощью имеющегося в настоящее время оборудования. Многие сверхновые типа Ia были открыты в относительно близких галактиках. Достаточно точные оценки расстояний до этих галактик позволили определить светимость вспыхивающих в них сверхновых. Если считать, что далекие сверхновые имеют в среднем такую же светимость, то по наблюдаемой звездной величине в максимуме блеска можно оценить и расстояние до них. Сопоставление же расстояния до сверхновой со скоростью удаления (красным смещением) галактики, в которой она вспыхнула, дает возможность определить основную величину, характеризующую расширение Вселенной — так называемую постоянную Хаббла.

Еще 10 лет назад для нее получали значения, различающиеся почти в два раза — от 55 до 100 км/c Мпк, на сегодняшний же момент точность удалось значительно увеличить, в результате чего принимается значение 72 км/с Мпк (с ошибкой около 10%). Для далеких сверхновых, красное смещение которых близко к 1, соотношение между расстоянием и красным смещением позволяет также определить величины, зависящие от плотности вещества во Вселенной. Согласно общей теории относительности Эйнштейна именно плотность вещества определяет кривизну пространства, а следовательно, и дальнейшую судьбу Вселенной. А именно: будет ли она расширяться бесконечно или этот процесс когда-нибудь остановится и сменится сжатием. Последние исследования сверхновых показали, что скорее всего плотность вещества во Вселенной недостаточна, чтобы остановить расширение, и оно будет продолжаться. А для того чтобы подтвердить этот вывод, необходимы новые наблюдения сверхновых.

Довольно редко люди могут наблюдать такое интересное явление как сверхновая звезда. Но это не обыкновенное рождение звезды, ведь в нашей галактике ежегодно рождаются до десяти звезд. А сверхновая звезда - явление, которое можно наблюдать только раз в сто лет. Так ярко и красиво умирают звезды.

Чтобы понять, почему происходит взрыв сверхновой, нужно вернуться к самому рождению звезды. В пространстве летает водород, который постепенно собирается в облака. Когда облако достаточно большое, в его центре начинает собираться уплотнённый водород, и температура постепенно повышается. Под действием гравитации собирается ядро будущей звезды, где благодаря повышенной температуре и возрастающему тяготению начинает проходить реакция термоядерного синтеза. От того, сколько водорода сможет притянуть к себе звезда, зависит ее будущий размер - от красного карлика до голубого гиганта. Со временем устанавливается баланс работы звезды, внешние слои давят на ядро, а ядро расширяется благодаря энергии термоядерного синтеза.

Звезда представляет собой своеобразный и, как у любого реактора, когда-нибудь у нее закончится топливо - водород. Но чтобы мы увидели, как взорвалась сверхновая звезда, должно пройти еще немного времени, ведь в реакторе вместо водорода образовалось другое топливо (гелий), которое начнет сжигать звезда, превращая его в кислород, а затем в углерод. И так будет продолжаться, пока в ядре звезды не образуется железо, которое при термоядерной реакции не выделяет энергию, а потребляет ее. При таких условиях и может произойти взрыв сверхновой звезды.

Ядро становится тяжелее и холоднее, в результате более легкие верхние слои начинают падать на него. Снова запускается синтеза, но на этот раз быстрее обычного, в результате чего звезда просто взрывается, раскидывая в окружающее пространство свою материю. В зависимости от после нее могут тоже остаться известные из них - (вещество с неимоверно высокой плотностью, которое имеет очень большую и может излучать свет). Такие образования остаются после очень больших звезд, которые сумели произвести термоядерный синтез до очень тяжелых элементов. Звезды поменьше оставляют после себя нейтронные или железные малые звезды, которые почти не излучают света, но тоже имеют высокую плотность материи.

Новые и сверхновые звезды тесно связаны, ведь смерть одной из них может означать рождение новой. Этот процесс продолжается бесконечно. Сверхновая звезда разносит в окружающее пространство миллионы тон материи, которая снова собирается в облака, и начинается формирование нового небесного тела. Ученые утверждают, что все тяжелые элементы, которые находятся в нашей Солнечной системе, Солнце во время своего рождения "украло" у взорвавшейся когда-то звезды. Природа удивительна, и смерть чего-то одного всегда означает рождение чего-то нового. В открытом космосе материя распадается, а в звездах образуется, создавая великий баланс Вселенной.

Когда заканчивается звёздное топливо, поддерживающее термоядерную реакцию, температура внутренних областей звезды начинает понижаться и они не могут противостоять гравитационному сжатию. Звезда коллапсирует, т.е. её вещество падает внутрь. При этом иногда наблюдаются вспышка сверхновой звезды или другие бурные явления. Сверхновая звезда может засиять ярче миллиардов обычных звёзд и выделить примерно столько же световой энергии, сколько наше Солнце выделяет за миллиард лет..

За последнее тысячелетие в Нашей Галактике вспыхнули только пять сверхновых (1006, 1054, 1181, 1572, 1604). По крайней мере, столько их отмечено в письменных источниках (ещё какие-то могли быть не отмечены или взорваться за густыми газопылевыми облаками). Но сейчас астрономам каждый год удаётся наблюдать до 10 вспышек сверхновых в других галактиках. Тем не менее, такие вспышки - это всё равно редкое явление. Чаще внешние оболочки звезды сбрасываются без столь мощного взрыва. Или звезда "умирает" ещё спокойнее. Итак, возможны несколько сценариев звёздного коллапса. Рассмотрим их по отдельности.

