domvpavlino.ru

Что такое конструкционные материалы. Технические характеристики конструкционных материалов. Производство стали в кислородных конвертерах

При выборе материалов в первую очередь требуется всесторонне рассмотреть условия его работы и разграничить факторы, воздействующие на материал, по степени их влияния на надежность машины или механизма. Определяющие факторы должны быть учтены обязательно, менее определяющие - по возможности.

Следующим этапом выбора материала должен быть процесс определения комплекса необходимых свойств материала, обеспечивающих надежную и долговечную работу конструкций, машин и оборудования в заданных условиях эксплуатации. Так как конструкционные материалы характеризуются механическими, физикохимическими и технологическими свойствами, то рассматривать необходимо всю гамму свойств, особенно, если в конструкции должны работать разные материалы.

Более правильным является формирование технических требований к материалу на основании моделирования условий работы изделия в реальных условиях эксплуатации с использованием специальных стендов, на которых с помощью тензометрирования можно определить уровень локальных пиковых напряжений изделия. В том случае, когда не имеется возможности использовать стенд для измерения рабочего напряжения, возникающего в изделии при его эксплуатации, следует использовать расчетные методы.

Физико-химические свойства. Физические свойства определяют поведение материалов в тепловых, гравитационных, электромагнитных и радиационных полях. Из важных физических свойств можно выделить теплопроводность, плотность, коэффициент линейного расширения. Применение в соединениях деталей из различных материалов обусловливает необходимость учета их коэффициентов линейного расширения.

Под химическими свойствами понимают способность материалов вступать в химическое взаимодействие с другими веществами, сопротивляемость окислению, проникновению газов и химически активных веществ. Детали любого изделия должны быть совместимы с рабочей средой. Коррозия, коррозионная усталость, коррозия под напряжением, водородное охрупчивание и т.д. могут вызвать повреждение в металле и привести к хрупкому разрушению конструкции. Такие химически активные металлы, как титан и его сплавы, магниевые сплавы, алюминиевые сплавы, при ударном нагружении могут самопроизвольно загораться при контакте с жидким кислородом.

Механические свойства. Основой выбора материалов для создания надежной и работоспособной техники являются их механические свойства, в первую очередь, прочностные, которые характеризуют способность материалов сопротивляться деформации и разрушению под действием различного рода нагрузок, в разных средах и при различных температурных условиях.

Расчет конструкции на прочность производят по допустимым напряжениям [о], определяемым из условий прочности при статическом нагружении или долговечности при циклическом нагружении. При статическом нагружении допускаемое напряжение равно отношению предельного для данного материала напряжения к коэффициенту безопасности , т.е. к коэффициенту запаса прочности п. Для пластичных материалов за предельное напряжение принимают предел текучести, для квазихрупких - временное сопротивление:

[ = а Т /п Т или [а] = а в /я в. (2.1)

Значение коэффициента запаса прочности зависит от многих факторов: разброса характеристик прочности; присутствия в материале дефектов, допускаемых техническими условиями; степени схематизации расчетной процедуры и т.д.

В России за допускаемое принимается минимальное напряжение, определяемое по пределу текучести или временному сопротивлению. Такая же методика принята во многих странах. Однако в некоторых странах, например в Чехии, Словакии, Германии, Польше, для определения допускаемых напряжений расчет ведется только по пределу текучести, а в Японии - только по временному сопротивлению.

Коэффициент запаса может меняться в широких пределах в зависимости от условий работы оборудования и опыта работы с данным материалом.

Для сосудов и аппаратов, работающих под давлением, коэффициент запаса по пределу текучести находится в пределах от 1,5 до 1,65, а по временному сопротивлению - от 2,35 до 4.

Однако расчеты на прочность конструкций по номинальным напряжениям с учетом коэффициентов запаса не всегда гарантируют необходимый ресурс их работы. Это связано с тем, что назначаемые запасы прочности не учитывают ряда факторов, которые способствуют возникновению повреждений и разрушений несущих элементов конструкций и машин. К этим факторам относятся: присутствие в металле дефектов типа трещин, как исходных, так и возникающих в процессе эксплуатации; наличие микро- и макронеоднородностей металла по толщине, в зонах сварных швов и т.д.; появление локальных напряжений вследствие их концентрации, а также остаточных технологических напряжений; нестабильность эксплуатационного нагружения из-за статических и импульсных перегрузок, стационарных и нестационарных циклических нагрузок. Для учета этих факторов необходим переход от расчета по номинальным напряжениям к анализу локальных напряжений, возникающих в отдельных зонах изделия.

Для высокопрочных и среднепрочных материалов расчет допустимых значений следует проводить на основе принципов механики разрушения с учетом максимальных размеров дефектов. Это связано с тем, что повышение прочности обычно сопровождается уменьшением пластичности и вязкости материала.

Пластичность характеризует способность материала к пластическому течению при превышении предела текучести, а вязкость - способность поглощать энергию внешних сил при разрушении.

У разных материалов соотношение пластичности и вязкости может очень сильно различаться. Например, алюминий имеет малую вязкость при высоком относительном удлинении. Наоборот, термообработанная (улучшенная), легированная сталь при сравнительно небольшом относительном удлинении может иметь высокую вязкость.

Пластичность и вязкость в конструкционные расчеты не входят и являются качественными показателями.

Пластичность показывает способность металла к перераспределению напряжений в зонах концентрации (пиков). Пластическая деформация как бы предохраняет металл от резких локальных перегрузок вблизи концентраторов напряжений.

Широко принятым критерием работоспособности металлических сплавов и сварных соединений, особенно используемых при низких температурах, является ударная вязкость, определенная на образцах с надрезом. При этом сложность представляет выбор необходимого уровня вязкости и вида образцов для ее оценки. В разных странах принят различный гарантированный уровень ударной вязкости. За рубежом сталь обычно допускается к эксплуатации, если ее ударная вязкость, определенная на образцах типа Шарли размером 10 х 10 х 55 мм с надрезом радиусом 0,25 мм, составляет КСУ> 0,30 МДж/м 2 .

Надежность конструкций, работающих в условиях многократного подъема и сброса давления, зависит от сопротивления материалов усталостному разрушению. Поэтому для таких изделий проводятся имитирующие циклические испытания стандартных образцов либо циклические стендовые испытания. База испытаний выбирается в зависимости от условий эксплуатации оборудования.

Металл установок или изделий, подвергаемых многократному нагреву или охлаждению, испытывается на сопротивление термической усталости.

В случае длительного нагружения конструкций при высоких температурах производятся испытания ползучести и длительной прочности материала.

При циклическом или длительном статическом нагружении номинальные эксплуатационные напряжения выбираются с введением коэффициентов запаса п а и п п по пределам длительной прочности и ползучести.

Коэффициенты Яд и л п обычно имеют значения в пределах 2,0-3,5.

Технологические свойства (литейные свойства у литейных сплавов; обрабатываемость давлением у деформируемых сплавов, обрабатываемость резанием, свариваемость) весьма важны и могут быть решающими при выборе материала для изготовления высококачественных изделий в производственных условиях. Например, нельзя изготовить литьем тонкостенные протяженные детали из сплава с низкой жидкотекучестью и плохой заполняемостью. Нельзя также изготавливать сварные конструкции из сталей с высоким содержанием углерода (высоким углеродным эквивалентом), так как в зоне сварного шва всегда будут образовываться сварные трещины.

При рассмотрении обрабатываемости материалов следует исходить из условий серийности изготавливаемого изделия и необходимости применения смягчающей термообработки. Так, при изготовлении изделий крупносерийного или массового производства следует ориентироваться на их механическую обработку с использованием станков с ЧПУ и обрабатывающих центров. В этом случае твердость обрабатываемых деталей должна быть невысокой (до 250 НВ). Для обеспечения низкой твердости для этих деталей может применяться предварительная термообработка: отжиг, нормализация, высокий отпуск.

