domvpavlino.ru

Я.б. зельдович, возможно ли образование вселенной из ничего? Появилось ли что-то из ничего

О Большом взрыве, органическом бульоне, в котором зародилась жизнь, и эволюции человеческого мозга «Моя Планета» беседует с профессором Александром Капланом — автором научно-документального фильма «Эволюция. Все из ничего».

Этим летом на фестивале канал «Наука» представит фильм «Эволюция. Все из ничего» доктора биологических наук, профессора Александра Каплана. В киноленте ученый рассматривает самые популярные научные теории и доступно объясняет, как появилось все, что нас окружает каждый день: люди, предметы, дома, машины, воздух, Солнце, планеты и галактики.
В преддверии фестиваля редакции клуба «Моя Планета» удалось поговорить с автором фильма о теории Большого взрыва, бесконечности и всеобщей гармонии Вселенной.

— Сейчас вы заканчиваете съемки фильма «Эволюция. Все из ничего». Расскажите немного о фильме.

— Фильм «Эволюция. Все из ничего» — редкий пример телевизионного проекта: нам удалось рассказать о новейших научных открытиях и теориях доступным языком и из первых рук. В проекте о Вселенной и Земле рассказывают сами ученые — о происхождении Вселенной, Солнца, Земли и самой жизни на планете. Как «все» возникло из «ничего», что таится в пространстве между элементарными частицами и в «пустоте» между звездами. Наконец, как в конденсате воды на Земле, а может, и не только на Земле могли возникнуть органические процессы и структуры фантастической сложности, такие как синтез больших молекул из последовательностей аминокислот, кодируемых спиралями ДНК.

Гравитационное поле вокруг массивного скопления галактик, Abell 68

— Когда лично вы впервые задумались об устройстве Вселенной?

— Устройство Вселенной мне было понятно, по-видимому, с детства: множество звезд — это галактики, вокруг каждой звезды вращаются планеты, как наша Земля. Вокруг планет — спутники, как наша Луна. Наверное, в детском саду так объяснили. Но в 5-м или 6-м классе эта понятная для меня вселенская картина мира вмиг начала рассыпаться, когда учитель физики заявил, что космос бесконечен и безграничен.

Вот тогда я подумал и не смог себе представить нечто, что не имеет ни начала, ни границ. Позднее у меня возник другой вопрос: что находится между звездами и планетами? Если там нет воздуха, значит, там нет ничего? Как это, подумал я, звезды и планеты находятся в пустоте, а что такое пустота? Я не перестаю задавать эти вопросы. И на съемках фильма «Эволюция. Все из ничего» мне удалось их задать уважаемым мной ученым.

Млечный Путь

— И как вы сегодня с высоты опыта объясняете для себя, что значит «не иметь ни начала, ни конца»?

— Я придумал себе, что проще всего смириться с категорией «вечности» как длящегося с незапамятных веков времени. Сколько ни прибавляй секунд, недель, столетий к началу, все равно можно прибавить еще — вот вам и вечность. Тогда начало — это всего лишь общественный договор о том, где на оси вечности поставить точку отсчета. Нет начала, есть только выбор точки отсчета!

Важно понимать, что даже в своей профессиональной области ученые зачастую придумывают скорее отговорки, чем ответы на сложные вопросы, потому что им просто трудно жить среди недостроенных теорий, недоказанных теорем и непонятых явлений. Лучше уж придумать «теплород», «жизненную силу» или на худой конец — «торсионное поле», лишь бы не томиться «незнанием». Свою отговорку я вам уже рассказал.

Галактика

— Теория Большого взрыва — тоже такая отговорка?

— Пусть меня простят физики, но мне кажется, что теория Большого взрыва у них — такая же отговорка для самих себя, как у биологов теория эволюции. Просто обе теории покрывают объяснением большую часть известных фактов событий и явлений, и потому ничего большего ни о какой теории сказать нельзя. А сколько еще осталось неизвестных фактов, не говоря уже о том, что и известные факты зачастую выпирают вкривь и вкось из натянутых на них теорий.
Например, космический телескоп «Хаббл» показал, что фоновое реликтовое излучение слишком неравномерно, чтобы считаться эхом Большого взрыва. Может, и не было момента сингулярности и самого Большого взрыва? Однако в этом вопросе последнее слово за астрофизиками.

— Если объяснить теорию Большого взрыва простыми словами, как бы вы о ней рассказали?

— Я бы не стал жонглировать категорией «из ничего», рассказал бы, как из очень малого могло появиться астрономически большое. Спрессованная в малом объеме гигантская энергия взрывом вырвалась и сотворила адекватное своей мощи расширяющееся пространство! Но долго расширяться такое пространство не сможет, так как заданный Большим взрывом импульс движения постепенно истощится и силы притяжения вновь заставят материю сжиматься, задавая ей импульс движения в обратном направлении.

Думаю, в 5-м классе мне бы хотелось услышать от учителя физики такое объяснение.

Звездный питомник туманности Киля

— Какие еще из гипотез, объясняющих происхождение Земли и появление жизни, вам кажутся убедительными?

— Если говорить о Земле, то мне понятно объяснение ее формирования из сгустка бешено вращающегося плоского газопылевого облака, центр которого постепенно становился все больше и больше и в конце концов отделился от основного диска, превратившись в Солнце, а сгустки диска распались на планеты.
Что касается появления жизни на Земле, то мне больше нравится думать, что она имеет земное происхождение. Времени было достаточно, почти 5 млрд лет, чтобы в океанском бульоне из всякой органики появились стабильные пузырьки с внутренней средой, отличной от мирового океана. Дальше — дело времени: эта внутренняя среда стала не только высокотехнологичной биохимической машиной, не только высокоэффективным анализатором параметров внешней среды, но и создала совершенно уникальный нематериальный продукт — психический мир человека. Мир, в котором мы можем проигрывать варианты прошлого и будущего, чтобы жизнь в настоящем приобретала для нас смысл.

Устройство Вселенной напоминает систему нейронов в головном мозге человека

— Казалось бы, наука уже знает ответы почти на все вопросы. Почему ученые все-таки не могут сойтись во мнении о том, как произошла наша Вселенная?

— С одной стороны, так же как и печень, и селезенка, и легкие, мозг человека — это продукт эволюции, который сформировался, чтобы способствовать процессам адаптации человека для жизни на Земле. Наш мозг был заточен эволюцией на понимание того мира, в котором мы живем.

Я не уверен, что наш мозг приспособлен для размышлений о том, что именно было до Большого взрыва и есть ли что-то за пределами нашей Вселенной, так как ему незачем было приспосабливаться к решению этих задачек.
С другой — меня удивляет и невероятно вдохновляет то, что события, произошедшие во Вселенной и невообразимо отдаленные от кабинетов ученых, вполне эффективно становятся сегодня «нашего ума делом»! Мозг человека, эволюционно приспособленный к рутинной жизни на Земле, оказывается, может мысленно проникать в микро- и макрокосмос, искать и находить там закономерности Вселенной, имея всего лишь земной научный опыт.
Не это ли есть свидетельство всеобщей гармонии Вселенной, свойства которой проявляются во всех пространствах и временах ее существования, и потому она может быть познаваема, с какого бы края ни взяться за ее изучение, даже с планеты Земля.

Смотрите фильм «Эволюция. Все из ничего»:

В новом сезоне тему возникновения и развития Вселенной в эфире «Науки» продолжит проект «Эволюция» с профессором Капланом.

Эта цитата из Короля Лира * в одной фразе обобщает ряд глубоких идей, средневековых и более новых. Среди них:

а. Закон сохранения вещества и обратный ему. По этому закону, нельзя ожидать, что в лаборатории возникнет новое вещество. (Лукреций сказал: «Никакая божественная сила не может создать нечто из ничего».)

б. Закон сохранения энергии и обратный ему. По этому закону, нельзя ожидать, что в лаборатории возникнет новая энергия.

в. Доказанный Пастером принцип, согласно которому нельзя ожидать, что в лаборатории возникнет живое существо.

г. Принцип, согласно которому никакой новый порядок или закономерность не могут быть созданы без информации .

Обо всех этих и других запретах можно сказать, что это скорее правила ожидания, чем законы природы. Они столь близки к истине, что любые исключения представляют чрезвычайный интерес.

Самое интересное заключено в отношениях между этими фундаментальными запретами. Например, как мы теперь знаем, между сохранением энергии и сохранением вещества существует связь, в силу которой каждый из этих запретов отрицается при переходе вещества в энергию и, как можно предполагать, при переходе энергии в вещество.