Тихое угасание свойственно звёздам с массой менее 0,8 солнечной. Тихо угасают карликовые звёзды (все красные и коричневые карлики, а также, наверное, часть оранжевых карликов). Они превращаются в "прохладные" гелиево-водородные шары вроде Юпитера, но всё-таки во много раз больше его (в чёрные карлики). Разумеется, этот процесс происходит очень медленно, так как звезда после исчерпания термоядерного топлива ещё очень долго светит за счёт постепенного гравитационного сжатия. Наша область Вселенной столь молода, что, наверное, тихо угасших звёзд пока ещё нет.

Коллапс с образованием белого карлика характерен для звёзд с массой от 0,8 до 8 солнечных. "Выгоревшие" звёзды сбрасывают свою оболочку, из которой образуется планетарная туманность из пыли и газа. Это происходит следующим образом. Пока в ядре "горел" гелий, который превращался в углерод, высокая температура ядра (т.е. большая скорость частиц) препятствовала гравитационному сжатию ядра. Когда гелий в ядре закончился, остывающее углеродное ядро стало постепенно сжиматься, увлекая за собой внутрь звезды гелий (а также водород) из наружных слоёв. Тогда этот новый гелий "загорелся" в оболочке, и оболочка стала с огромной скоростью расширяться. Оказалось, что сравнительно "лёгкая" звезда не может удержать разлетающуюся оболочку, и она превращается в так называемую планетарную туманность. Раньше считали, что из таких туманностей образуются планеты. Оказалось, что это не так: подобные туманности расширяются и рассеиваются в пространстве, но название сохранилось. Скорость расширения планетарных туманностей составляет от 5 до 100 км/с, а в среднем - 20 км/с. Ядро звезды продолжает сжиматься, т.е. коллапсирует с образованием бело-голубого карлика, который после некоторого остывания становится белым карликом. Молодые белые карлики скрыты в пылевом коконе, который ещё не успел превратиться в хорошо заметную планетарную туманность. Вспышки сверхновой при таком коллапсе не происходит, и этот сценарий окончания активной жизни звезды очень распространён. Белые карлики описаны выше, и можно только напомнить, что по объёму они соразмерны нашей планете, что атомы в них укомплектованы максимально плотно, что вещество сжато до плотностей в полтора миллиарда раз больше, чем у воды, и что в относительно стабильном состоянии эти звёзды удерживаются за счёт отталкивания тесно прижатых друг к другу электронов.

Если звезда изначально была чуть массивней, то термоядерная реакция заканчивается не на стадии горения гелия, а чуть позже (например, на стадии горения углерода), но это не принципиально меняет судьбу звезды.

Белые карлики "тлеют" неопределённо долгое время и светятся за счёт очень медленного гравитационного сжатия. Но в некоторых особых случаях они быстро коллапсируют и взрываются с полным разрушением.

Коллапс белого карлика с полным разрушением звезды бывает в том случае, если белый карлик перетянет со спутника вещество до критической массы, составляющей 1,44 солнечной. Эта масса называется чандрасекаровской по имени индийского математика Субраманьяна Чандрасекара, вычислившего её и открывшего возможность коллапса. При такой массе взаимное отталкивание электронов уже не может препятствовать гравитации. Это приводит к внезапному падению вещества внуть звезды, к резкому сжатию звезды и увеличению температуры, "вспыхиванию" углерода в центре звезды и его "сгоранию" в идущей наружу волне. И хотя термоядерное "горение" углерода не совсем взрывное (не детонация, а дефлаграция, т.е. дозвуковое "горение"), звезда полностью разрушается и её остатки разлетаются во все стороны со скоростью 10000 км/с. Этот механизм изучен в 1960 г. Хойлом и Фаулером и носит название взрыва сверхновой звезды I типа.

Все взрывы звёзд этого типа в первом приближении одинаковы: три недели светимость растёт, а потом постепенно падает в течение 6 месяцев или чуть более долгого времени. Поэтому по вспышкам сверхновых I типа можно определять расстояния до других галактик, т.к. такие вспышки видны издалека, а их истинную яркость мы знаем. Недавно, однако, выяснилось, что эти сверхновые взрываются несимметрично (хотя бы потому, что у них есть близкий спутник), и их яркость на 10% зависит от того, с какой стороны видеть вспышку. Для определения расстояний лучше измерять блеск этих сверхновых не в момент максимума яркости, а через одну-две недели спустя, когда видимая поверхность оболочки становится почти сферической.

Возможность наблюдать очень далёкие сверхновые I типа помогает изучать скорость расширения Вселенной в разные эпохи (светимость звезды говорит о расстоянии до неё и времени события, а цвет - о скорости её удаления). Так было открыто замедление расширения Вселенной в первые 8,7 млрд. лет и ускорение этого расширения в последние 5 млрд. лет, т.е. "Второй Большой взрыв".