Оценка свариваемости конструкционных материалов должна включать анализ уровня механических свойств сварного соединения и основного металла, определение склонности к образованию дефектов, прежде всего трещин в металле шва и зоне термического влияния, определение чувствительности сварного соединения к концентраторам напряжений и склонности к хрупкому разрушению. Для получения бездефектных равнопрочных сварных соединений, обладающих высоким сопротивлением хрупкому разрушению, необходима разработка специальной системы легирования сварного шва.

Приняты следующие термины, характеризующие свариваемость металлов: хорошая, удовлетворительная, ограниченная, неудовлетворительная. Хорошая свариваемость характерна для металлических материалов, не имеющих ограничений в проведении процесса сварки при температуре окружающей среды по массе и сложности конструкций. Такие материалы не требуют предварительного подогрева. При удовлетворительной свариваемости на морозе сварка не допускается и должна производиться при комнатной температуре. В сварных элементах должны отсутствовать жесткие стыки; для сложных узлов необходим предварительный сопутствующий подогрев; после сварки при большом объеме наплавленного металла необходим отпуск; при вваривании вкладышей рекомендуется проводить промежуточную термическую обработку. Ограниченная свариваемость подразумевает возможность сварки небольших деталей простой формы с подогревом до 300-400 °С и проведении отпуска после сварки; в случае жестких контуров температура подогрева должна быть увеличена до 600 °С. Неудовлетворительная свариваемость характерна для материалов, нуждающихся в отжиге перед сваркой; даже при сварке простых узлов их необходимо подогревать до температур более 450 °С с обязательным проведением высокого отпуска после сварки.

Выбранные материалы и технологии изготовления из них изделий обязательно должны быть привязаны к возможностям конкретного производства. Например, не следует ориентироваться на лазерную термообработку изделий массового производства, так как это окажется технически невыполнимым, а следует выбрать один из видов химико-термической обработки, который используется на предприятии - изготовителе изделий.

Важный этап выбора материала - оценка его стоимости и дефицитности. Выбранный материал должен быть по возможности дешевым, с учетом всех затрат, включающих как стоимость самого материала, так и стоимость изготовления из него деталей, а также эксплуатационную стойкость. Необходимо учитывать также наличие дефицитных составляющих материала. Например, в последние годы такие элементы в стали, как вольфрам, кобальт, никель являются дефицитными и их использование в качестве легирующих добавок в сталях должно быть ограничено. Однако в тех случаях, когда без них нельзя обеспечить необходимые служебные свойства, их применение оправдано (быстрорежущие стали, жаропрочные стали и сплавы).

Таким образом, основой при выборе материалов являются назначение и условия работы изделия или конструкции. При ЭТОМ КОНструктор опирается на опыт изготовления и эксплуатации изделий и конструкций данного профиля, уровень технологии производства и контроля, а также учитывает экономические соображения. При выборе материалов большую роль могут сыграть результаты стендовых и натурных испытаний изделий.

Использование при выборе материалов, ранее хорошо зарекомендовавших себя в подобных конструкциях и изделиях, вполне оправдано, но может привести, с одной стороны, к отказу от совершенствования конструкций и изделий, а с другой - к повторению уже сделанных ошибок.

Конструкционные материалы – это материалы, применяемые для изготовления деталей и сборочных единиц блоков и устройств РЭА и ЭВА. Они классифицируются по природе материала, технологическому использованию и условиям работы.

По природе материалы разделяют на металлические, неметаллические и композиционные. К металлическим материалам относятся чугун, сталь, цветные металлы, драгоценные и редкоземельные металлы, их сплавы и металлокерамика. Неметаллические материалы – это пластмассы, резина, древесина, стекло, диэлектрики.

Композиционные материалы представляют собой объемное сочетание химически разнородных компонентов. Они имеют основу, в которой распределены упрочнители (волокна, проволоки). Монолитное объединение основы и упрочнителей производится связующим и позволяет эффективно использовать их индивидуальные свойства. Примеры – стеклопластики и карбоволокниты.

По технологическому использованию конструкционные материалы делят на литые, деформированные (прокат, поковки, прессованные профили и др.), спекаемые, свариваемые и т. п.

По условиям работы различают электротехнические, коррозионностойкие, износостойкие и другие материалы специального назначения.

Металлические конструкционные материалы поставляют в виде слитков, прутков (круглого, квадратного и шестигранного сечения), профилей (уголок, швеллер, фасонный и др.), листов, лент, полос, проволоки, труб различного сортамента. Сортамент – это данные о материале по маркам, состоянию, профилям и размерам. Каждый материал имеет определенное наименование и марку, например алюминиевый сплав марки Д16.

Материалы выбираются конструктором на основании назначения и условий эксплуатации конструкции с учетом требований технологии производства и ее массы. Выбор производят, исходя из выпускаемой номенклатуры их основных, марок, сортамента, технологических свойств и рекомендаций по применению тех или иных материалов для различного типа деталей несущих конструкций и мехатронных устройств ЭВА и РЭА.

При конструировании изделий ЭВА и РЭА используют черные металлы, сплавы титана, цветные металлы (медь, алюминий, магний) и их сплавы, неметаллические материалы, которые выбираются из справочников конструктора с ограничениями, действующими на данном предприятии.

Черные металлы . К черным металлам относят следующие виды стали: Углеродистую обыкновенного качества, качественную конструкционную углеродистую, конструкционную легированную, конструкционную легированную коррозионностойкую и др.

Углеродистую сталь обыкновенного качества широко используют при производстве сортового и листового проката. Марки этой стали: Ст 0, Ст1,…Ст7. В зависимости от назначения сталь подразделяют на три группы – А, Б, В и применяют для поделочных неответственных деталей. Обозначение марки стали на чертеже: ВСт4кп ГОСТ 380 – 71 * (кп обозначает “кипящая”). Из этой марки стали, изготавливают профили сортового проката и фасонные гнутые профили. Сортовой и листовой прокат используют в несущих конструкциях некоторых видов наземной РЭА типа каркасов, стоек, рам и оснований.

Качественная углеродистая конструкционная сталь (ГОСТ 1050 – 74) бывает низко- (С?0,25%), средне- (С= 0,3?0,45%) и высокоуглеродистая (С > 0,45%). При содержании углерода до 0,3% стали отличаются высокой пластичностью и вязкостью, хорошо свариваются, но не подвержены закалке. Увеличение содержания углерода сопровождается повышением прочностных характеристик, однако пластичность при этом снижается. Твердость и прочность средне- и высокоуглеродистых сталей можно повысить путем термической обработки.

Конструкционные легированные стали . Для улучшения прочностных, физических, химических и технологических свойств сталь легируют, вводя в ее состав различные элементы. Сталь может содержать один или несколько легирующих элементов, которые придают ей специальные свойства. Практически большинство деталей из легированных сталей подвергают термообработке.

Легирующие элементы (добавки) оказывают различное влияние на свойства легированных сталей. По ГОСТ 4543-71 легирующие элементы имеют следующие обозначения: хром (Х), никель (Н), марганец (Г), кремний (С), молибден (М), вольфрам (В), титан (Т), алюминий (Ю), ванадий (Ф), кобальт (К). Все легирующие элементы, за исключением кобальта, улучшают термическую обрабатываемость стали.

Повышение прочности стали достигается введением хрома, никеля, марганца, кремния. Никель и хром повышают ударную вязкость стали. Износостойкость и твердость стали увеличивают добавкой в нее вольфрама, хрома, молибдена, ванадия. Повышение теплостойкости стали достигают введением хрома, вольфрама, молибдена, кобальта. Хром, никель, титан, кремний придают стали коррозионную стойкость и жаропрочность.

Наилучший результат по улучшению свойств стали достигают при ее легировании несколькими (3-6) элементами (комплексно-легированные стали), т. к. каждый элемент придает стали свои полезные специфические свойства.

При выборе легированных сталей необходимо иметь в виду высокую стоимость и дефицитность сталей, содержащих никель, вольфрам, молибден, кобальт и некоторые другие элементы. Применять легированные стали с дефицитными элементами необходимо лишь при тщательно обоснованной конструкционной необходимости.