Но более всего нас будет сейчас интересовать последний из этих принципов – утверждение, что в области коммуникации, организации, мышления, обучения и эволюции «из ничего не выйдет ничего» без информации .

Этот закон отличается от законов сохранения энергии и вещества тем, что не содержит запрета на уничтожение и потерю информации, паттерна или отрицательной энтропии. К сожалению (или счастью) паттерны и информация слишком легко уничтожаются случайными событиями. Если можно так выразиться, сообщения и указания, по которым строится порядок – это надписи на песке или на поверхности воды. Почти любое воздействие, даже малейшее броуновское движение их уничтожает. Информация может быть забыта или искажена. Кодировка может быть утеряна.

Сообщения перестают быть сообщениями, если их никто не может прочесть. Без розеттского камня мы не прочли бы ничего написанного египетскими иероглифами. Они остались бы не более чем изящными орнаментами на папирусе или на камне. Чтобы закономерность приобрела смысл – или хотя бы распознавалась как паттерн – она должна быть дополнена другими закономерностями или, может быть, навыками. И эти навыки так же эфемерны, как сами паттерны – они тоже написаны на песке или на поверхности воды.

Происхождение навыка реагировать на сообщение – это дополнительная, оборотная сторона эволюции. Это коэволюция (см. Словарь).

Как это ни парадоксально, глубокая, хотя и неполная истина, утверждающая, что «из ничего не выйдет ничего», встречается с интересным противоречием, когда мы переходим в область информации и организации: нуль , то есть полное отсутствие какого бы то ни было явного события, может быть сообщением. Личинка клеща взбирается на дерево и притаивается на выступающей ветке. Если она чувствует запах пота, она падает, с некоторой вероятностью упасть на млекопитающее. Но если в течение нескольких недель она не ощущает запаха пота , она падает и взбирается на другое дерево.


Если вы не написали письма, не принесли извинения, не накормили кошку – все это может быть достаточным и эффективным сообщением, потому что нуль, помещенный в контекст , может приобрести смысл; а контекст создает тот, кто воспринимает сообщение. Умение создавать контекст – это его способность, а формирование этой способности – это его половина упомянутой выше коэволюции. Он должен приобрести эту способность посредством обучения или удачной мутации, то есть в результате удачного использования случайностей. В некотором смысле, получатель сообщения должен быть готов к требуемому открытию, когда оно придет.

Итак, не исключено, что стохастический процесс не подчиняется принципу, гласящему, что «из ничего не выйдет ничего» без информации. Средством, способным выбирать компоненты случайного, превращая их тем самым в новую информацию, может служить готовность . Но для этого необходимо всегда иметь источник случайных явлений, из которого можно было бы извлечь новую информацию.

Это обстоятельство делит всю область организации, эволюции, созревания и обучения на две отдельные области, одна из которых – это область эпигенеза или эмбриологии, а вторая – эволюции и обучения.

Уоддингтон предпочитал называть область своих основных интересов словом эпигенез , употребляя его вместо принятого ранее термина эмбриология . В его термине подчеркивается тот факт, что каждый шаг в развитии эмбриона – это акт становления (по-гречески генезис ), которое должно происходить на основе (по-гречески эпи ) непосредственного status quo ante.* Характерно для Уоддингтона, что он презрительно относится к общепринятой теории информации – по его мнению, она совершенно не учитывает «новую» информацию, возникающую, как он полагает, на каждой стадии эпигенеза. В самом деле, согласно общепринятой теории в этом случае никакой новой информации не добавляется.

В идеальном случае эпигенез должен был бы напоминать развитие сложной тавтологии (см. Словарь), в которой после формулировки аксиом и определений больше ничего не добавляется. Теорема Пифагора уже неявно содержится (т.е. уже заложена) в аксиомах, определениях и постулатах Эвклида. Единственное, что требуется – это извлечь ее, а для этого нам надо в какой-то мере знать последовательность необходимых шагов. Необходимость в такой информации возникает лишь тогда, когда эвклидовская тавтология выражается словами и символами, последовательно упорядоченными на бумаге или во времени. В идеальной тавтологии нет времени, нет развития, и нет никаких противоречий. Тавтология содержит все, что в ней скрыто, но расположено все это, конечно, не в пространстве.

В отличие от эпигенеза и тавтологии, представляющих собой области воспроизводства, существует еще обширная область, включающая в себя творчество, искусство, обучение и эволюцию, где процессы изменения зависят от случайности . Сущность эпигенеза – предсказуемое воспроизводство; сущность обучения и эволюции – исследование и изменение.

При передаче человеческой культуры люди всегда стараются воспроизвести ее как можно точнее, передавая следующему поколению свои навыки и ценности; но эта попытка всегда и неизбежно оканчивается неудачей, потому что в основе передачи культуры – не ДНК, а обучение. Процесс передачи культуры – это некий гибрид или смесь этих двух механизмов. Он неизбежно пытается обеспечить воспроизводство путем обучения, поскольку сами родители все приобрели этим путем. Если бы даже потомок каким-то чудесным образом получил ДНК с навыками его родителей, то эти навыки проявились бы иначе и, может быть, были бы непригодны.

Любопытно, что между этими двумя областями находится культурный феномен объяснения , то есть отображение на тавтологию незнакомых последовательностей событий.

В заключение следует отметить, что более глубокое содержание мира эпигенеза и эволюции выражается двойной парадигмой второго закона термодинамики, гласящего, что 1) случайное действие вероятности всегда разрушает порядок, паттерн и отрицательную энтропию, но 2) в то же время для создания нового порядка требуется воздействие случайности, огромное число неиспользованных возможностей (энтропия). Именно в результате случайностей организмы накапливают новые мутации, и именно из случайностей стохастическое обучение извлекает свои решения. Эволюция ведет к кульминации – экологическому насыщению всех возможностей дифференциации. Обучение ведет к перегрузке мозга. Выживающий вид снова и снова освобождает свои хранилища памяти: чтобы быть готовым к восприятию нового, он возвращается к массовому производству необученных яиц.

  • Перевод

«Вопрос бытия – темнейший во всей философии». Так заключил Уильям Джеймс , размышляя над самой основной из загадок: как что-то возникло из ничего? Этот вопрос выводит из себя, решил Джеймс, поскольку требует объяснения, отрицая саму возможность его наличия. «Для перехода из ничего в бытие не существует логического моста», писал он.

В науке объяснения строятся на причинах и следствиях. Но если ничто на самом деле ничто, у него нет возможности стать причиной. Дело не в том, что мы не можем найти правильного объяснения – просто перед лицом «ничто» объяснение не работает.

Этот отказ бьёт по больному месту. Мы существа, любящие повествования. Наши простейшие понятия приходят через истории, а как нечто появилось из ничего – это самая главная история, доисторическая повесть, более фундаментальная, чем «путешествие героя» или «парень встречает девушку». Но эта история подрывает суть истории. Эта повесть соткана из самоуничтожения и парадокса.

И как ей не быть такой? Главный её герой – это Ничто. Слово, парадоксальное благодаря самому своему существованию в виде слова. Это существительное, вещь, и однако же, это не вещь. Как только мы представим его себе или назовём его, мы разрушим его пустоту, запятнав его значением. Остаётся удивляться: это проблема с «ничем», или это наша проблема? Космическая или лингвистическая? Экзистенциальная или психологическая? Парадокс физики или мыслей?

Стоит, однако, помнить, что решение парадокса находится в вопросе, а не в ответе. Где-то должен найтись сбой, неправильное предположение, неверное тождество. В таком коротком вопросе «как нечто появилось из ничего?» мало где можно спрятаться. Возможно из-за этого мы всё время возвращаемся к старым идеям в новой оболочке, играя на пути развития науки фугу, или вариации темы. С каждым проходом мы пытаемся уложить ещё один камень для перехода через реку, продлевая неуловимый мост Джеймса.

Самый старый из камней: если нельзя получить нечто из ничего, попробуй сделать ничто не таким уж пустым. Древние Греки считали, что пустое пространство наполнено субстанцией, эфиром. Аристотель считал эфир неизменным пятым элементом, более совершенным, чем земля, воздух, огонь и вода. «Ничто» противоречит Аристотелевой физике, утверждавшей, что тела падают или поднимаются согласно их правильному месту в естественном ходе вещей. Ничто должно быть идеально симметричным, выглядеть одинаково с любого угла, устраняя смысл у абсолютных пространственных направлений «верх» и «низ». Эфир, по мнению Аристотеля, мог бы служить космическим компасом, основной системой отсчёта, относительно которой можно было бы измерить всё движение. Для тех, кто ненавидел вакуум, эфир изгонял его.