Коллапс с образованием нейтронной звезды присущ звёздам, которые более чем в 8 раз массивнее Солнца. На заключительной стадии их развития внутри кремниевой оболочки начинает формироваться железное ядро. Такое ядро вырастает за сутки и коллапсирует менее, чем за 1 секунду, как только достигнет чандрасекаровского предела. Для ядра этот предел составляет от 1,2 до 1,5 массы Солнца. Вещество падает внутрь звезды, причём отталкивание электронов не может остановить падения. Вещество продолжает разгоняться, падать и сжиматься до тех пор, пока не начинает сказываться отталкивание между нуклонами атомного ядра (протонами, нейтронами). Строго говоря, сжатие происходит даже более этого предела: падающее вещество по инерции превосходит точку равновесия из-за упругости нуклонов на 50% ("максимальное стискивание"). После этого "сжатый резиновый мяч отдаёт назад", и ударная волна выходит во внешние слои звезды со скоростью от 30000 до 50000 км/с. Внешние части звезды разлетаются во все стороны, а в центре взорвавшейся области остаётся компактная нейтронная звезда. Это явление называется взрывом сверхновой II типа. Взрывы эти различны по мощности и другим параметрам, т.к. взрываются звёзды различной массы и различного химического состава [разные источники]. Есть указание, что при взрыве II типа энергии выделяется не больше, чем при взрыве I типа, т.к. часть энергии поглощается оболочкой, но, может быть, это устаревшие сведения.

В описанном сценарии имеется ряд неясностей. В ходе астрономических наблюдений установлено, что массивные звёзды действительно взрываются, в результате чего образуются расширяющиеся туманности, а в центре остаётся быстро вращающаяся нейтронная звезда, излучающая регулярные импульсы радиоволн (пульсар). Но теория показывает, что идущая наружу ударная волна должна расщеплять атомы на нуклоны (протоны, нейтроны). На это должна тратиться энергия, в результате чего ударная волна должна погаснуть. Но почему-то этого не происходит: ударная волна за несколько секунд достигает поверхности ядра, далее - поверхности звезды и сдувает вещество. Авторы рассматривают несколько гипотез для разных масс, но они не кажутся убедительными. Возможно, в состоянии "максимального стискивания" или в ходе взаимодействия ударной волны с продолжающим падать веществом в силу вступают какие-то принципиально новые и неизвестные нам физические законы.

В пределах Нашей Галактики связь остатков сверхновой звезды с пульсаром к середине 1980-х годов была известна только для Крабовидной туманности.

Коллапс с образованием черной дыры присущ наиболее массивным звёздам. Он тоже называется взрывом сверхновой II типа, происходит по сходному сценарию, но в результате него вместо нейтронной звезды возникает чёрная дыра. Это происходит в тех случаях, когда масса коллапсирующей звезды столь велика, что взаимное отталкивание между нуклонами (протонами, нейтронами) не может препятствовать гравитационному сжатию. Нужно отметить, что это явление в теоретическом плане менее понятно и почти не изучено методами наблюдательной астрономии. Почему, например, вещество не полностью проваливается в чёрную дыру? Имеется ли что-то аналогичное "максимальному стискиванию"? Имеется ли идущая наружу ударная волна? Почему она не тормозится?

Недавно произведены наблюдения, из которых следует, что ударная волна сверхновой рождает в расширяющейся оболочке прежней гигантской звезды гамма- вспышку или рентгеновскую вспышку (см. раздел о гамма-всплесках).

Каждая сверхновая II типа производит активного изотопа алюминия (26Al) около 0,0001 массы Солнца. Распад этого изотопа создаёт жёсткое излучение, которое длительно наблюдалось, и по его интенсивности рассчитано, что в Галактике менее трёх солнечных масс данного изотопа. Это означает, что сверхновые IIтипа должны взрываться в Галактике в среднем два раза в столетие, чего не наблюдается. Вероятно, в последние века многие подобные взрывы не замечались (например, были далеко или происходили за облаками космической пыли). В любом случае сверхновой звезде давно пора взрываться...

Старинные летописи и хроники сообщают нам, что изредка на небе внезапно появлялись звезды исключительно большой яркости. Они быстро увеличивали яркость, а затем медленно, в течение нескольких месяцев угасали и переставали быть видимыми. Вблизи максимума блеска эти звезды были видны даже днем. Наиболее яркими были вспышки в 1006 и 1054 годах, сведения о которых содержатся в китайских и японских трактатах. В 1572 году такая звезда вспыхнула в созвездии Кассиопеи и наблюдалась выдающимся астрономом Тихо Браге, а в 1604 году подобную вспышку в созвездии Змееносца наблюдал Иоганн Кеплер. С тех пор, за четыре столетия "телескопической" эры в астрономии подобных вспышек не наблюдалось. Однако с развитием наблюдательной астрономии исследователи стали обнаруживать довольно большое количество похожих вспышек, правда, не достигавших очень большой яркости. Эти звезды, внезапно появляющиеся и вскоре как бы бесследно исчезающие, стали называть "Новыми". Казалось, что и звезды 1006 и 1054 годов, звезды Тихо и Кеплера были такими же вспышками, только очень близкими и из-за этого более яркими. Но оказалось, что это не так. В 1885 году астроном Хартвиг на обсерватории в Тарту заметил появление новой звезды в хорошо известной туманности Андромеды. Эта звезда достигла 6-й видимой звездной величины, то есть мощность ее излучения была лишь в 4 раза меньше, чем от всей туманности. Тогда это не удивило астрономов: ведь природа туманности Андромеды была неизвестна, предполагалось, что это всего лишь довольно близкое к Солнцу облако пыли и газа. Только в 20-х годах ХХ века окончательно стало ясно, что туманность Андромеды и другие спиральные туманности - огромные звездные системы, состоящие из сотен миллиардов звезд и удаленные от нас на миллионы световых лет. В туманности Андромеды были обнаружены и вспышки обычных Новых звезд, видимых как объекты 17-18 звездной величины. Стало ясно, что звезда 1885 года превосходила Новые звезды по мощности излучения в десятки тысяч раз, на короткое время ее блеск был почти равен блеску огромной звездной системы! Очевидно, природа этих вспышек должна быть различной. Позднее эти наиболее мощные вспышки получили название "Сверхновые звезды", в котором приставка "сверх" означала их большую мощность излучения, а не большую "новизну".