Маркировка легированных сталей. Марка легированной стали состоит из сочетания букв и цифр, обозначающих ее химический состав. Цифра, стоящая после буквы, указывает на содержание легирующего элемента в процентах. Если цифра не указана, то легирующего элемента не более 1,5%. В конструкционных сталях две цифры в начале марки показывают содержание углерода – в сотых долях процента. Высококачественные стали имеют в конце марки букву А. Например: сталь марки 30ХГСН2А обозначает высококачественную легированную сталь с содержанием углерода 0,30%, до 1% хрома, марганца, кремния и 2% никеля.

Для твердости поверхности стали цементируют или азотируют. Цементируемые стали – это низкоуглеродистые (0,1 - 0,30% С), низко- и среднелегированные (до 10% легирующего элемента) стали. Для ответственных деталей применяется азотируемая сталь –38ХМЮА.

Цветные металлы и сплавы . К ним относятся все металлы, кроме железа. Рассмотрим конструкционные металлы и сплавы, используемые в изделиях РЭА и ЭВА. Эта группа включает: алюминий, медь, титан, магний, бериллий и их сплавы.

Алюминий – металл серебристо-белого цвета, имеет малую плотность (2,7 г/см 3), хорошую тепло- и электропроводность, высокую коррозионную стойкость и пластичность, но малую прочность. Алюминий хорошо сваривается, обрабатывается давлением, но плохо поддается резанию. Его используют для изготовления проводов, фольги, для защиты других металлов от коррозии и для получения сплавов с более высокими механическими свойствами, чем алюминий. Алюминиевые сплавы с магнием, медью, кремнием и марганцем подразделяются на деформируемые и литейные.

Деформируемые алюминиевые сплавы . К этим сплавам повышенной пластичности относятся сплавы алюминия с марганцем (Амц) и магнием (Амг). Они применяются в основном в отожженом (мягком) состоянии. Для повышения прочностных свойств алюминиевые сплавы Амц и Амг нагартовывают, при этом резко снижается пластичность. Сплавы Амц и Амг применяют для изготовления кожухов, обечаек, крышек, заклепок и пр.

Большое распространение получили сплавы алюминия с медью, марганцем и магнием – дюралюмины. Прочность сплава увеличивают медь и магний, а марганец – его твердость и стойкость против коррозии. Дюралюмины маркируют буквой Д, после которой стоит цифра, обозначающая условный номер сплава. Термическая обработка дюралюминов состоит в закалке, естественном и искусственном старении. Для закалки сплавы нагревают до 500?С в соляной ванне и охлаждают в воде. Естественное старение производят при комнатной температуре в течение 5-7 суток. Искусственное старение проводят при 150 -180?С в течение 2-4 ч. Дюралюмины имеют низкую коррозионную стойкость, поэтому их подвергают плакированию, которое заключается в горячей прокатке заготовки дюралюмина, обернутой чистым алюминием. Алюминий приваривается и защищает поверхность дюралюмина от коррозии. Дюралюмины выпускают в виде листов, прессованых и катаных профилей, прутков, труб. Из них изготавливают детали с высокой прочностью и малой массой. Они широко применяются в авиастроении.

Литейные алюминиевые сплавы . Их получают добавлением в алюминий кремния до 23%. Эти сплавы получили название силумины. Они обозначаются буквами АЛ и цифрой, указывающей на условный номер сплава. В сплав добавляются и легирующие присадки (медь, магний, цинк, титан), улучшающие, после проведения термической обработки, показатели механической прочности.

Медь и медные сплавы. Медь – металл розовато-красного цвета, имеет высокую плотность (8,94 г/см 3), высокие тепло- и электропроводность, коррозионную стойкость и пластичность. Медь технологична, т. е. хорошо прокатывается, паяется и сваривается, но плохо поддается резанию. Благодаря высоким тепло- и электропроводным свойствам медь широко применяется для изготовления различных проводников тока, токопроводящих деталей, теплообменников и др.

Латунь – это сплав меди и цинка. Латунь прочнее, устойчивее против коррозии и дешевле, чем медь и хорошо обрабатываются давлением и резанием, обладают высокими литейными свойствами. Основные марки латуни: Л80, Л63, ЛС59 – 1 и др.

Бронза – это сплав меди с оловом и другими элементами: алюминием, бериллием, кремнием, марганцем, свинцом. Бронзы обладают высокой стойкостью против коррозии, хорошими литейными и высокими антифрикционными свойствами и обрабатываемостью резанием.

Бронзу маркируют по тому же принципу, что и латуни. После букв Бр (бронза) идут обозначения составных элементов сплава и их процентное содержание. Например, марка БрОЦС5-5-5 указывает на то, что бронза содержит олова, цинка, и свинца по 5%, остальное – 85% меди.

По химическому составу бронзы делят на оловянные и безоловянные, а по их технологическому назначению – на литейные и деформируемые. Оловянные бронзы обладают хорошими антифрикционными, антикоррозионными и литейными, а ряд марок (бериллиевые) и упругими свойствами. Ее применяют для изготовления опор с трением скольжения, венцов червячных колес, электрических контактов и пружин. Стоимость этих бронз высокая.

Безоловянные бронзы по литейным, антифрикционным и другим качествам хуже оловянных, однако ряд других показателей (механическая прочность, коррозионная стойкость) у них выше. Бериллиевая бронза БрБ2 обладает высокими механическими, антифрикционными и упругими свойствами и идет на изготовление таких деталей, как пружины, контакты, мембраны.

Магний, титан и сплавы на их основе. Магний – самый легкий из технических цветных металлов (плотность 1,74 г/см 3). Технически чистый магний непрочный, малопластичный металл с низкой тепло- и электропроводностью. Для улучшения прочностных свойств в магний добавляют алюминий, кремний, марганец, цинк, торий, цезий, цирконий и подвергают термообработке.

Магниевые сплавы делят на литейные и деформируемые. Первые применяют для изготовления деталей методом литья. Их маркируют буквами МЛ и цифрами, обозначающими порядковый номер сплава, например МЛ5. Сплавы МЛ применяют в авиастроении и в радиопромышленности для изготовления корпусов, шасси и т. п. Вторые – предназначенны для изготовления деталей из листов, прутков, профилей. Маркировка сплавов МА. Они применяются для изделий, где требуется малая масса. Ввиду низкой коррозионной стойкости магниевых сплавов детали из них подвергают оксидированию с последующим нанесением лакокрасочных покрытий.

Титан – серебристо- серый металл с малой плотностью – 4,5 г/см 3 , высокой механической прочностью и хорошей коррозионной и химической стойкостью. Титан имеет низкие антифрикционные свойства и плохо обрабатывается резанием. Обозначение ВТ и порядковый номер сплава. Выпускают литейные и деформируемые сплавы. Их применяют в авиа-, ракетостроении и авиационном приборостроении. Для литья, например, применяют сплавы ВТ5Л, из которого получают отливки высокого качества в среде инертных газов или вакууме. Еще одно ценное свойство – титановые сплавы имеют близкий к стали температурный коэффициент линейного расширения.

Неметаллические материалы . К ним относятся пластмассы и резина. Пластмассы обладают хорошими диэлектрическими свойствами; их механические характеристики зависят от марки пластмассы. Пластмассы подразделяются на термореактивные и термопластичные.

Термореактивные пластмассы при повторном нагревании не переходят в пластичное состояние, так как в процессе изготовления входящие в ее состав смолы полимеризуются и превращаются в вещество с новыми свойствами. Термореактивные пластмассы, в свою очередь, можно разделить на монолитные (фторопласт-4), слоистые (текстолит, гетинакс, листовой стеклотекстолит) и композициннные, в состав которых кроме смолы, входит наполнитель в виде стекловолокна, хлопчатобумажных волокон и других материалов.

Термопластичные пластмассы (полиэтилен, винипласт, фторопласт-3, полиметилакрилат и др.) при нагревании размягчаются и сплавляются. Получаемый в результате этого материал можно использовать для вторичной переработки.