Древний эфир существовал тысячи лет, пока его не переосмыслили в конце XIX века физики, например, Джеймс Клерк Максвелл, открывший, что свет ведёт себя как волна, всегда перемещающаяся с одной и той же скоростью. А что же волновалось и относительно чего измерялась скорость? Эфир был удобным ответом, предоставлявшим и среду, и систему отсчёта. Но когда Альберт Майкельсон и Эдвард Морли решили измерить движение Земли сквозь «эфирный ветер» в 1887 году, они не обнаружили последнего. А вскоре Эйнштейн своей специальной теорией относительности вбил последний гвоздь в гроб эфира.

Десятилетиями мы считали эфир исторической диковиной, регрессом. Но убить его оказалось труднее, чем мы думали. Сегодня его можно увидеть в другой форме: хиггсовского поля, пронизывающего вакуум пустого пространства, возбуждаемого знаменитым бозоном Хиггса. Это скалярное поле, единственный представитель своего вида, подтверждённый экспериментально. Это значит, что в каждой точке пространства у него есть единственное значение (в отличие от поля, описывающего свет, у которого в каждой точке есть как размер, так и направление). Это важно, поскольку означает, что поле будет выглядеть одинаково для любого наблюдателя, неважно, покоящегося или ускоряющегося.

Более того, его квантовый спин нулевой, то есть, оно выглядит одинаково с любого угла. Спин – мера того, как сильно нужно повернуть частицу, чтобы она стала выглядеть так же, как до поворота. У переносчиков взаимодействий (фотоны, глюоны) спин целый – повороты на 360 градусов оставят их неизменными. У частиц материи (электроны, кварки) спин полуцелый, а значит, их нужно повернуть дважды, на 720 градусов, чтобы вернуть к начальному состоянию. Но у Хиггса спин нулевой. Как ни вращай, он всегда выглядит одинаково. Прямо как пустое пространство. Симметрия равна невидимости.

Согласно интуиции Аристотеля, сегодняшние физики считают ничто конечным состоянием симметрии – неустанное самоподобие, предшествующее нахождению различий, необходимых для определения «вещей». Если физики запускают космический фильм в обратном направлении, отслеживая историю глубокого прошлого, они видят объединение несоизмеримых осколков реальности, превращение их в растущую симметрию, обозначающую источник – ничто.

Хиггс прославился снабжением элементарных частиц их массой, но это скрывает его настоящее значение. Дать частицам массу – это просто. Замедляйте их до скоростей ниже световой, и вот вам масса. Тяжело дать им массу, не поломав доисторическую симметрию. Поле Хиггса достигает этого, принимая ненулевое значение даже в состоянии наименьшей энергии. В каждом уголке пустого пространства скукожилось 246 ГэВ Хиггса – но мы этого не замечаем, поскольку оно везде одинаковое. Только скалярное поле может спрятаться на виду. Но его замечают элементарные частицы. Каждый раз, когда масса частицы ломает симметрию Вселенной, Хиггс тут как тут, маскируясь под пустое пространство, устраняет повреждения. Всегда трудясь в тени, Хиггс хранит изначальную симметрию Вселенной нетронутой. Можно понять (если и не простить) склонность журналистов к использованию названия «частица Бога» – даже если Леон Ледерман, придумавший оскорбительный термин, изначально хотел назвать её «проклятая Богом частица», а его издатель не разрешил ему это сделать.

Всё это значит, что хиггсовское поле ближе к ничто, чем Максвелловское понятие эфира. Это самая новая из наших кистей для рисования в пустоте. С его необычной симметрией Хиггс работает как маскировка для ничто – но само по себе оно не является ничем. У него есть структура, оно взаимодействует. Физический смысл 246 ГэВ остаётся неизвестным. При помощи Хиггса мы приближаемся к границам ничто, но не можем их переступить.

Если попытки сделать ничто не таким уж пустым не отвечают на вопрос «как нечто появилось из ничего», мы должны сделать причину не такой уж причиной. И у этих попыток есть своя история. Внезапное появление личинок на гниющем мясе во времена Аристотеля привело к распространённому мифу о спонтанном возникновении жизни; дыхание жизни способно возникнуть из пустоты. Граница между ничем и чем-то встала рядом с границей между жизнью и смертью, духом и материей, божественным и земным. В свою очередь это принесло с собой весь набор религий и веры, порождая очень сложное решение нашего парадокса. Мы принимали эту теорию 2000 лет, пока в 1864 её не развеял микробиолог Луи Пастер. Omne vivum ex vivo – вся жизнь из жизни. В последующие десятилетия мы обнаружили спонтанное возникновение ещё одной исторической диковины. Но, как и эфир, она снова вернулась к нам, в овечьей шкуре квантовых флюктуаций.

Квантовые флюктуации, украшенные неопределённостью, это следствия без причины, шум в сигнале, первозданная статика, случайная по своей природе. Правила квантовой механики позволяют – даже требуют – чтобы энергия (и, согласно E=mc 2 , масса) появлялась «из ниоткуда», из ничего. Сотворение ex nihilo – так это выглядит.

Принцип неопределённости Гейзенберга – естественный источник квантовых личинок. [«maggot» по-английски – не только личинка, но и блажь, причуда, каприз – прим.перев.] Он постулирует, что определённые пары физических свойств – расположение и импульс, энергия и время – связаны вместе фундаментальной неопределённостью. Чем точнее мы задаём один из параметров, тем менее ясным становится другой. Вместе они формируют связанные пары и предотвращают существование «ничто». Начните уточнять пространственное положение, и импульс начнёт дико флюктуировать. Определите мелкие и точные отрезки времени, и энергия начнёт колебаться в более широком промежутке маловероятных значений. В самые короткие мгновения на самых кратчайших дистанциях внезапно могут возникать целые вселенные, чтобы затем исчезнуть. Увеличьте изображение мира, и спокойная, структурированная реальность уступает место хаосу и случайности.

Но эти связанные пары сами по себе не случайны: это пары свойств, которые наблюдатель не сможет измерить одновременно. Несмотря на то, как обычно описывают квантовые флюктуации, в мире нет некоей заранее определённой реальности, ёрзающей туда и сюда. Эксперимент показывает, что то, что есть, на самом деле вовсе не существует, а находится в ожидании. Нерождённое. Квантовые флюктуации – это не экзистенциальные, а условные описания – они не отражают то, что есть, но только то, что станет возможным, если наблюдатель решит провести определённое измерение. Будто бы возможность измерения у наблюдателя определяет, что должно существовать. Онтология подводит итог эпистемологии . Неопределённость природы – это неопределённость наблюдения.

Фундаментальная невозможность присвоить определённые значения всем свойствам физической системы означает, что когда наблюдатель проводит измерение, результат получится действительно случайным. На крошечных масштабах, где правят квантовые эффекты, цепочка причин и следствий слетает с катушек. Квантовая механика, как говорил её отец-основатель Нильс Бор, «непримирима с самим понятием причинности». Эйнштейн, как известно, проигнорировал её. «Бог не играет в кости», сказал он – на что Бор ответил, «Эйнштейн, прекратите советовать Богу, что делать».

Но может, это нас стоит винить в ожидании сохранения принципа причинности. Эволюция научила нас любой ценой искать простые шаблоны. Для наших предков, рассекавших африканскую саванну, возможность распознать следствия из причин отмечала границу между жизнью и смертью. Она съела пятнистый гриб и заболела. Тигр приседает перед прыжком. Рассказы означают выживание. Естественному отбору не нужна квантовая физика – так что, как бы мы догадались о её существовании? Но она существует. А причинность – это приближение. Это наше сознание ищет историю.

И что же, вот и всё? Ответ на вопрос «почему мы существуем» заключается в том, что нет никакого «почему», что существование – это случайная квантовая флюктуация? Ну значит, мы можем отбросить всякие объяснения и сделать квантовый скачок для преодоления моста Джеймса. Как нечто появилось из ничего? Да просто так. К сожалению, дальше мы так не продвинемся. Космологи верят, что законы квантовой механики могут спонтанно создавать вселенные, эта история просто перекладывает ответственность. Откуда же взялись эти законы? Помните, что мы хотели объяснить, как нечто появилось из ничего – а не то, как нечто появилось из заранее существовавших законов физики. Недостаточно убрать причинность из уравнения – парадокс остаётся.