Поиск и наблюдения Сверхновых

На фотографиях далеких галактик вспышки сверхновых стали замечать довольно часто, но эти открытия были случайными и не могли дать сведений, необходимых для объяснения причины и механизма этих грандиозных вспышек. Однако в 1936 году астрономы Бааде и Цвикки, работавшие на Паломарской обсерватории в США, начали планомерный систематический поиск сверхновых. В их распоряжении был телескоп системы Шмидта, позволяющий фотографировать области в несколько десятков квадратных градусов и дающий очень четкие изображения даже слабых звезд и галактик. Сравнивая фотографии, одной области неба, полученные через несколько недель, можно было легко заметить появление новых звезд в галактиках, хорошо различимых на снимках. Для фотографирования выбирались области неба, наиболее богатые близкими галактиками, где их число на одном снимке могло достигать нескольких десятков и вероятность обнаружить сверхновые была наибольшей.

В 1937 году Бааде и Цвикки удалось открыть 6 сверхновых. Среди них были довольно яркие звезды 1937С и 1937D (астрономы решили обозначать сверхновые, добавляя к году открытия буквы, показывающие очередность открытия в текущем году), достигшие в максимуме соответственно 8 и 12 звездной величин. Для них были получены кривые блеска - зависимость изменения блеска со временем - и большое количество спектрограмм - фотографий спектров звезды, показывающих зависимость интенсивности излучения от длины волны. Этот материал на несколько десятилетий стал основным для всех исследователей, пытавшихся разгадать причины вспышек сверхновых.

К сожалению, вторая мировая война прервала так успешно начавшуюся программу наблюдений. Систематический поиск сверхновых на Паломарской обсерватории был возобновлен только в 1958 году, но уже с более крупным телескопом системы Шмидта, позволявшим фотографировать звезды до 22-23 величин. С 1960 года к этой работе присоединился ряд других обсерваторий в разных странах мира, где имелись подходящие телескопы. В СССР такая работа велась на Крымской станции ГАИШ, где установлен телескоп-астрограф с диаметром объектива 40 см и очень большим полем зрения - почти 100 квадратных градусов, и в Абастуманской астрофизической обсерватории в Грузии - на телескопе Шмидта с входным отверстием 36 см. И в Крыму, и в Абастумани было сделано немало открытий сверхновых. Из других обсерваторий наибольшее число открытий приходилось на обсерваторию Асиаго в Италии, где работали два телескопа системы Шмидта. Но все же Паломарская обсерватория оставалась лидером и по числу открытий, и по предельной звездной величине доступных для обнаружения звезд. Общими усилиями в 60-х и 70-х годах открывали до 20 сверхновых за год, и их число стало быстро расти. Сразу после открытия начинались фотометрические и спектроскопические наблюдения на крупных телескопах.

В 1974 году умер Ф.Цвикки, и вскоре поиск сверхновых на Паломарской обсерватории был прекращен. Число открываемых сверхновых уменьшилось, однако с начала 80-х годов снова начало расти. Были начаты новые программы поиска на южном небе - в обсерватории Серро эль Робле в Чили, к тому же открывать сверхновые стали любители астрономии. Оказалось, что с помощью небольших любительских телескопов с объективами 20-30 см можно довольно успешно искать вспышки ярких сверхновых, систематически наблюдая визуально определенный набор галактик. Наибольшего успеха добился священник из Австралии Роберт Эванс, которому удавалось с начала 80-х годов открывать до 6 сверхновых в год. Неудивительно, что астрономы-профессионалы шутили о его "прямой связи с небесами".

В 1987 году была открыта ярчайшая сверхновая XX века - SN 1987A в галактике Большое Магелланово Облако, являющейся "спутником" нашей Галактики и удаленной от нас всего на 55 килопарсек. В течение некоторого времени эта сверхновая была видна даже невооруженным глазом, достигнув в максимуме блеска около 4 звездной величины. Однако наблюдать ее можно было только в южном полушарии. Для этой сверхновой были получены уникальные по точности и продолжительности ряды фотометрических и спектральных наблюдений, и сейчас астрономы продолжают следить, как развивается процесс превращения сверхновой в расширяющуюся газовую туманность.


Сверхновая 1987A. Вверху слева - фотография области, где вспыхнула сверхновая, полученная задолго до вспышки. Звезда, которая вскоре взорвется, отмечена стрелкой. Вверху справа - фотография той же области неба, когда сверхновая была около максимума блеска. Внизу - так выглядит сверхновая спустя 12 лет после вспышки. Кольца вокруг сверхновой - межзвездный газ (частично выброшенный звездой-предсверхновой еще до вспышки), ионизованный при вспышке и продолжающий светиться.