Основные слоистые пластмассы:

  • 1. Текстолит получают методом горячего прессования хлопчатобумажной ткани, пропитанной фенолформальдегидной смолой; текстолит производят марок ПТ и ПТК (конструкционный) и А, Б, В, ВЧ, Г (электротехнический). Он обладает хорошими диэлектрическими и антифрикционными свойствами. Текстолит используется для крепежных планок, панелей, щитков, стоек и шестерен.
  • 2. Стеклотекстолит имеет основу – стекловолокно и выпускается двух видов – электротехнический марок СТ, СТУ, СТК, СТЭФ СФ –1, СФ-2, широко используемый при изготовлении печатных плат, панелей, шасси, и конструкционный марки КАСТ.
  • 3. Гетинакс отличается от текстолита только основой, в качестве которой используется бумага; его применяют для изготовления неответственных плат.

Фторопласт – 4 (тефлон) является хорошим диэлектриком, обладает малым коэффициентом трения, легко обрабатывается резанием; идет на изготовление изоляционных и установочных деталей (втулок, прокладок, стоек) а так же для деталей антенно-фидерных устройств СВЧ. Композиционные термореактивные пластмассы используют для электротехнических и конструкционных деталей там, где требуется повышенная прочность и термостойкость, особенно свойственные композиционному стеклотекстолиту.

Полиамиды относятся к термопластичным пластмассам и используются как материал для каркасов, рамок, поддонов и электроизоляционных деталей, изготавливаемых литьем. Материал хорошо работает на трение и износ, но плохо теплопроводен.

Полиэтилен, как высокочастотный диэлектрик, используют в качестве каркасов, защитных экранов, стоек. Полиметилакрилат (плексиглас) служит для изготовления защитных стекол, шкал.

Резину используют для электроизоляционных, герметизирующих и уплотнительных деталей (прокладок, колец, втулок, амортизаторов). Резины бывают общего и специального назначения. К последним относятся кремнийорганические резины.

Фольгированные пластмассы имеют специальное назначение: их применяют при изготовлении плат с печатным монтажом, печатных якорей электродвигателей и др. печатных электрических конструкций. Они представляют собой слоистый пластик, облицованный с одной или двух сторон медной фольгой толщиной 35 или 50 мкм. Фольгированные пластики должны удовлетворять требованиям, связанным с технологией производства печатных плат и условиям их эксплуатации: выдерживать воздействие повышенных температур в процессе производства (взаимодействие припоя при пайке схем) и обеспечивать достаточную прочность сцепления фольги при длительной эксплуатации изделий.

Выбор материала печатной платы. Материал платы выбирают по ГОСТ 10316 – 78, ГОСТ 23751 – 79 или техническим условиям (табл.5.1).

Фольгированные материалы представляют собой слоистые прессованные пластики, пропитанные искусственной смолой и нанесенной с одной или двух сторон медной электролитической фольгой толщиной 18, 35 или 50 мкм.

Новые уловки телефонных мошенников, на которые может попасться каждый

Конструкционные материалы

КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ - основные виды материалов, из которых изготовляются машины, оборудование, приборы, сооружаются каркасы зданий, мосты и другие конструкции и которые несут основную силовую нагрузку при их эксплуатации.

Конструкционные материалы классифицируются по широкому кругу признаков: по применяемости - в машиностроении, в строительстве; по природе образования - металлические, неметаллические, композиционные; по реакции на внешние воздействия - горючие, коррозионно-устойчивые, жаростойкие, хладостойкие; по свойствам, проявляемым при различных методах обработки,- пластичные, тугоплавкие, свариваемые, склонные к образованию трещин, закаливаемые и т. д.; по способам получения - сплавы, прессованные, катаные, тканые, формованные, пленки.

Важными показателями конструкционных материалов являются их прочностные качества - сопротивление сжатию, растяжению, работа на изгиб, выносливость при вибрационных нагрузках, а также ряд специальных свойств, учитываемых при проектировании машин, оборудования, строительных сооружений. Среди них - легкость при определенных прочностных качествах, сопротивляемость износу, электро- и теплопроводность, способность пропускать газы и др.

При выборе конструкционных материалов в процессе проектирования изделий используются их технико-экономические параметры - стоимость, коэффициент использования и трудоемкость в разных условиях обработки и т. п. В современных условиях, когда на первый план выдвинута задача кардинального повышения технического уровня и качества продукции, особенно машин и оборудования, всемерной экономии материальных ресурсов, внедрения ресурсосберегающих технологий, снижения массы конструкций при повышении их надежности, требования к качественным показателям конструкционные материалы резко возросли и усложнились.

Например, необходимы конструкционные материалы легкие и в то же время жаропрочные, сохраняющие прочность как при высоких, так и при низких температурах, пластичные и хорошо выдерживающие ударные нагрузки и т. п. Такие требования обусловили появление ряда новых конструкционных материалов. Перспективными являются сплавы на основе алюминия, титана и особенно магния.

С повышением требований к прочностным свойствам, а также к сохранению этих свойств в различных экстремальных условиях связано новое направление получения конструкционных материалов, а именно синтезирование их из элементов, имеющих предельные значения свойств - предельно прочные, тугоплавкие, термостабильные и т. д. Такие материалы составляют новый класс композиционных конструкционных материалов. В них используются различные волокна, нити, проволоки, нитевидные кристаллы, гранулы, дисперсные высокотвердые и тугоплавкие соединения, окислы, карбиды, которые составляют либо армировку, либо наполнитель композиционного конструкционного материала.

Подобные конструкционные материалы по определенным показателям могут превышать все известные исходные материалы. Новые прочностные качества конструкционных материалов получаются путем специальной обработки металлов, газотермического напыления металлических порошков и др.

Научно-технический прогресс в машиностроении и строительстве требует дальнейшего улучшения качества всех видов конструкционных материалов и развития технологии их обработки. XXVII съезд КПСС подчеркнул необходимость улучшить структуру и качество конструкционных материалов, исходя из задач создания новой, прогрессивной техники и реализации ресурсосберегающего направления в развитии экономики.

Предусматривается ускоренное развитие производства экономичных видов металлопродукции, синтетических и других прогрессивных материалов, расширение номенклатуры продукции, улучшение технико-экономических и повышение прочностных и антикоррозийных характеристик конструкционных материалов. Решение этой задачи имеет особенно важное значение в связи с растущим влиянием конструкционных материалов на ускорение научно-технического прогресса.

Конструкционные материалы в химическом аппаратостроении

Специфические условия эксплуатации химического оборудования, характеризуемые широким диапазоном давлений и температур при агрессивном воздействии среды, определяют следующие основные требования к конструкционным материалам:

Высокая химическая и коррозионная стойкость материалов в агрессивных средах при рабочих параметрах;

Высокая механическая прочность при заданных рабочих давлениях, температуре и дополнительных нагрузках, возникающих при гидравлических испытаниях и в период эксплуатации аппаратов;

Хорошая свариваемость материалов с обеспечением высоких механических свойств сварных соединений;

Низкая стоимость и не дефицитность материалов.

Виды конструкционных материалов

Конструкционные материалы, используемые в химическом машиностроении, условно делятся на четыре класса:

Цветные металлы и сплавы;

Неметаллические материалы.

Стали. Сталь представляет собой сплав железа с углеродом, содержание которого не превышает 2,14%. Кроме того, в состав стали входят примеси кремния, марганца, а также серы и фосфора.

Стали по химическому составу делятся на несколько групп:

Углеродистые обыкновенного качества;

Углеродистые конструкционные;

Легированные конструкционные и др.

Сталь углеродистую обыкновенного качества изготавливают в зависимости от хи-мического состава по ГОСТ 380-88 и ГОСТ 16523-88. Сталь углеродистая обыкновенная делится на несколько категорий - 1, 2, 3, 4, 5, 6 - чем больше номер, тем выше механическая прочность стали и ниже ее пластичность. По степени раскисления стали всех категорий изготавливают кипящими (кп), полуспокойными (пс) и спокойными (сп).