Вначале было ничто, а потом что-то появилось.

Главное действующее лицо в этой истории – Время, переносчик перемен. Может ли решение парадокса заключаться в отрицании времени? Если время, как говорил Эйнштейн, всего лишь упорная иллюзия, то мы можем сразу же освободиться не только от причинности, вытекающей из законов природы, но и от вопроса, откуда взялись эти законы. Они ниоткуда не взялись, потому что нет никакой эволюции. Рассказ исчезает, никакой истории нет, и никакого моста тоже нет.

Понятие вечной вселенной, или цикличной, вечно возвращающейся, появляется в самых ранних мифах и историях, от мифологии банту из Африки, до Времени сновидений австралийских аборигенов, от космологии Анаксимандра Милетского до древнеиндийских пуран . Можно увидеть привлекательность этих теорий. Вечность избегает «ничто».

В наше время эта древня идея возвращается в виде теории стационарной Вселенной, сформулированной Джеймсом Джинсом в 1920, и затем уточнённой и популяризованной Фредом Гойлом и другими в 1940-е. Вселенная расширяется, но для заполнения пустот всё время появляется новая материя, поэтому в среднем Вселенная не изменяется. Теория оказалась неверной, её заменила теория Большого взрыва и вечность уменьшилась до каких-то 13,8 миллиардов лет.

Но в 1960-х стационарная Вселенная внезапно вернулась в странном виде – в уравнении

H(x)|Ψ> = 0

Физики Джон Арчибальд Уилер и Брюс Девитт написали его, теперь известное как уравнение Уилера-Девитта, хотя сам Девитт зовёт его «это чёртово уравнение» (нет, никакого родства с «проклятой богом частицей»). Они пытались применить странные законы квантовой механики к Вселенной в целом, как она описывается в эйнштейновской общей теории относительности. Стоит обратить внимание на правую часть уравнения – нулевую. Общая энергия системы – ничего. Никакой эволюции во времени. Ничего не может произойти. Проблема в том, что эйнштейновская вселенная – четырёхмерное пространство-время, комбинация пространства и времени. Но квантовая механика требует, чтобы волновая функция физической системы эволюционировала во времени. Но как может пространство-время эволюционировать во времени, если оно и есть время? Эта дилемма просто бесит – вселенная, описываемая квантовой механикой, застывает во времени . Уравнение Уилера-Девитта – это теория стационарной Вселенной наизнанку. Вместо всегда существовавшей Вселенной у нас получается Вселенная, которой никогда не будет.

Само по себе уравнение Уилера-Девитта элегантно решает нашу задачу. Как из ничего появилось нечто? Оно не появлялось. Но такое решение озадачивает – ведь мы-то здесь.

В этом и суть. В квантовой механике ничего не происходит до тех пор, пока наблюдатель (человек или другая конфигурация частиц) проводит измерение. Но в случае всей вселенной наблюдателя не существует. Никто не может стоять вне вселенной. Вселенная в целом застряла в бесконечном мгновении. Но внутри всё выглядит по-другому.

Изнутри наблюдатель не может измерить всю вселенную, и поэтому разбивает реальность на две части – обозревателя и обозреваемое – благодаря простому, но сильному факту, что наблюдатель не может измерить сам себя. Как писал физик Рафаэль Боуссо , «Очевидно, у прибора должно быть не меньше степеней свободы, чем у системы, чьё квантовое состояние он пытается определить». Философ науки Томас Брюер использовал Гёделевский аргумент для выражения той же мысли: «Никакой наблюдатель не может получить или сохранить информацию, достаточную для того, чтобы различить все состояния системы, в которой он находится».

Как наблюдатели, мы обречены вечно видеть только кусочек большой головоломки, частью которой мы являемся. И это может быть нашим спасением. Когда вселенная распадается на две части, ноль в правой части уравнения меняется на другое значение. Всё меняется, физика происходит, время идёт. Можно даже сказать, что Вселенная рождается.

Если это звучит как ретроказуальность (будущее влияет на прошлое) – ну, так оно и есть. Квантовая теория требует этого странного обращения стрелы времени. Уилер обратил внимание на этот факт при помощи известного эксперимента с отложенным выбором, который сначала был предложен в качестве мысленного, а затем . В отложенном выборе измерение наблюдателя в настоящем определяет поведение частицы в прошлом – прошлом, которое может тянуться назад на миллионы, и даже на 13,8 миллиарда лет. Цепь причин и следствий оборачивается сама на себя, и её конец связывается с началом: мост Джеймса оказывается петлёй.

  • вселенная
  • философия
  • Добавить метки
    Тайны пространства и времени Комаров Виктор

    Вселенная из… «ничего»

    Вселенная из… «ничего»

    Идея, согласно которой «из ничего не родится ничто», возникла еще в V веке до н. э. в эпоху Парменидов. И оказалась одной из самых устойчивых идей, которая прошла через столетия и сохранялась в естествознании в неизменном виде почти до самого последнего времени! Еще всего какие-нибудь десять лет назад гипотезу о самопроизвольном возникновении в результате чисто физических процессов вещества и энергии из «ничего» большинство естествоиспытателей считало неприемлемой…

    В невозможности возникновения «чего-либо» из «ничего» как будто убеждает нас и повседневный житейский опыт.

    Мы привыкли к тому, что одни предметы или объекты всегда образуются из других предметов или объектов. И что из этого правила не существует исключений.

    С другой стороны, известный современный английский астрофизик П. Девис утверждает, что возникновение «чего-то» из «ничего» не только в принципе возможно, но и реально происходит! Из чего, например, – ставит он вопрос, – возникают мысли, а также идеи? Мысли, без сомнения, существуют реально, рассуждает Девис, а для их возникновения требуется непосредственное участие головного мозга. Однако мозг обеспечивает лишь реализацию мыслей, но не является их причиной. Сам по себе мозг порождает мысли не в большей степени, чем компьютер – вычисления. Мысли могут быть вызваны (порождены) другими мыслями, а также ощущениями или сведениями, то есть информацией, хранящейся в памяти или поступающей извне. Однако эти соображения не раскрывают природу самих мыслей.

    Многие творческие люди говорят, что их произведения – результат неожиданного вдохновения. Таким образом, рождение картины, или стихотворения, или музыкального произведения фактически является примером рождения «чего-то» из «ничего». В пользу подобной точки зрения свидетельствуют высказывания ряда известных современных поэтов, писателей и композиторов. Так Андрей Вознесенский утверждает: «Чувствуешь эту связь, словно кто-то диктует тебе». Об этом же говорил и Владимир Солоухин: «Писал стихи – так мне всегда казалось, что под чью-то диктовку». Аналогичные мысли высказывал и выдающийся композитор А. Шнитке: «Музыка мною не пишется, а улавливается… Вроде как я имею дело не со своей работой, а переписываю чужую»…

    В принципе можно. Подобной точки зрения придерживаются такие известные современные физики и астрофизики как Алан Гут из Массачусетского технологического института (МТИ) в США, Сидней Коулмен из Гарвардского университета, Алекс Виленкин из университета Тафта. Они считают, что «ничто» – неустойчиво и Вселенная спонтанно «распустилась из «ничего».

    Классическая физика рассматривала Вселенную как гигантский часовой механизм. Новая квантовая физика раз рушила эту лапласовскую схему. На атомном уровне материя и ее движение неопределенны и непредсказуемы. Разумеется, и атомный мир не свободен полностью от причинности, но она проявляется здесь неоднозначным образом. Главная особенность «квантового поведения», которая лежит в основе материи, – утрата строгих причинно-следственных связей.

    Применима ли, однако, квантовая физика ко Вселенной? И если применима, то в каких пределах? Во всяком случае, ранняя Вселенная была ограничена весьма малыми размерами! Имеющиеся в распоряжении, современной физики и астрофизики данные говорят, что квантовые законы с момента начала расширения – в так называемую эру Планка – до 10 -43 с. играли определенную роль. И действие этих законов следует принимать во внимание вплоть до 10 -32 с. с момента начала инфляции.

    Как считают некоторые теоретики, именно между этими двумя «эпохами» существовал момент времени, когда возникла наша Вселенная. По словам С. Ноуммена, именно в этот момент и совершился «квантовый скачок» из «ничего» во «время». Современное «пространство-время» есть не что иное, как реликт той эпохи.