В середине 80-х годов стало ясно, что эпоха фотографии в астрономии заканчивается. Стремительно совершенствовавшиеся ПЗС-приемники во много раз превосходили фотографическую эмульсию по чувствительности и регистрируемому диапазону длин волн, практически не уступая ей по разрешению. Изображение, полученное ПЗС-камерой, можно было сразу видеть на экране компьютера и сравнивать с полученными ранее, а для фотографии процесс проявления, сушки и сравнения занимал в лучшем случае сутки. Единственное оставшееся преимущество фотопластинок - возможность фотографирования больших областей неба - также оказалось для поиска сверхновых несущественным: телескоп с ПЗС-камерой мог получить по отдельности изображения всех галактик, попадающих на фотопластинку, за время сравнимое с фотографической экспозицией. Появились проекты полностью автоматизированных программ поиска сверхновых, в которых телескоп по заранее введенной программе наводится на выбранные галактики, а полученные изображения сравниваются компьютером с полученными ранее. Только если обнаружен новый объект, компьютер подает сигнал астроному, который и выясняет, действительно ли зафиксирована вспышка сверхновой. В 90-х годах такая система, использующая 80-см телескоп-рефлектор, начала работать в Ликской обсерватории (США).

Доступность простых ПЗС-камер для любителей астрономии привела к тому, что от визуальных наблюдений они переходят к ПЗС-наблюдениям, и тогда для телескопов с объективами 20-30 см становятся доступными звезды до 18 и даже 19 величины. Внедрение автоматизированного поиска и рост числа любителей астрономии, занимающихся поиском сверхновых с помощью ПЗС-камер, привел к лавинообразному росту числа открытий: в настоящее время открывется более 100 сверхновых в год, а общее количество открытий превысило 1500. В последние годы был начат также поиск очень далеких и слабых сверхновых на крупнейших телескопах с диаметром зеркала 3-4 метра. Оказалось, что исследования сверхновых, достигающих в максимуме блеска 23-24 величины, могут дать ответы на многие вопросы о строении и судьбе всей Вселенной. За одну ночь наблюдений на таких телескопах, оснащенных самыми совершенными ПЗС-камерами, можно открыть более 10 далеких сверхновых! Несколько изображениий таких сверхновых показаны на приведенном ниже рисунке.

Почти для всех сверхновых, открываемые в настоящее время, удается получить хотя бы один спектр, и для многих известны кривые блеска (в этом также велика заслуга любителей астрономии). Так что объем доступного для анализа наблюдательного материала очень велик, и казалось бы, все вопросы о природе этих грандиозных явлений должны быть решены. К сожалению, пока это не так. Рассмотрим подробнее основные вопросы, встающие перед исследователями сверхновых, и наиболее вероятные на сегодняшний день ответы на них.

Классификация Сверхновых, кривые блеска и спектры

Прежде чем делать какие-то выводы о физической природе явления, необходимо иметь полное представление о его наблюдаемых проявлениях, которые должны быть должным образом классифицированы. Естественно, самый первый вопрос, вставший перед исследователями сверхновых, был - одинаковы ли они, а если нет, то насколько отличаются и поддаются ли классификации. Уже первые сверхновые, открытые Бааде и Цвикки, показали существенные различия в кривых блеска и спектрах. В 1941 году Р.Минковский предложил разделить сверхновые на два основных типа по характеру спектров. К I типу он отнес сверхновые, спектры которых были совершенно не похожи на спектры всех известных в то время объектов. Линии наиболее распространенного во Вселенной элемента - водорода - совершенно отсутствовали, весь спектр состоял из широких максимумов и минимумов, не поддававшихся отождествлению, ультрафиолетовая часть спектра была очень слабой. Ко II типу были отнесены сверхновые, спектры которых показали некоторое сходство с "обычными" Новыми звездами присутствием очень интенсивных эмиссионных линий водорода, ультрафиолетовая часть спектра у них яркая.

Спектры сверхновых I типа оставались загадочными в течение трех десятилетий. Только после того, как Ю.П.Псковский показал, что полосы в спектрах - это не что иное, как участки непрерывного спектра между широкими и довольно глубокими линиями поглощения, отождествление спектров сверхновых I типа сдвинулось с мертвой точки. Был отождествлен ряд линий поглощения, прежде всего наиболее интенсивные линии однократно ионизованных кальция и кремния. Длины волн этих линий сдвинуты в фиолетовую сторону спектра из-за эффекта Доплера в расширяющейся со скоростью 10-15 тыс. км в секунду оболочке. Отождествить все линии в спектрах сверхновых I типа чрезвычайно трудно, так как они сильно расширены и накладываются друг на друга; кроме упомянутых кальция и кремния удалось отождествить линии магния и железа.

Анализ спектров сверхновых позволил сделать важные выводы: в оболочках, выброшенных при вспышке сверхновых I типа, почти нет водорода; в то время как состав оболочек сверхновых II типа почти такой же, как у солнечной атмосферы. Скорости расширения оболочек - от 5 до 15-20 тыс. км/c, температура фотосферы около максимума - 10-20 тыс. градусов. Температура быстро падает и через 1-2 месяца достигает значения 5-6 тыс. градусов.

Различались у сверхновых и кривые блеска: для I типа все они были очень похожими, имеют характерную форму с очень быстрым ростом блеска к максимуму, который длится не более 2-3 суток, быстрым падением блеска на 3 звездные величины за 25-40 суток и последующим медленным ослаблением, практически линейным в шкале звездных величин, что соответствует экспоненциальному ослаблению светимости.