В табл. .1 приведены примеры использования углеродистой стали

обыкновенного качества в химическом машиностроении.

Таблица 1. Углеродистая сталь обыкновенная

Свойства углеродистой стали обыкновенного качества значительно повышаются после термической обработки, которая для проката может выражаться в его закалке либо непосредственно после проката, либо после специального нагрева.

Термическая обработка низкоуглеродистых сталей не только улучшает механичес-

кие свойства сталей, но и приносит значительный экономический эффект.

Стали углеродистые конструкционные выпускаются по ГОСТ 1050-74 следующих марок: 08, 10, 15,20, 25, 30,40, 45, 55, 58 и 60. В зависимости от степени раскисления по ГОСТ 1050-88 выпускаются следующие марки стали: 05кп, 08кп, 08пс, 10кп, 10пс, 11кп, 15кп, 18кп, 20кп и 20пс.

В табл. 2 приведены примеры использования углеродистой конструкционной стали в химическом машиностроении.

Таблица 2. Углеродистая сталь конструкционная

Для улучшения физико-механических характеристик сталей и придания им особых свойств (жаропрочность, кислотостойкость, жаростойкость и др.) в их состав вво-

дят определенные легирующие добавки. Наиболее распространенные легируюшие добавки:

Хром (X) - повышает твердость, прочность, химическую и коррозионную стойкость, термостойкость;

Никель (Н) - повышает прочность, пластичность и вязкость;

Вольфрам (В) - повышает твердость стали, обеспечивает ее самозакаливание;

Молибден (М) - повышает твердость, предел текучести при растяжении, вязкость, улучшает свариваемость;

Марганец (Г) - повышает твердость, увеличивает коррозионную стойкость, понижает теплопроводность;

Кремний (С) - повышает твердость, прочность, пределы текучести и упругости, кислотостойкость;

Ванадий (Ф) - повышает твердость, предел текучести при растяжении, вязкость, улучшает свариваемость стали и увеличивает стойкость к водородной коррозии;

Титан (Т) - увеличивает прочность и повышает коррозионную стойкость стали при высоких (> 800 °С) температурах.

Обычно в состав легированных сталей входят несколько добавок. По общему содержанию легирующих добавок легированные стали делят на три группы:

Низколегированные - с содержанием добавок до 3%;

Среднелегированные - с содержанием добавок от 3 до 10%;

Высоколегированные - с содержанием добавок > 10%.

В табл. 3 приведены примеры использования легированных сталей в химическом машиностроении.

Существенное значение для улучшения качества стали имеет химико-термическая обработка, т.е. процесс насыщения поверхности стали различными элементами с целью упрочнения ее поверхностного слоя, увеличения поверхностной твердости, жаростойкости и химической стойкости.

Таблица 3. Легированные конструкционные стали

Сталь Назначение
Коррозионностойкие стали для применения в слабоагрессивных средах
08X13, 12X13 Азотная и хромовая кислоты различной концентрации при темпера- туре не более 25 °С. Уксусная кислота концентрации <5% при температуре до 25 0 С. Щелочи (аммиак, едкий натр, едкое кали). Соли органические и неорганические при температуре не более 50 °С и концентрации менее 50%
30X13,40X13 Обладают повышенной твердостью, хорошей коррозионной стой- костью во влажном воздухе, водопроводной воде, в некоторых ор- ганических кислотах, растворах солей и щелочей, азотной кислоте и хлористом натре при 20 0 С
12X17 Окалиностойкая до 850 °С
10Х14АГ15, 10Х14Г14Н4Т, 12Х17Г9АН4 Заменители сталей 12Х18Н9Т, 17Х18Н9, 12Х18Н10Т для оборудования, работающего в слабоагрессивных средах, а также изделий, ра ботающих при повышенных температурах до +400 0 С и пониженной температуре до - 196 °С
Коррозионностойкие стали для сред средней агрессивности
08X17Т, 08Х18Т1, 15Х25Т Заменители стали марки 12Х18Н10Т и 12Х18Н9Т для сварных кон- струкций, не подвергающихся воздействию ударных нагрузок при температуре эксплуатации не ниже - 20 °С. Для труб теплообменной аппаратуры. Эксплуатировать в интервале температур 400 - 700 °С не рекомендуется. Стойкие к действию азотной, фосфорной, лимон- ной, уксусной, щавелевой кислот разных концентраций при температурах не более 100 °С
08Х22Н6Т, 08Х18Г8Н2Т Заменитель сталей 12Х18Н10Т и 08Х18Н10Т. Обладает более высо- кой прочностью, чем эти стали, и используется для изготовления сварной аппаратуры, работающей при температуре не выше 300 °С.
12X21Н5Т Заменитель стали 12Х18Н9Т для сварных и паянных конструкций
12Х18Н9Т, 12Х18Н10Т, 12Х18Н12Т Высокая коррозионная стойкость по отношению к азотной, холодной фосфорной и органическим кислотам (за исключением уксусной, муравьиной, молочной и щавелевой), к растворам многих солей и щелочей, морской воде, влажному воздуху. Неустойчивы в соляной, серной, плавиковой, горячей фосфорной, кипящих органических кислотах. Обладают удовлетворительной сопротивляемостью к межкристаллитной коррозии
08Х18Н12Б Обладает более высокой стойкостью, чем сталь 12Х18Н10Т. Напри мер, сталь устойчива к действию 65% азотной кислоты при температуре не более 50 °С, к действию концентрированной азотной кис- лоты при температуре не более 20 °С, к большинству растворов солей органических и неорганических кислот при разных температурах и концентрациях
Х18Н14М2Б, 1Х18М9Т Используются в производстве формальдегидных смол
Х18Н9Т, Х20Н12МЗТ Используются в качестве конструкционного материала в производстве пластмасс
07X21Г7АН5, 12Х18Н9, 08Х18Н10 Для сварных изделий, работающих при криогенных температурах до - 253 °С
Коррозионностойкие стали для сред повышенной и высокой агрессивности
04X18Н10, 03Х18Н11 Для оборудования и трубопроводов в производстве азотной кислоты и аммиачной селитры
08Х18Н10Т, 08Х18Н12Т Для изготовления сварных изделий, работающих в средах высокой агрессивности. Применяется как жаростойкая сталь при температуре до 600 °С
10Х17Н13М2Т, 10Х17Н13МЗТ, 08Х17Н15МЗТ, 08Х17Н14МЗ, 03Х21Н21М4ГБ Для изготовления сварных конструкций, работающих в условиях действия кипящей фосфорной, серной, 10%-й уксусной кислоты и в сернокислых средах. Сварные корпуса, днища, фланцы и другие де- тали при температуре от - 196 до 600 °С под давлением
06ХН38МДТ. 03ХН28МДТ Для сварных конструкций, работающих при температурах до 80 °С в условиях производства серной кислоты различных концентраций
06ХН28МДТ, 10Х17Н13М2Т Молочная, муравьиная кислоты при температуре до 20 °С. Едкое кали концентрации до 68% при температуре 120 °С. Азотная кислота концентрации 100% при температуре 70 °С. Соляная кислота, сухой йод концентрации до 10% при температуре до 20 ° С

К основным видам химико-термической обработки, изделий из стали относятся:

Цементация - процесс насыщения поверхностного слоя углеродом, что улучшает его прочность и твердость;

Азотирование - процесс насыщения поверхностного слоя азотом, что повышает стойкость изделий к истиранию и атмосферной коррозии;

Алитирование - процесс диффузионного насыщения поверхностного слоя алюми-

нием, что повышает стойкость к окислению при температурах 800 -1000 °С;

Хромирование - поверхностное насыщение изделий хромом, что значительно повышает твердость, износостойкость и коррозионную стойкость в воде, азотной кислоте, атмосфере и газовых средах при высоких температурах.