    Но откуда взялась энергия, необходимая для инфляционного расширения? Ведь существует закон сохранения энергии, а энергия начальной Вселенной была равна нулю. Но дело в том, что закон сохранения энергии в его обычной форме к инфляционной Вселенной неприменим. Сам процесс инфляционного расширения формирует возрастание энергии вакуума. И лишь квантовый распад ложного вакуума положил предел этому процессу.

    Существует притча о мальчике, вытянувшем себя из болота за шнурки собственных ботинок. Самосоздающаяся Вселенная очень напоминает этого мальчика – она вытянула себя за «собственные шнурки». Этот процесс получил название «бутстрэпа». Благодаря своей природе Вселенная возбудила в себе всю энергию, которая была необходима для «создания» и «оживления» материи, а также инициировала породивший ее взрыв. Этому космическому «бутстрэпу» мы и обязаны своим существованием.

    Однако остается самый главный вопрос: что существовало и что происходило до инфляции? Иными словами, каким образом пространство и ложный вакуум могли возникнуть «из ничего»? По существу, идея космического «бутстрэпа» близка к теологической концепции сотворения мира из ничего сверхъестественной силой.

    Возможно, предшествовавшее инфляции состояние ложного вакуума оказалось предпочтительнее благодаря характерным для него экстремальным условиям. Но Вселенная так или иначе реально возникла, и квантовая физика представляет собой единственную область современной науки, которая позволяет рассматривать события, происходящие без видимых причин.

    А откуда взялось само пустое пространство? Если, согласно квантовой теории, «из ничего» могут рождаться частицы, то не может ли аналогичным образом рождаться «из ничего» и пространство? В частности, расширение современной Вселенной есть не что иное, как разбухание пространства. С каждым днем наша Вселенная увеличивается на 10 18 кубических световых лет.

    Согласно новой космологии, начальное состояние космоса вообще не играло никакой роли, так как вся информация о нем полностью «стерлась» в ходе инфляции. Наблюдаемая нами Вселенная несет на себе лишь отпечатки тех физических процессов, которые происходили с момента ее начала. Тысячелетиями люди считали, что «из ничего не родится ничто». Сегодня же можно утверждать, что «из ничего произошло все»!

    Если бы мы жили в воображаемом мире, в котором те или иные объекты время от времени возникают «ниоткуда», то, видимо, идею возникновения «из ничего» и самой Вселенной мы воспринимали бы как нечто вполне возможное. Но, между прочим, подобный воображаемый мир не так уж сильно отличается от нашего реального мира. Если бы мы обладали способностью воспринимать поведение атомов и других микрообъектов не с помощью специальных приборов, а непосредственно с помощью собственных органов чувств, нам бы довольно часто приходилось наблюдать объекты, которые появляются или исчезают без видимых причин.

    Так, например, в очень сильных электрических полях при критическом значении напряженности начинают, как мы уже отмечали, «из ничего» возникать электроны и позитроны. Значение напряженности, близкое к критическому, существует возле ядра атома урана, состоящего из 92 протонов. А если бы существовал химический элемент, в ядре атома которого содержалось 200 протонов, то вблизи такого ядра происходило бы спонтанное рождение электронов и позитронов. Это особый вид радиоактивности, когда распад испытывает пустое пространство – физический вакуум.

    Аналогичные процессы происходят вблизи поверхности черных дыр, где гравитация столь сильна, что пространство вокруг буквально кишит непрерывно рождающимися частицами. Это явление, получившее название «излучения черных дыр», было теоретически открыто Стивеном Хокингом.

    Таким образом, современная наука рисует картину однородной, самосогласованной и «простой» в больших масштабах Вселенной. Именно эти обстоятельства позволяют говорить о Вселенной, как о едином целом. Природа этих свойств долгое время оставалась загадочной. Но теперь мы знаем, что «инструкции» для создания такого Космоса заключались в законах природы.

    Из книги Знаки на пути от Нисаргадатты Махараджа автора Балсекар Рамеш Садашива

    Из книги Комментарии к "Тайной Доктрине" автора Блаватская Елена Петровна

    Шлока (6) СЕМЬ ПРЕВЫШНИХ ВЛАДЫК И СЕМЬ ИСТИН ПЕРЕСТА. ЛИ СУЩЕСТВОВАТЬ, И ВСЕЛЕННАЯ - НЕОБХОДИМОСТИ СЫН - БЫЛА ПОГРУЖЕНА В ПАРАНИШПАННА (АБСОЛЮТНОЕ СОВЕРШЕНСТВО, ПАРАНИРВАНА ИЛИ ИОНГ.ДУП), ЧТОБЫ БЫТЬ ВЫДОХНУТОЙ ТЕМ, КТО ЕСТЬ И В ТО ЖЕ ВРЕМЯ КОГО НЕТ. НЕ БЫЛО НИЧЕГО Шлока (7)

    Из книги Тайны пространства и времени автора Комаров Виктор

    Нестационарная Вселенная Было время, когда казалось, что космические объекты, составляющие население нашей Вселенной, почти не изменяются с течением времени, постепенно переходя от одного стационарного состояния к другому стационарному состоянию. Однако с появлением

    Из книги Человек против мифов автора Берроуз Данэм

    Фрактальная Вселенная До начала 80-х годов XX столетия в астрофизике господствовало представление о расширяющейся однородной и изотропной Вселенной, то есть о такой Вселенной, основные свойства которой приблизительно одинаковы для достаточно больших областей

    Из книги Христианство и философия автора Карпунин Валерий Андреевич

    Изотропна ли Вселенная? Поскольку пространство и время являются формами существования материи, то их свойства во многом зависят от того, каким образом распределены в них различные материальные объекты. До сравнительно недавнего времени одним из основных положений

    Из книги Если ты не осёл, или Как узнать суфия. Суфийские анекдоты автора Константинов С. В.

    Из книги Далекое будущее Вселенной [Эсхатология в космической перспективе] автора Эллис Джордж

    Бог сотворил мир «из ничего» Библия говорит нам о сотворении Богом мира «из ничего» такими величественными словами: «В начале сотворил Бог небо и землю. Земля же была безвидна и пуста, и тьма над бездною; и дух Божий носился над водою. И сказал Бог: да будет свет. И стал свет.

    Из книги Невеста Агнца автора Булгаков Сергей Николаевич

    Ничего! К одному дервишу пришли люди и попросили его рассудить спор дровосека и носильщика. Носильщик, крепкий высокий детина, зарабатывал себе на жизнь, перенося для людей тяжести, куда скажут. Увидел он, что дровосек утомился нести вязанку дров, и предложил:- Хочешь,

    Из книги Начала и концы автора Шестов Лев Исаакович

    6.1. Биофилическая вселенная? Если когда?нибудь нам удастся установить контакт с разумными инопланетянами - как мы преодолеем «культурную пропасть»? Одним из вариантов общей культуры для нас могла бы стать физика и космология. Иная разумная жизнь будет, как и мы, состоять

    Из книги Разум и природа автора Бейтсон Грегори

    е) «Творение из ничего». Мы видели, какую трудность представляло, - хотя и в разном смысле, но в равной мере, - координировать Божественное и тварное бытие, Бога и мир, для античной философии, патристики и схоластки. Трудность эта заключалась в том, что надо было

    Из книги 50 великих книг о мудрости, или Полезные знания для тех, кто экономит время автора Жалевич Андрей

    Творчество из ничего (А. П. Чехов) Resigne-toi, mon coeur, dors ton sommeil de brute. Ch.