Кривые блеска сверхновых II типа оказались гораздо более разнообразными. Некоторые были похожи на кривые блеска сверхновых I типа, только с более медленным и продолжительным падением блеска до начала линейного "хвоста", у других сразу после максимума начинается участок почти постоянного блеска - так называемое "плато", которое может продолжаться до 100 суток. Затем блеск резко падает и выходит на линейный "хвост". Все ранние кривые блеска были получены на основании фотографических наблюдений в так называемой фотографической системе звездных величин, соответствующей чувствительности обычных фотопластинок (интервал длин волн 3500-5000 A). Уже использование в дополение к ней фотовизуальной системы (5000-6000 A) позволило получить важные сведения об изменении показателя цвета (или просто "цвета") сверхновых: оказалось, что после максимума сверхновые обеих типов непрерывно "краснеют", то есть основная часть излучения сдвигается в сторону более длинных волн. Это покраснение прекращается на стадии линейного падения блеска и может даже смениться "поголубением" сверхновых.

Кроме этого, сверхновые I и II типов различались по типам галактик, в которых они вспыхивали. Сверхновые типа II были обнаружены только в спиральных галактиках, где в настоящее время продолжают образовываться звезды и присутствуют как старые звезды малой массы, так и молодые, массивные и "короткоживущие" (всего несколько миллионов лет) звезды. Сверхновые I типа вспыхивают как в спиральных, так и в эллиптических галактиках, где, как считается, интенсивное образование звезд не происходит уже миллиарды лет.

В таком виде классификация сверхновых сохранялась до середины 80-х годов. Начало широкого применения в астрономии ПЗС-приемников позволило существенно увеличить количество и качество наблюдательного материала. Современная аппаратура позволяла получать спектрограммы для слабых, недоступных прежде объектов; с гораздо большей точностью можно было определять интенсивности и ширины линий, регистрировать более слабые линии в спектрах. ПЗС-приемники, инфракрасные детекторы и приборы, установленные на космических аппаратах, позволили наблюдать сверхновые во всем диапазоне оптического излучения от ультрафиолетового до далекого инфракрасного диапазона; проводились также гамма-, рентгеновские и радио-наблюдения сверхновых.

В результате казавшаяся установившейся двоичная классификация сверхновых стала быстро изменяться и усложняться. Оказалось, что I тип сверхновых далеко не так однороден, как казалось. В спектрах этих сверхновых обнаружились существенные различия, наиболее значительными из них была интенсивность линии однократно ионизованного кремния, наблюдавшаяся на длине волны около 6100 А. Для большинства сверхновых I типа эта линия поглощения около максимума блеска была самой заметной деталью в спектре, однако для некоторых сверхновых она практически отсутствовала, а наиболее интенсивными были линии поглощения гелия.

Эти сверхновые получили обозначение Ib, а "классические" сверхновые I типа стали обозначать Ia. В дальнейшем оказалось, что у некоторых сверхновых Ib отсутствуют и линии гелия, и их назвали типом Ic. Эти новые типы сверхновых отличались от "классических" Ia и по кривым блеска, которые оказались достаточно разнообразными, хотя по форме и похожи на кривые блеска сверхновых Ia. Сверхновые типа Ib/c оказались также источниками радиоизлучения. Все они были обнаружены в спиральных галактиках, в областях, где возможно недавно происходило образование звезд и в настоящее время еще существуют достаточно массивные звезды.

Кривые блеска сверхновых Ia в красном и инфракрасных диапазонах спектра (полосы R,I,J,H,K) сильно отличались от исследовавшихся ранее кривых в полосах B и V. Если на кривой в R заметно "плечо" через 20 дней после максимума, то в фильтре I и более длинноволновых диапазонах появляется настоящий второй максимум. Однако у некоторых сверхновых Ia этот второй максимум отсутствует. Эти сверхновые отличаются также красным цветом в максимуме блеска, пониженной светимостью и некоторыми спектральными особенностями. Первой такой сверхновой была SN 1991bg, и подобные ей объекты пока называются пекулярными сверхновыми Ia или "сверхновыми типа 1991bg". Еще одна разновидность сверхновых Ia, наоборот, отличается повышенной светимостью в максимуме. Для них характерны меньшие интенсивности линий поглощения в спектрах. "Прототип" для них - SN 1991T.

Сверхновые II типа еще в 70-е годы были разделены по характеру кривых блеска на "линейные" (II-L) и имеющие "плато" (II-P). В дальнейшем стали обнаруживать все больше сверхновых II, показывающих те или другие особенности в кривых блеска и спектрах. Так, по кривым блеска резко отличаются от других сверхновых II типа две самые яркие сверхновых последних лет: 1987A и 1993J. Обе имели два максимума на кривых блеска: после вспышки блеск быстро падал, потом начинал снова расти и лишь после второго максимума начиналось окончательное ослабление светимости. В отличие от сверхновых Ia второй максимум наблюдался во всех диапазонах спектра, причем для SN 1987A он был гораздо ярче первого в более длинноволновых диапазонах.

Среди спектральных особенностей наиболее частым и заметным было присутствие наряду с широкими эмиссионными линиями, характерными для расширяющихся оболочек, также системы узких линий излучения или поглощения. Это явление скорее всего связано с присутствием плотной оболочки, окружающей звезду перед вспышкой, такие сверхновые получили обозначение II-n.