Чугуны. Серые чугуньг представляют собой сплав железа, углерода и других металлургических добавок: кремния, марганца, фосфора и серы. Содержание углерода в чугунах колеблется от 2,8 до 3,7%, при этом большая его часть находится в свободном состоянии (графит) и только около 0,8÷0,9% находится в связанном состоянии в виде цементита (карбида железа – Fе 3 С). Свободный углерод выделяется в чугуне в виде пластинок, чешуек или зерен. По микроструктуре раз-

чугун серый - в структуре которого углерод выделяется в виде пластинчатого или шаровидного графита;

чугун белый - в структуре которого углерод выделяется в связанном состоянии;

чугун отбеленный - в отливках которого внешний слой имеет структуру белого чугуна, а сердцевина - структуру серого чугуна;

чугун половинчатый - в структуре которого углерод выделяется частично в связан

ном, а частично в свободном виде.

Детали из чугуна изготавливают методом литья в земляных и металлических формах. Из чугуна получают детали сложной конфигурации, которые невозможно получить другими методами, например, ковкой или резанием.

Серый чугун является ценным конструкционным материалом, так как, имея сравнительно низкую стоимость, он обладает неплохими механическими свойствами.

Существенным недостатком серых чугунов является их низкая пластичность. Поэтому ковка и штамповка серого чугуна даже в нагретом состоянии невозможна.

Марки серых чугунов (СЧ) обычно содержат два числа: первое характеризует пре

дел прочности на растяжение, второе - предел прочности на изгиб, например,

СЧ 12-28; СЧ 18-36 и др.

Серые чугуны обладают низкой химической стойкостью, и детали из них не могут работать в агрессивных средах.

Для повышения качества чугуна его модифицируют различными модификаторами, которые воздействуют на процесс кристаллизации жидкого чугуна, изменяя его механические свойства.

Различают ковкий чугун и высокопрочный чугун. Ковкий чугун (КЧ) отличается от серого чугуна пониженным содержанием углерода и кремния, что делает его более пластичным, способным выдерживать значительные деформации (относительное удлинение КЧ составляет 3 - 10%). Высокопрочный чугун (ВЧ) является разновидностью ковкого чугуна, высокие прочностные характеристики которого достигаются модифицированием присадками магния и его сплавов. Ковкий и высокопрочный чугуны идут на изготовление коленчатых валов, цилиндров малых компрессоров и других фасонных тонкостенных деталей.

Широкое применение в химическом машиностроении имеют легированные чугу-

ны, в состав которых входят легирующие элементы, никель, хром, молибден, ванадий, титан, бор и др.

По суммарному содержанию легирующих добавок чугуны делят на три группы:

Низколегированные - легирующих добавок до 3%;

Среднелегированные - легирующих добавок от 3 до 10%;

Высоколегированные - легирующих добавок более 10%.

Легирование позволяет существенно улучшить качество чугуна и придать ему осо-

бые свойства. Например:

Введение никеля, хрома, молибдена, кремния повышает химическую стойкость и жаропрочность чугуна;

Никелевые чугуны с добавкой меди (5 - 6%) надежно работают со шелочами;

Высокохромные (до 30% Сr) устойчивы к действию азотной, фосфорной и уксусной кислот, а также хлористых соединений;

Чугун с добавкой молибдена до 4% (антихлор) хорошо противостоит действию соляной кислоты.

Цветные металлы и их сплавы . Цветные металлы и их сплавы применяют для изготовления машин и аппаратов, работающих со средами средней и повышенной агрессивности и при низких температурах. В химической промышленности в качестве конструкционных материалов используются алюминий, медь, никель, свинец, титан, тантал и их сплавы.

Алюминий. Обладает высокой стойкостью к действию органических кислот, концентрированной азотной кислоты, разбавленной серной кислоты, сравнительно устойчив к действию сухого хлора и соляной кислоты. Высокая коррозионная стойкость металла обусловлена образованием на его поверхности защитной оксидной пленки, предохраняющей его от дальнейшего окисления. Механические свойства алюминия в значительной степени зависят от температуры. Например, при увеличении температуры от 30 °С до 200 °С значения допускаемого напряжения на растяжение снижаются в 3 - 3,5 раза, а на сжатие - в 5 раз. Верхняя предельная температура применения алюминия 200 °С. Алюминий не стоек к действию щелочей.

Медь. Взаимодействие меди с кислородом начинается при комнатной температуре и резко возрастает при нагревании с образованием пленки закиси меди (красного цвета). Медь сохраняет прочность и ударную вязкость при низких температурах и поэтому нашла широкое применение в технике глубокого холода. Медь не обладает стойкостью к действию азотной кислоты и горячей серной кислоты, относительно устойчива к действию органических кислот. Широкое распространение получили сплавы меди с другими компонентами: оловом, цинком, свинцом, никелем, алюминием, марганцем, золотом и др. Наиболее распространенными являются сплавы меди с цинком (латуни), с оловом (бронзы), с никелем (ЛАН), с железом и марганцем (ЛЖМ), цинком (до 10% цинка - томпак; до 20% - полутомпак; более 20% - константаны, манганины и др.).

Свинец - обладает сравнительно высокой кислотостойкостью, особенно, к серной кислоте, вследствие образования на его поверхности защитной пленки из сернокислого свинца. Исключительно высокая мягкость, легкоплавкость и большой удельный вес резко ограничивают применение свинца в качестве конструкцион-

ного материала. Однако широкое применение в машиностроении нашли сплавы с использованием свинца в качестве легирующего компонента: свинцовая бронза, свинцовая латунь, свинцовый баббит (свинец, олово, медь, сурьма).

Никель - обладает высокой коррозионной стойкостью в воде, в растворах солей и щелочей при разных концентрациях и температурах. Медленно растворяется в соляной и серной кислотах, не стоек к действию азотной кислоты. Широко приме-

няется в различных отраслях техники, главным образом для получения жаропроч-

ных сплавов и сплавов с особыми физико-химическими свойствами. Никель-медные сплавы обладают улучшенными механическими свойствами и повы-

шенной коррозионной стойкостью.

Никельхромсодержащие жаропрочные сплавы. Никелевые сплавы, легированные хромом и вольфрамом, являются стойкими в окислительных средах. Никелевые сплавы с добавкой меди, молибдена и железа стойкие в неокислительных средах. Никель-медные сплавы с добавлением кремния стойкие в горячих растворах серной кислоты, а сплавы никеля с молибденом обладают повышенной стойкостью к действию соляной кислоты.

Титан и тантал. Титан химически стоек к действию кипящей азотной кислоты и царской водки всех концентраций, нитритов, нитратов, сульфидов, органических кислот, фосфорной и хромовой кислот. Однако изделия из титана в 8 - 10 раз дороже изделий из хромоникелевых сталей, поэтому применение титана в качестве конструкционного материала ограничено. Тантал химически стоек к действию кипящей соляной кислоты, царской водки, азотной, серной, фосфорной кислот. Однако не обладает стойкостью к действию щелочей.

Титан и тантал по механическим свойствам не уступают высоколегированным сталям, а по химической стойкости намного превосходят их. Эти ценные металлы находят широкое применение в химическом машиностроении как в чистом виде, так и в виде сплавов.

Неметаллические конструкционные материалы. Применение в химическом машиностроении неметаллических конструкционных материалов позволяет экономить дорогостоящие и дефицитные металлы.

Фторопласт (тефлон) - элементы конструкций из фторсодержащих полимеров обладают высокой стойкостью практически во всех агрессивных средах в широком интервале температур.

Углеграфитовые материалы - графит, пропитанный фенолформальдегидной смолой, или графитопласт - прессованная пластмасса на основе фенолформальдегиднои смолы с графитовым наполнителем. Обладают высокой коррозионной стойкостью в кислых и щелочных средах.

Стекло и эмали. Стекло применяется в качестве конструкционного материала в производствах особо чистых веществ. Эмали - специальные силикатные стекла, обладающие хорошей адгезиеи с металлом. Промышленностью выпускаются чугунные и стальные эмалированные аппараты, работающие в широком интервале температур от -15 до +250 °С при давлениях до 0,6 МПа.