    Из книги Осмысление процессов автора Тевосян Михаил

    8. «ИЗ НИЧЕГО НИЧТО НЕ ВОЗНИКНЕТ» Эта цитата из Короля Лира [Цитируется по переводу Бориса Пастернака. - Прим. перев.] в одной фразе обобщает ряд глубоких идей, средневековых и более новых. Среди них:а. Закон сохранения вещества и обратный ему. По этому закону, нельзя

    Из книги Еврейская мудрость [Этические, духовные и исторические уроки по трудам великих мудрецов] автора Телушкин Джозеф

    2. «Нет ничего нового под луной» Люблю всё старое: старых друзей, старые времена, старые обычаи, старые книги, старые вина. Оливер Голдсмит Креатив, инновации – эти слова стали настоящими лозунгами нашей эпохи. Современные люди ищут новые идеи и решения, но мудрецы

    Из книги Квантовый ум [Грань между физикой и психологией] автора Минделл Арнольд

    Глава 9 Пространство и время. Вселенная 1 и вселенная 2. Источник жизни 1 и источник жизни 2. Творец. Защитные механизмы вселенной Человек – мера всех вещей Протагор Данную главу нам необходимо начать со слов американского физика австрийского происхождения Фритьофа

    Из книги автора

    62. «Врач, который ничего не берет, ничего не стоит» Если ссорятся люди, и один человек ударит другого, камнем или кулаком, и тот не умрет, а сляжет в постель, то… ударивший пусть заплатит… и вылечит его. Шмот 21:18-19 (Талмуд комментирует этот отрывок): Отсюда мы знаем, что

    Из книги автора

    34. Творение из ничего Я надеюсь, что в течение нескольких следующих десятилетий произойдет огромное изменение в нашем мировоззрении, как в материальном, так и в духовном плане. Четырнадцатый Далай

    Вопрос о происхождении Вселенной со всеми ее известными и пока неведомыми свойствами испокон веков волнует человека. Но только в XX веке, после обнаружения космологического расширения, вопрос об эволюции Вселенной стал понемногу проясняться. Последние научные данные позволили сделать вывод, что наша Вселенная родилась 15 миллиардов лет назад в результате Большого взрыва. Но что именно взорвалось в тот момент и что, собственно, существовало до Большого взрыва, по-прежнему оставалось загадкой. Созданная в конце XX века инфляционная теория появления нашего мира позволила существенно продвинуться в разрешении этих вопросов, и общая картина первых мгновений Вселенной сегодня уже неплохо прорисована, хотя многие проблемы еще ждут своего часа.

    Научный взгляд на сотворение мира

    До начала прошлого века было всего два взгляда на происхождение нашей Вселенной. Ученые полагали, что она вечна и неизменна, а богословы говорили, что Мир сотворен и у него будет конец. Двадцатый век, разрушив очень многое из того, что было создано в предыдущие тысячелетия, сумел дать свои ответы на большинство вопросов, занимавших умы ученых прошлого. И быть может, одним из величайших достижений ушедшего века является прояснение вопроса о том, как возникла Вселенная, в которой мы живем, и какие существуют гипотезы по поводу ее будущего.

    Простой астрономический факт — расширение нашей Вселенной — привел к полному пересмотру всех космогонических концепций и разработке новой физики — физики возникающих и исчезающих миров. Всего 70 лет назад Эдвин Хаббл обнаружил, что свет от более далеких галактик «краснее» света от более близких. Причем скорость разбегания оказалась пропорциональна расстоянию от Земли (закон расширения Хаббла). Обнаружить это удалось благодаря эффекту Доплера (зависимости длины волны света от скорости источника света). Поскольку более далекие галактики кажутся более «красными», то предположили, что и удаляются они с большей скоростью. Кстати, разбегаются не звезды и даже не отдельные галактики, а скопления галактик. Ближайшие от нас звезды и галактики связаны друг с другом гравитационными силами и образуют устойчивые структуры. Причем в каком направлении ни посмотри, скопления галактик разбегаются от Земли с одинаковой скоростью, и может показаться, что наша Галактика является центром Вселенной, однако это не так. Где бы ни находился наблюдатель, он будет везде видеть все ту же картину — все галактики разбегаются от него.

    Но такой разлет вещества обязан иметь начало. Значит, все галактики должны были родиться в одной точке. Расчеты показывают, что произошло это примерно 15 млрд. лет назад. В момент такого взрыва температура была очень большой, и должно было появиться очень много квантов света. Конечно, со временем все остывает, а кванты разлетаются по возникающему пространству, но отзвуки Большого взрыва должны были сохраниться до наших дней.

    Первое подтверждение факта взрыва пришло в 1964 году, когда американские радиоастрономы Р. Вильсон и А. Пензиас обнаружили реликтовое электромагнитное излучение с температурой около 3° по шкале Кельвина (–270°С). Именно это открытие, неожиданное для ученых, убедило их в том, что Большой взрыв действительно имел место и поначалу Вселенная была очень горячей.

    Теория Большого взрыва позволила объяснить множество проблем, стоявших перед космологией. Но, к сожалению, а может, и к счастью, она же поставила и ряд новых вопросов. В частности: Что было до Большого взрыва? Почему наше пространство имеет нулевую кривизну и верна геометрия Евклида, которую изучают в школе? Если теория Большого взрыва справедлива, то отчего нынешние размеры нашей Вселенной гораздо больше предсказываемого теорией 1 сантиметра? Почему Вселенная на удивление однородна, в то время как при любом взрыве вещество разлетается в разные стороны крайне неравномерно? Что привело к начальному нагреву Вселенной до невообразимой температуры более 10 13 К?

    Все это указывало на то, что теория Большого взрыва неполна. Долгое время казалось, что продвинуться далее уже невозможно. Только четверть века назад благодаря работам российских физиков Э. Глинера и А. Старобинского, а также американца А. Гуса было описано новое явление — сверх-быстрое инфляционное расширение Вселенной. Описание этого явления основывается на хорошо изученных разделах теоретической физики — общей теории относительности Эйнштейна и квантовой теории поля. Сегодня считается общепринятым, что именно такой период, получивший название «инфляция», предшествовал Большому взрыву.

    Суть инфляции

    При попытке дать представление о сущности начального периода жизни Вселенной приходится оперировать такими сверхмалыми и сверхбольшими числами, что наше воображение с трудом их воспринимает. Попробуем воспользоваться некоей аналогией, чтобы понять суть процесса инфляции.

    Представим себе покрытый снегом горный склон, в который вкраплены разнородные мелкие предметы — камешки, ветки и кусочки льда. Кто-то, находящийся на вершине этого склона, сделал небольшой снежок и пустил его катиться с горы. Двигаясь вниз, снежок увеличивается в размерах, так как на него налипают новые слои снега со всеми включениями. И чем больше размер снежка, тем быстрее он будет увеличиваться. Очень скоро из маленького снежка он превратится в огромный ком. Если склон заканчивается пропастью, то он полетит в нее со все более увеличивающейся скоростью. Достигнув дна, ком ударится о дно пропасти и его составные части разлетятся во все стороны (кстати, часть кинетической энергии кома при этом пойдет на нагрев окружающей среды и разлетающегося снега). Теперь опишем основные положения теории, используя приведенную аналогию. Прежде всего физикам пришлось ввести гипотетическое поле, которое было названо «инфлатонным» (от слова «инфляция»). Это поле заполняло собой все пространство (в нашем случае — снег на склоне). Благодаря случайным колебаниям оно принимало разные значения в произвольных пространственных областях и в различные моменты времени. Ничего существенного не происходило, пока случайно не образовалась однородная конфигурация этого поля размером более 10 -33 см. Что же касается наблюдаемой нами Вселенной, то она в первые мгновения своей жизни, по-видимому, имела размер 10 -27 см. Предполагается, что на таких масштабах уже справедливы основные законы физики, известные нам сегодня, поэтому можно предсказать дальнейшее поведение системы. Оказывается, что сразу после этого пространственная область, занятая флуктуацией (от лат. fluctuatio — «колебание», случайные отклонения наблюдаемых физических величин от их средних значений), начинает очень быстро увеличиваться в размерах, а инфлатонное поле стремится занять положение, в котором его энергия минимальна (снежный ком покатился). Такое расширение продолжается всего 10 -35 секунды, но этого времени оказывается достаточно для того, чтобы диаметр Вселенной возрос как минимум в 10 27 раз и к окончанию инфляционного периода наша Вселенная приобрела размер примерно 1 см. Инфляция заканчивается, когда инфлатонное поле достигает минимума энергии — дальше падать некуда. При этом накопившаяся кинетическая энергия переходит в энергию рождающихся и разлетающихся частиц, иначе говоря, происходит нагрев Вселенной. Как раз этот момент и называется сегодня Большим взрывом.

    Гора, о которой говорилось выше,может иметь очень сложный рельеф—несколько разных минимумов, долины внизу и всякие холмы и кочки. Снежные комья (будущие вселенные) непрерывно рождаются наверху горы за счет флуктуаций поля. Каждый ком может скатиться в любой из минимумов, породив при этом свою вселенную со специфическими параметрами. Причем вселенные могут существенно отличаться друг от друга. Свойства нашей Вселенной удивительнейшим образом приспособлены к тому, чтобы в ней возникла разумная жизнь. Другим вселенным, возможно, повезло меньше.

    Еще раз хотелось бы подчеркнуть, что описанный процесс рождения Вселенной «практически из ничего» опирается на строго научные расчеты. Тем не менее у всякого человека, впервые знакомящегося с инфляционным механизмом, описанным выше, возникает немало вопросов.