Статистика Сверхновых

Как часто вспыхивают сверхновые и каким образом они распределены в галактиках? На эти вопросы должны дать ответ статистические исследования сверхновых.

Казалось бы, дать ответ на первый вопрос достаточно просто: нужно достаточно продолжительное время наблюдать за несколькими галактиками, подсчитать наблюдавшиеся в них сверхновые и разделить число сверхновых на время наблюдений. Но оказалось, что время, охваченное достаточно регулярными наблюдениями, еще слишком мало для определенных выводов для отдельных галактик: в большинстве наблюдалось только одна или две вспышки. Правда, в некоторых галактиках уже зарегистрировано достаточно большое число сверхновых: рекордсмен - галактика NGC 6946, в которой с 1917 года открыто 6 сверхновых. Однако и эти данные не дают точных данных о частоте вспышек. Во-первых, неизвестно точное время наблюдений этой галактики, а во-вторых, почти одновременные для нас вспышки на самом деле могли быть разделены достаточно большими промежутками времени: ведь свет от сверхновых проходит разный путь внутри галактики, а ее размеры в световых годах намного больше, чем время наблюдений. Пока возможно получить оценку частоты вспышек только для некоторой совокупности галактик. Для этого необходимо использовать данные наблюдений по поиску сверхновых: каждое наблюдение дает некоторое "эффективное время слежения" за каждой галактикой, которое зависит от расстояния до галактики, от предельной звездной величины поиска и от характера кривой блеска сверхновой. Для сверхновых разных типов время наблюдений одной и той же галактики будет разным. Объединяя результаты для нескольких галактик, нужно принимать во внимание их различие по массе и светимости, а также по морфологическому типу. В настоящее время принято нормировать результаты на светимость галактик и объединять данные только для галактик с близкими типами. Последние работы, основанные на объединении данных нескольких программ поиска сверхновых, дали такие результаты: в эллиптических галактиках наблюдаются только сверхновые типа Ia, и в "средней" галактике со светимостью 10 10 светимостей Солнца одна сверхновая вспыхивает примерно раз в 500 лет. В такой же по светимости спиральной галактике сверхновые Ia вспыхивают с лишь немного более высокой частотой, однако к ним добавляются сверхновыые типов II и Ib/c, и общая частота вспышек получается примерно раз в 100 лет. Частота вспышек примерно пропорциональна светимости галактик, то есть в гигантских галактиках она значительно выше: в частности, NGC 6946 - спиральная галактика со светимостью 2.8 10 10 светимостей Солнца, следовательно в ней можно ожидать около трех вспышек за 100 лет, и наблюдавшиеся в ней 6 сверхновых можно считать не очень большим отклонением от средней частоты. Наша Галактика поменьше NGC 6946, и в ней можно ожидать одну вспышку в среднем через 50 лет. Однако известно, что за последнее тысячелетие наблюдалось только четыре сверхновых в Галактике. Нет ли здесь противоречия? Оказывается, нет - ведь большая часть Галактики закрыта от нас слоями газа и пыли, и окрестности Солнца, в которых наблюдались эти 4 сверхновые, составляют лишь малую часть Галактики.

Каким образом распределены сверхновые внутри галактик? Конечно, пока можно исследовать только сводные распределения, приведенные к некоторой "средней" галактике, а также распределения относительно деталей структуры спиральных галактик. К этим деталям относятся, в первую очередь, спиральные рукава; в достаточно близких галактиках хорошо видны также области активного звездообразования, выделяемые по облакам ионизованного водорода - области H II, или по скоплениям ярких голубых звезд - OB-ассоциации. Многократно повторяемые по мере увеличения числа открытых сверхновых исследования пространственного распределения дали следующие результаты. Распределения сверхновых всех типов по расстоянию от центров галактик мало различаются между собой и сходны с распределением светимости - плотность падает от центра к краям по экспоненциальному закону. Различия между типами сверхновых проявляются в распределении относительно областей звездообразования: если к спиральным рукавам концентрируются сверхновые всех типов, то к областям H II - только сверхновые типов II и Ib/c. Можно сделать вывод, что время жизни звезды, дающей вспышку типа II или Ib/c - от 10 6 до 10 7 лет, а для типа Ia - около 10 8 лет. Однако сверхновые Ia наблюдаются и в эллиптических галактиках, где, как считается, нет звезд моложе 10 9 лет. Этому противоречию возможно два объяснения - или природа вспышек сверхновых Ia в спиральных и в эллиптических галактиках различна, либо в некоторых эллиптических галактиках все-таки продолжается звездообразование и присутствуют более молодые звезды.

Теоретические модели

На основании всей совокупности наблюдательных данных исследователи пришли к выводу, что вспышка сверхновой должна быть последним этапом в эволюции звезды, после которой она перестает существовать в прежнем виде. Действительно, энергия взрыва сверхновых оценивается как 10 50 - 10 51 эрг, что превышает типичные значения гравитационной энергии связи звезд. Освободившейся при вспышке сверхновой энергии более чем достаточно, чтобы полностью рассеять в пространстве вещество звезды. Какие же звезды и когда заканчивают свою жизнь вспышкой сверхновой, какова природа процессов, приводящих к такому гигантскому выделению энергии?