Керамика - выпускается кислотоупорный кирпич для футеровки химического оборудования, крупноблочная керамика для аппаратов башенного типа, например, в производстве серной кислоты. Керамические материалы обладают высокой устойчивостью ко многим агрессивным средам, исключение составляют шелочные среды. Трубопроводы из кислотостойкой керамики широко применяют для транспортировки серной и соляной кислот.

Фарфор - обладает высокой стойкостью ко всем кислотам, за исключением плавиковой. Недостаточно стоек к действию щелочей. Фарфор используется в качестве конструкционного материала в производствах, где к чистоте продуктов предъявляются повышенные требования.

Винипласт - термопластичная масса, обладающая высокой устойчивостью почти во всех кислотах, щелочах и растворах, за исключением азотной и олеума. Детали из винипласта надежно работают в интервале температур 0 - 40 °С и давлении до 0,6 МПа.

Асбовинил - композиция из кислотостойкого асбеста и лака, обладающая сравни-

тельно высокой стойкостью к действию большинства кислот и щелочей в интервале температур от - 50 до +110 °С.

Полиэтилен, полипропилен - термопластичные материалы, стойкие к действию минеральных кислот и щелочей при условиях:

Полиэтилен - температура от - 60 до +60 °С, давление до 1 МПа,

Полипропилен - температура от - 10 до +100 °С, давление до 0,07 МПа.

Фаолит - кислотостойкая пластмасса с наполнителями: асбест, графит, кварцевый песок. Используют при температуре до 140 °С и давлении до 0,06 МПа. Фаолит стоек к действию многих кислот, в том числе серной (концентрацией до 50%), соляной (всех концентраций), уксусной, муравьиной (до 50%), фосфорной, а также бензола, но не стоек в растворах щелочей и окислителей.

Текстолит - по механической прочности превосходит фаолит и отличается высокой стойкостью к агрессивным средам, в том числе к кислотам - серной (концент-

рацией до 30%), соляной (до 20%), фосфорной (до 25%), уксусной (всех концентраций). Верхний температурный предел применения текстолита 80 °С.

Пропитанный графит - графит, полученный после прокалки каменноугольной смолы и пропитанный связующими смолами - фенолформальдегидными, кремне-

органическими, эпоксидными и др.

Вследствие хорошей теплопроводности пропитанного графита его широко приме-

няют для изготовления теплообменников и трубопроводной арматуры. Пропитанный графит стоек во многих химически активных средах, в том числе в кислотах - азотной (низкой концентрации), плавиковой (концентрацией до 40%), серной (до 50%), соляной, уксусной, муравьиной, фосфорной. Некоторые сорта пропитанного графита стойки к действию щелочей.

Жаропрочный кислотостойкий бетон - применяется для бетонирования днищ башенного оборудования сернокислотного производства, для изготовления фундаментов под оборудование. Надежно работает в условиях 900 - 1200 °С. В последнее время находят применение полимербетоны на основе органических смол, которые обладают высокой стойкостью к действию концентрированных кислот, щелочей, бензола, толуола и фторсодержащих сред.

Природные силикатные материалы : диабаз, базальт, асбест, хризотил, андезит обладают высокой кислотостойкостью, исключение составляет хризотил, который не стоек в кислотах, но устойчив к действию щелочей. Все эти материалы обладают хорошими физико-механическими свойствами и широко используются в качестве конструкционных теплоизоляционных и футеровочных материалов.

Федеральное агентство по образованию

ГОУ ВПО Уральский государственный экономический университет

Кафедра инженерных дисциплин

Контрольная работа

«Свойства конструкционных материалов»

Исполнитель:

студентка I курса заочного факультета

специальности «ЭПП»

Добрынкина Л. В.

Екатеринбург 2009


Понятие конструкционных материалов

Классификация свойств конструкционных материалов

Процессы производства стали

Стеклокристаллические материалы (ситаллы)

Чугун. Классификация чугунов

Графитизация чугунов

Классификация серого чугуна

Маркировка чугуна

Библиографический список


КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ

Конструкционными материалами называют материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами Конструкционные материалы являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества Конструкционные материалы относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др.

Конструкционные материалы подразделяются: по природе материалов - на металлические, неметаллические и композиционные материалы, сочетающие положительные свойства тех и других материалов; по технологическому исполнению - на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т.п.); по условиям работы - на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т.д.; по критериям прочности - на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности.

Развитие техники предъявляет новые, более высокие требования к существующим Конструкционным материалам, стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе лёгкость, жёсткость и прочность. Внешнее армирование металлических замкнутых объёмов (шары, баллоны, цилиндры) стеклопластиком позволяет значительно снизить их массу в сравнении с металлическими конструкциями. Для многих областей техники необходимы Конструкционные материалы, сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами.

В составе конструкционных материалов нашли своё применение почти все элементы таблицы Менделеева, а эффективность ставших уже классическими для металлических сплавов методов упрочнения путём сочетания специально подобранного легирования, высококачественной плавки и надлежащей термической обработки снижается, перспективы повышения свойств конструкционных материалов связаны с синтезированием материалов из элементов, имеющих предельные значения свойств.

Классификация свойств конструкционных материалов

1. Механические свойства характеризуются способностью материала сопротивляться деформированию и разрушаться под действием внешних воздействующих факторов.

· Прочность (способность материала сопротивляться разрушению и пластично деформироваться под воздействием внешних сил);

· Твердость (способность материалов сопротивляться деформированию в поверхностном слое при местном, контактном и силовом воздействии);

· Упругость (способность материала восстанавливать свою форму и размеры, под действием внешних сил без разрушения);

· Вязкость (способность материала поглощать механическую энергию и при этом испытывать значительную пластическую деформацию до разрушения);

· Хрупкость (способность материала разрушаться под действием внешних сил, сразу после упругой деформации).

2. Физические свойства характеризуют поверхность материала в тепловых, гравитационных, электромагнитных и радиоактивных полях.

· Свет (способность материала отражать световые лучи с определенной длиной световой волны);

· Плотность (масса единицы объема вещества);

· Температура плавления;

· Электропроводность (способность материала хорошо и без потерь проводить электрический ток);

· Теплопроводность (способность материала переносить Тепловую энергию от более нагретого участка к менее нагретому);

· Теплоёмктсть (способность материала поглощать определенное количество теплоты);

· Магнитные (способность материалахорошо намагничиваться);

· Коэффициент объемного и линейного расширения.

3. Технологические свойства характеризуются способностью материала подвергаться различным видам горячей и холодной обработки.

· Литейные свойства;

· Ковкость (важно при обработке давлением);

· Свариваемость (это показатель того, на сколько материал может показать свариваемые соединения);

· Обработка резанием;

· Прокаливаемость;

· Закаливаемость.

4. Эксплуатационные свойства, характеризуют способность материалов обеспечивает надежную и долговечную работу изделий в конкретных условиях и эксплуатации, базируются на механических, физических и химических свойствах.

5. Химические свойства характеризуют способность материала вступать в химическое взаимодействие с другими веществами.

· Растворимость (способность материала образовывать с одним или несколькими веществами однородные системы, называющихся растворами);

· Жаростойкость (способность материала противостоять химическому разрушению поверхности под действием воздуха или другой окислительной атмосферой при высоких температурах);

· Коррозионостойкость (способность металлических материалов противостоять разрушению в результате химического или электрохимического воздействия на их поверхности внешней агрессивной среды (аналогичное свойство для неметаллических материалов- химикостойкость ));

· Окисление (способность материалов отдавать электроны, то есть окисляться при химическом взаимодействии с окружающей средой или другой материей).

СТАЛЬ

Сталь (польск.stal , от нем. Stahl ) - деформируемый (ковкий) сплав железа с углеродом (и другими элементами), содержание углерода в котором не превышает 2,14 %, но не меньше 0,02 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.