    В ответ на каверзные вопросы

    Сегодня наша Вселенная состоит из большого числа звезд, не говоря уж о скрытой массе. И может показаться, что полная энергия и масса Вселенной огромны. И совершенно непонятно, как это все могло поместиться в первоначальном объеме 10 -99 см 3 . Однако во Вселенной существует не только материя, но и гравитационное поле. Известно, что энергия последнего отрицательна и, как оказалось, в нашей Вселенной энергия гравитации в точности компенсирует энергию, заключенную в частицах, планетах, звездах и прочих массивных объектах. Таким образом, закон сохранения энергии прекрасно выполняется, и суммарная энергия и масса нашей Вселенной практически равны нулю. Именно это обстоятельство отчасти объясняет, почему зарождающаяся Вселенная тут же после появления не превратилась в огромную черную дыру. Ее суммарная масса была совершенно микроскопична, и вначале просто нечему было коллапсировать. И только на более поздних стадиях развития появились локальные сгустки материи, способные создавать вблизи себя такие гравитационные поля, из которых не может вырваться даже свет. Соответственно, и частиц, из которых «сделаны» звезды, на начальной стадии развития просто не существовало. Элементарные частицы начали рождаться в тот период развития Вселенной, когда инфлатонное поле достигло минимума потенциальной энергии и начался Большой взрыв.

    Область, занятая инфлатонным полем, разрасталась со скоростью, существенно большей скорости света, однако это нисколько не противоречит теории относительности Эйнштейна. Быстрее света не могут двигаться лишь материальные тела, а в данном случае двигалась воображаемая, нематериальная граница той области, где рождалась Вселенная (примером сверхсветового движения является перемещение светового пятна по поверхности Луны при быстром вращении освещающего ее лазера).

    Причем окружающая среда совсем не сопротивлялась расширению области пространства, охваченного все более быстро разрастающимся инфлатонным полем, поскольку ее как бы не существует для возникающего Мира. Общая теория относительности утверждает, что физическая картина, которую видит наблюдатель, зависит от того, где он находится и как движется. Так вот, описанная выше картина справедлива для «наблюдателя», находящегося внутри этой области. Причем этот наблюдатель никогда не узнает, что происходит вне той области пространства, где он находится. Другой «наблюдатель», смотрящий на эту область снаружи, никакого расширения вовсе не обнаружит. В лучшем случае он увидит лишь небольшую искорку, которая по его часам исчезнет почти мгновенно. Даже самое изощренное воображение отказывается воспринимать такую картину. И все-таки она, по-видимому, верна. По крайней мере, так считают современные ученые, черпая уверенность в уже открытых законах Природы, правильность которых многократно проверена.

    Надо сказать, что это инфлатонное поле и сейчас продолжает существовать и флуктуировать. Но только мы, внутренние наблюдатели, не в состоянии этого увидеть — ведь для нас маленькая область превратилась в колоссальную Вселенную, границ которой не может достигнуть даже свет.

    Итак, сразу после окончания инфляции гипотетический внутренний наблюдатель увидел бы Вселенную, заполненную энергией в виде материальных частиц и фотонов. Если всю энергию, которую мог бы измерить внутренний наблюдатель, перевести в массу частиц, то мы получим примерно 10 80 кг. Расстояния между частицами быстро увеличиваются из-за всеобщего расширения. Гравитационные силы притяжения между частицами уменьшают их скорость, поэтому расширение Вселенной после завершения инфляционного периода постепенно замедляется.

    Эти опасные античастицы

    Сразу после рождения Вселенная продолжала расти и охлаждаться. При этом охлаждение происходило в том числе и благодаря банальному расширению пространства. Электромагнитное излучение характеризуется длиной волны, которую можно связать с температурой — чем больше средняя длина волны излучения, тем меньше температура. Но если пространство расширяется, то будут увеличиваться и расстояние между двумя «горбами» волны, и, следовательно, ее длина. Значит, в расширяющемся пространстве и температура излучения должна уменьшаться. Что и подтверждает крайне низкая температура современного реликтового излучения.

    По мере расширения меняется и состав материи, наполняющей наш мир. Кварки объединяются в протоны и нейтроны, и Вселенная оказывается заполненной уже знакомыми нам элементарными частицами — протонами, нейтронами, электронами, нейтрино и фотонами. Присутствуют также и античастицы. Свойства частиц и античастиц практически идентичны. Казалось бы, и количество их должно быть одинаковым сразу после инфляции. Но тогда все частицы и античастицы взаимно уничтожились бы и строительного материала для галактик и нас самих не осталось бы. И здесь нам опять повезло. Природа позаботилась о том, чтобы частиц было немного больше, чем античастиц. Именно благодаря этой небольшой разнице и существует наш мир. А реликтовое излучение — это как раз последствие аннигиляции (то есть взаимоуничтожения) частиц и античастиц. Конечно, на начальном этапе энергия излучения была очень велика, но благодаря расширению пространства и как следствие — охлаждению излучения эта энергия быстро убывала. Сейчас энергия реликтового излучения примерно в десять тысяч раз (10 4 раз) меньше энергии, заключенной в массивных элементарных частицах.

    Постепенно температура Вселенной упала до 10 10 К. К этому моменту возраст Вселенной составлял примерно 1 минуту. Только теперь протоны и нейтроны смогли объединяться в ядра дейтерия, трития и гелия. Это происходило благодаря ядерным реакциям, которые люди уже хорошо изучили, взрывая термоядерные бомбы и эксплуатируя атомные реакторы на Земле. Поэтому можно уверенно предсказывать, сколько и каких элементов может появиться в таком ядерном котле. Оказалось, что наблюдаемое сейчас обилие легких элементов хорошо согласуется с расчетами. Это означает, что известные нам физические законы одинаковы во всей наблюдаемой части Вселенной и были таковыми уже в первые секунды после появления нашего мира. Причем около 98% существующего в природе гелия образовалось именно в первые секунды после Большого взрыва.

    Зарождение галактик

    Сразу после рождения Вселенная проходила инфляционный период развития — все расстояния стремительно увеличивались (с точки зрения внутреннего наблюдателя). Однако плотность энергии в разных точках пространства не может быть в точности одинаковой — какие-то неоднородности всегда присутствуют. Предположим, что в какой-то области энергия немного больше, чем в соседних. Но раз все размеры быстро растут, то и размер этой области тоже должен расти. После окончания инфляционного периода эта разросшаяся область будет иметь чуть больше частиц, чем окружающее ее пространство, да и ее температура будет немного выше.

    Поняв неизбежность возникновения таких областей, сторонники инфляционной теории обратились к экспериментаторам: «необходимо обнаружить флуктуации температуры…» — констатировали они. И в 1992 году это пожелание было выполнено. Практически одновременно российский спутник «Реликт-1» и американский «COBE» обнаружили требуемые флуктуации температуры реликтового излучения. Как уже говорилось, современная Вселенная имеет температуру 2,7 К, а найденные учеными отклонения температуры от среднего составляли примерно 0,00003 К. Неудивительно, что такие отклонения трудно было обнаружить раньше. Так инфляционная теория получила еще одно подтверждение.

    С открытием колебаний температуры появилась еще одна захватывающая возможность — объяснить принцип формирования галактики. Ведь чтобы гравитационные силы сжимали материю, необходим исходный зародыш — область с повышенной плотностью. Если материя распределена в пространстве равномерно, то гравитация, подобно Буриданову ослу, не знает, в каком направлении ей действовать. Но как раз области с избытком энергии и порождает инфляция. Теперь гравитационные силы знают, на что воздействовать, а именно, на более плотные области, созданные во время инфляционного периода. Под действием гравитации эти изначально чуть-чуть более плотные области будут сжиматься и именно из них в будущем образуются звезды и галактики.

    Счастливое настоящее

    Современный нам момент эволюции Вселенной крайне удачно приспособлен для жизни, и длиться он будет еще много миллиардов лет. Звезды будут рождаться и умирать, галактики вращаться и сталкиваться, а скопления галактик — улетать все дальше друг от друга. Поэтому времени для самосовершенствования у человечества предостаточно. Правда, само понятие «сейчас» для такой огромной Вселенной, как наша, плохо определено. Так, например, наблюдаемая астрономами жизнь квазаров, удаленных от Земли на 10—14 млрд. световых лет, отстоит от нашего «сейчас» как раз на те самые 10—14 млрд. лет.