Данные наблюдений показывают, что сверхновые делятся на несколько типов, различающихся по химическому составу оболочек и их массам, по характеру выделения энергии и по связи с различными типами звездных населений. Сверхновые II типа явно связаны с молодыми, массивными звездами, в их оболочках в большом количестве присутствует водород. Поэтому их вспышки считают конечной стадией эволюции звезд, начальная масса которых составляет больше 8-10 масс Солнца. В центральных частях таких звезд энергия выделяется при реакциях ядерного синтеза, начиная от самой простой - образования гелия при слиянии ядер водорода, и заканчивая образованием ядер железа из кремния. Ядра железа являются самыми стабильными в природе, и выделения энергии при их слиянии не происходит. Таким образом, когда ядро звезды становится железным, выделение энергии в нем прекращается. Ядро не может сопротивляться гравитационным силам и быстро сжимается - коллапсирует. Процессы, происходящие при коллапсе, еще далеки от полного объяснения. Однако известно, что если все вещество ядра звезды превращается в нейтроны, то оно может противостоять силам притяжения. Ядро звезды превращается в "нейтронную звезду" и коллапс останавливается. При этом выделяется огромная энергия, поступающая в оболочку звезды и заставляющая ее начать расширение, которое мы и видим как вспышку сверхновой. Если эволюция звезды до этого происходила "спокойно", то ее оболочка должна иметь радиус в сотни раз превосходящий радиус Солнца, и сохранить достаточное количество водорода для объяснения спектра сверхновых II типа. Если же большая часть оболочки была потеряна при эволюции в тесной двойной системе или каким-либо другим образом, то линий водорода в спектре не будет - мы увидим сверхновую типа Ib или Ic.

В менее массивных звездах эволюция протекает по-другому. После горения водорода ядро становится гелиевым, и начинается реакция превращения гелия в углерод. Однако ядро не нагревается до такой высокой температуры, чтобы начались реакции синтеза с участием углерода. Ядро не может выделять достаточно энергии и сжимается, однако в этом случае сжатие останавливают электроны, находящиеся в вешестве ядра. Ядро звезды превращается в так называемый "белый карлик", а оболочка рассеивается в пространстве в виде планетарной туманности. Индийский астрофизик С.Чандрасекхар показал, что белый карлик может существовать, только если его масса меньше примерно 1.4 массы Солнца. Если белый карлик находится в достаточно тесной двойной системе, то может начаться перетекание вещества с обычной звезды на белый карлик. Масса белого карлика постепенно увеличивается, и когда она превосходит предельную - происходит взрыв, при котором идет быстрое термоядерное горение углерода и кислорода, превращающихся в радиоактивный никель. Звезда полностью разрушается, а в расширяющейся оболочке идет радиоактивный распад никеля в кобальт и далее в железо, который дает энергию для свечения оболочки. Таким образом вспыхивают сверхновые типа Ia.

Современные теоретические исследования сверхновых - это преимущественно расчеты на самых мощных компьютерах моделей взрывающихся звезд. К сожалению, пока не удается создать модель, которая от поздней стадии эволюции звезды привела бы к вспышке сверхновой и к ее наблюдаемым проявлениям. Однако существующие модели достаточно хорошо описывают кривые блеска и спектры подавляющего большинства сверхновых. Обычно это модель оболочки звезды, в которую "вручную" вкладывается энергия взрыва, после чего начинается ее расширение и разогревание. Несмотря на большие трудности, связанные со сложностью и многообразием физических процессов, в последние годы в этом направлениии исследований достигнуты большие успехи.

Влияние Сверхновых на окружающую среду

Вспышки сверхновых оказывают сильное и многообразное влияние на окружающую межзвездную среду. Сбрасываемая с огромной скоростью оболочка сверхновой сгребает и сжимает окружающий ее газ. Возможно, это может дать толчок образованию новых звезд из облаков газа. Энергия взрыва так велика, что происходит синтез новых элементов, в особенности более тяжелых чем железо. Обогащенное тяжелыми элементами вещество разбрасывается взрывами сверхновых по всей галактике, в результате звезды, образовавшиеся после вспышек сверхновых, содержат больше тяжелых элементов. Межзвездная среда в "нашей" области Млечного пути оказалась настолько обогащенной тяжелыми элементами, что стало возможным возникновение жизни на Земле. Сверхновые несут за это прямую ответственность! Сверхновые, по всей видимости, порождают и потоки частиц с очень высокой энергией - космические лучи. Эти частицы, проникая на поверхность Земли сквозь атмосферу, могут вызывать генетические мутации, благодаря которым происходит эволюция жизни на Земле.

Сверхновые рассказывают нам о судьбе Вселенной

Сверхновые, и в особенности сверхновые типа Ia, являются одними из самых ярких звездообразных объектов во Вселенной. Поэтому даже очень далекие сверхновые можно исследовать с имеющимся в настоящее время оборудованием.

Многие сверхновые Ia были открыты в достаточно близких галактиках, расстояние до которых можно определить несколькими способами. Наиболее точным в настоящее время считается определение расстояний по видимому блеску ярких переменных звезд определенного типа - цефеид. С помощью Космического телескопа им. Хаббла было открыто и исследовано большое количество цефеид в галактиках, удаленных от нас на расстояние до примерно 20 мегапарсек. Достаточно точные оценки расстояний до этих галактик позволили определить светимость сверхновых типа Ia, которые в них вспыхивали. Если считать, что далекие сверхновых Ia имеют в среднем такую же светимость, то по наблюдаемой звездной величине в максиуме блеска можно оценить расстояние до них.

Загрузка...