    Сегодня ученые в состоянии объяснить большинство свойств нашей Вселенной, начиная с момента в 10 -42 секунды и до настоящего времени и даже далее. Они могут также проследить образование галактик и довольно уверенно предсказать будущее Вселенной. Тем не менее ряд «мелких» непонятностей еще остается. Это прежде всего — сущность скрытой массы (темной материи) и темной энергии. Кроме того, существует много моделей, объясняющих, почему наша Вселенная содержит гораздо больше частиц, чем античастиц, и хотелось бы определиться в конце концов с выбором одной правильной модели.

    Как учит нас история науки, обычно именно «мелкие недоделки» и открывают дальнейшие пути развития, так что будущим поколениям ученых наверняка будет чем заняться. Кроме того, более глубокие вопросы тоже уже стоят на повестке дня физиков и математиков. Почему наше пространство трехмерно? Почему все константы в природе словно «подогнаны» так, чтобы возникла разумная жизнь? И что же такое гравитация? Ученые уже пытаются ответить и на эти вопросы.

    Ну и конечно, оставим место для неожиданностей. Не надо забывать, что такие основополагающие открытия, как расширение Вселенной, наличие реликтовых фотонов и энергия вакуума, были сделаны, можно сказать, случайно и не ожидались ученым сообществом.

    Энергия вакуума — происхождение и последствия

    Что же ждет нашу Вселенную в дальнейшем? Еще несколько лет назад у теоретиков в этой связи имелись всего две возможности. Если плотность энергии во Вселенной мала, то она будет вечно расширяться и постепенно остывать. Если же плотность энергии больше некоторого критического значения, то стадия расширения сменится стадией сжатия. Вселенная будет сжиматься в размерах и нагреваться. Значит, одним из ключевых параметров, определяющим развитие Вселенной, является средняя плотность энергии. Так вот, астрофизические наблюдения, проводимые до 1998 года, говорили о том, что плотность энергии составляет примерно 30% от критического значения. А инфляционные модели предсказывали, что плотность энергии должна быть равна критической. Апологетов инфляционной теории это не очень смущало. Они отмахивались от оппонентов и говорили, что недостающие 70% «как-нибудь найдутся». И они действительно нашлись. Это большая победа теории инфляции, хотя найденная энергия оказалась такой странной, что вызвала больше вопросов, чем ответов.
    Похоже, что искомая темная энергия — это энергия самого вакуума.

    В представлении людей, не связанных с физикой, вакуум — «это когда ничего нет» — ни вещества, ни частиц, ни полей. Однако это не совсем так. Стандартное определение вакуума — это состояние, в котором отсутствуют частицы. Поскольку энергия заключена именно в частицах, то, как резонно полагали едва ли не все, включая и ученых, нет частиц — нет и энергии. Значит, энергия вакуума равна нулю. Вся эта благостная картина рухнула в 1998 году, когда астрономические наблюдения показали, что разбегание галактик немножко отклоняется от закона Хаббла. Вызванный этими наблюдениями у космологов шок длился недолго. Очень быстро стали публиковаться статьи с объяснением этого факта. Самым простым и естественным из них оказалась идея о существовании положительной энергии вакуума. Ведь вакуум, в конце концов, означает просто отсутствие частиц, но почему лишь частицы могут обладать энергией? Обнаруженная темная энергия оказалась распределенной в пространстве на удивление однородно. Подобную однородность трудно осуществить, ведь если бы эта энергия была заключена в каких-то неведомых частицах, гравитационное взаимодействие заставляло бы их собраться в грандиозные конгломераты, подобные галактикам. Поэтому энергия, спрятанная в пространстве-вакууме, очень изящно объясняет устроение нашего мира.

    Однако возможны и другие, более экзотические, варианты мироустроения. Например, модель Квинтэссенции, элементы которой были предложены советским физиком А.Д. Долговым в 1985 году, предполагает, что мы все еще скатываемся с той самой горки, о которой говорилось в начале нашего повествования. Причем катимся мы уже очень долго, и конца этому процессу не видно. Необычное название, позаимствованное у Аристотеля, обозначает некую «новую сущность», призванную объяснить, почему мир устроен так, а не иначе.

    Сегодня вариантов ответа на вопрос о будущем нашей Вселенной стало значительно больше. И они существенно зависят от того, какая теория, объясняющая скрытую энергию, является правильной. Предположим, что верно простейшее объяснение, при котором энергия вакуума положительна и не меняется со временем. В этом случае Вселенная уже никогда не сожмется и нам не грозит перегрев и Большой хлопок. Но за все хорошее приходится платить. В этом случае, как показывают расчеты, мы в будущем никогда не сможем достигнуть всех звезд. Более того, количество галактик, видимых с Земли, будет уменьшаться, и через 10—20 млрд. лет в распоряжении человечества останется всего несколько соседних галактик, включая нашу — Млечный Путь, а также соседнюю Андромеду. Человечество уже не сможет увеличиваться количественно, и тогда придется заняться своей качественной составляющей. В утешение можно сказать, что несколько сотен миллиардов звезд, которые будут нам доступны в столь отдаленном будущем, — это тоже немало.

    Впрочем, понадобятся ли нам звезды? 20 миллиардов лет — большой срок. Ведь всего за несколько сот миллионов лет жизнь развилась от трилобитов до современного человека. Так что наши далекие потомки, возможно, будут по внешнему виду и возможностям отличаться от нас еще больше, чем мы от трилобитов. Что же сулит им еще более отдаленное будущее, по прогнозам современных ученых? Ясно, что звезды будут тем или иным способом «умирать», но будут образовываться и новые. Этот процесс тоже не бесконечен — примерно через 10 14 лет, по предположению ученых, во Вселенной останутся только слабосветящиеся объекты — белые и темные карлики, нейтронные звезды и черные дыры. Почти все они также погибнут через 10 37 лет, исчерпав все запасы своей энергии. К этому моменту останутся лишь черные дыры, поглотившие всю остальную материю. Что может разрушить черную дыру? Любые наши попытки сделать это лишь увеличивают ее массу. Но «ничто не вечно под Луной». Оказывается, черные дыры медленно, но излучают частицы. Значит, их масса постепенно уменьшается. Все черные дыры тоже должны исчезнуть примерно через 10 100 лет. После этого останутся лишь элементарные частицы, расстояние между которыми будет намного превосходить размеры современной Вселенной (примерно в 10 90 раз) — ведь все это время Вселенная расширялась! Ну и, конечно, останется энергия вакуума, которая будет абсолютно доминировать во Вселенной.

    Кстати, свойства такого пространства впервые изучил В. де Ситтер еще в 1922 году. Так что нашим потомкам предстоит либо изменить физические законы Вселенной, либо перебраться в другие вселенные. Сейчас это кажется невероятным, но хочется верить в могущество человечества, как бы оно, человечество, ни выглядело в столь отдаленном будущем. Потому что времени у него предостаточно. Кстати, возможно, что уже и сейчас мы, сами того не ведая, создаем новые вселенные. Для того чтобы в очень маленькой области возникла новая вселенная, необходимо инициировать инфляционный процесс, который возможен только при высоких плотностях энергий. А ведь экспериментаторы уже давно создают такие области, сталкивая частицы на ускорителях… И хотя эти энергии еще очень далеки от инфляционных, вероятность создания вселенной на ускорителе уже не равна нулю. К сожалению, мы являемся тем самым «удаленным наблюдателем», для которого время жизни этой «рукотворной» вселенной слишком мало, и внедриться в нее и посмотреть, что там происходит, мы не можем...

    Возможные сценарии развития нашего мира
    1. Пульсирующая модель Вселенной, при которой вслед за периодом расширения наступает период сжатия и все заканчивается Большим хлопком
    2. Вселенная со строго подогнанной средней плотностью, в точности равной критической. В этом случае наш мир Евклидов, и его расширение все время замедляется
    3. Равномерно расширяющаяся по инерции Вселенная. Именно в пользу такой открытой модели мира до последнего времени свидетельствовали данные о подсчете средней плотности нашей Вселенной
    4. Мир, расширяющийся со все нарастающей скоростью. Новейшие экспериментальные данные и теоретические изыскания говорят о том, что Вселенная разлетается все быстрее, и несмотря на евклидовость нашего мира, большая часть галактик в будущем будет нам недоступна. И виновата в столь странном устроении мира та самая темная энергия, которую сегодня связали с некоей внутренней энергией вакуума, заполняющего все пространство

    Сергей Рубин, доктор физико-математических наук

    Загрузка...