В древнерусских письменных источниках сталь именовалась специальными терминами: «Оцел», «Харолуг» и «Уклад».

Сталь - важнейший конструкционный материал для машиностроения, транспорта, строительства и прочих отраслей народного хозяйства.

Стали делятся на конструкционные и инструментальные.

По химическому составу стали делятся на углеродистые и легированные; в том числе по содержанию углерода - на малоуглеродистые, среднеуглеродистые и высокоуглеродистые; легированные стали по содержанию легирующих элементов делятся на низколегированные, среднелегированные и высоколегированные.

Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.

По структуре сталь различается на аустенитную, ферритную, мартенситную, бейнитную или перлитную. Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.

Производство стали в кислородных конвертерах

Кислородно-конвертерный процесс представляет собой один из видов передела жидкого чугуна в сталь без затраты топлива путем продувки чугуна в конвертере технически чистым кислородом, подаваемым через фурму, которая вводится в металл сверху. Количество воздуха необходимого для переработки 1 т чугуна, составляет 350 кубометров.

Впервые кислородно-конвертерный процесс в промышленном масштабе был осуществлен в Австрии в 1952 - 1953 гг. на заводах в городах Линце и Донавице (за рубежом этот процесс получил название ЛД по первым буквам городов, в нашей стране - кислородно-конвертерного).

В настоящее время работают конвертеры емкостью от 20 до 450 т, продолжительность плавки в которых составляет 30 - 50 мин.

Кислородный конвертер (рис. 1) представляет собой сосуд 1 грушевидной формы из стального листа, футерованный внутри основным кирпичом 2. Рабочее положение конвертера вертикальное. Кислород подается в него под давлением 0,8...1 МПа с помощью водоохлаждаемой фурмы 3, вводимой в конвертер через горловину 4 и располагаемой над уровнем жидкого металла на расстоянии 0,3...0,8 м.

Конвертеры изготовляют емкостью 100...350 т жидкого чугуна. Общий расход технического кислорода на получение 1 т стали, составляет 50...60 м 3 .

Материалами для получения стали в кислородном конвертере служат жидкий передельный чугун и стальной лом. Для наводки шлака в конвертер добавляют железную руду и известь, а для его разжижения - боксит и плавиковый шпат.

Перед началом работы конвертер поворачивают на цапфах 5 вокруг горизонтальной оси и с помощью завалочной машины загружают до 30 % металлолома, затем заливают жидкий чугун при температуре 1250...1400 °С, возвращают конвертер в исходное вертикальное положение, вводят кислородную фурму, подают кислород и добавляют шлакообразующие материалы.

Изменение металла по ходу плавки показано (на рис. 2). При продувке происходит окисление углерода и других примесей как непосредственно кислородом дутья, так и оксидом железа FeO. Одновременно образуется активный шлак с необходимым содержанием СаО, благодаря чему происходит удаление серы и фосфора с образованием устойчивых соединений P2O5- ЗСаО и CaS в шлаке.

В момент, когда содержание углерода достигает заданного для выплавляемой марки стали, подачу кислорода прекращают, конвертер поворачивают и выливают вначале сталь, а затем - шлак.

Для уменьшения содержания кислорода сталь при выпуске из конвертера раскисляют, т. е. вводят в нее элементы с большим, чем у железа, сродством к. кислороду (Si, Mn, A1). Взаимодействуя с оксидом железа FeO, они образуют нерастворимые оксиды МпО, SiO2, А1203, переходящие в шлак.

Производительность кислородного конвертера емкостью 300 т достигает 400...500 т/ч, в то время как производительность мартеновских и электропечей не превышает 80 т/ч. Благодаря высокой производительности и малой металлоемкости кислородно-конвертерный способ становится основным способом производства стали.


Рис.1 Схема кислородного конвертера

Рис.2 Схема изменения металла по ходу плавки

Процесс занимает главенствующую роль среди существующих способов массового производства стали. Такой успех кислородно-конвертерного способа заключается в возможности переработки чугуна практически любого состава, использованием металлолома от 10 до 30 %, возможность выплавки широкого сортамента сталей, включая легированные, высокой производительностью, малыми затратами на строительство, большой гибкостью и качеством продукции за небольшой промежуток времени.

При конверторном способе производства, благодаря тому, что окисление фосфора и серы идет одновременно имеется возможность остановить процесс на заданном содержании углерода и получить довольно широкую гамму углеродистых сталей при низком содержании серы и фосфора.

Кислородно-конвертерный процесс с верхней продувкой.

Конвертер имеет грушевидную форму с концентрической горловиной. Это обеспечивает лучшие условия для ввода в полость конвертера кислородной фурмы, отвода газов, заливки чугуна и завалки лома и шлакообразующих материалов. Кожух конвертера выполняют сварным из стальных листов толщиной от 20 до 100 мм. В центральной части конвертера крепят цапфы, соединяющиеся с устройством для наклона. Механизм поворота конвертера состоит из системы передач, связывающих цапфы с приводом. Конвертер может поворачиваться вокруг горизонтальной оси на 360 о со скоростью от 0,01 до 2 об/мин. Для большегрузных конвертеров емкостью от 200 т применяют двухсторонний привод, например, четыре двигателя по два на каждую цапфу

Рис. 3. Конвертер емкостью 300 т с двухсторонним приводом механизма поворота

В шлемной части конвертера имеется летка для выпуска стали. Выпуск стали через летку исключает возможность попадания шлака в металл. Летка закрывается огнеупорной глиной, замешанной на воде.

Ход процесса. Процесс производства стали в кислородном конвертере состоит из следующих основных периодов: загрузки металлолома, заливки чугуна, продувки кислородом, загрузки шлакообразующих, слива стали и шлака.

Загрузка конвертера начинается с завалки стального лома. Лом загружают в наклоненный конвертер через горловину при помощи завалочных машин лоткового типа. Затем с помощью заливочных кранов заливают жидкий чугун, конвертер устанавливают в вертикальное положение, вводят фурму и включают подачу кислорода с чистотой не менее 99,5 % О 2 . Одновременно с началом продувки загружают первую порцию шлакообразующих и железной руды (40 - 60 % от общего количества). Остальную часть сыпучих материалов подают в конвертер в процессе продувки одной или несколькими порциями, чаще всего 5 - 7 минут после начала продувки.

На процесс рафинирования значительное влияние оказывают положение фурмы (расстояние от конца фурмы до поверхности ванны) и давление подаваемого кислорода. Обычно высота фурмы поддерживается в пределах 1,0 - 3,0 м, давление кислорода 0,9 - 1,4 МПа. Правильно организованный режим продувки обеспечивает хорошую циркуляцию металла и его перемешивание со шлаком. Последнее, в свою очередь, способствует повышению скорости окисления содержащихся в чугуне C, Si, Mn, P.

Важным в технологии кислородно-конвертерного процесса является шлакообразование. Шлакообразование в значительной мере определяет ход удаления фосфора, серы и других примесей, влияет на качество выплавляемой стали, выход годного и качество футеровки. Основная цель этой стадии плавки заключается в быстром формировании шлака с необходимыми свойствами (основностью, жидкоподвижностью и т. д.). Сложность выполнения этой задачи связана с высокой скоростью процесса (длительность продувки 14 - 24 минуты). Формирование шлака необходимой основности и заданными свойствами зависит от скорости растворения извести в шлаке. На скорость растворения извести в шлаке влияют такие факторы, как состав шлака, его окисленность, условия смачивания шлаком поверхности извести, перемешивание ванны, температурный режим, состав чугуна и т. д. Раннему формированию основного шлака способствует наличие первичной реакционной зоны (поверхность соприкосновения струи кислорода с металлом) с температурой до 2500 о. В этой зоне известь подвергается одновременному воздействию высокой температуры и шлака с повышенным содержанием оксидов железа. Количество вводимой на плавку извести определяется расчетом и зависит от состава чугуна и содержания SiO 2 руде, боксите, извести и др. Общий расход извести составляет 5 - 8 % от массы плавки, расход боксита 0,5 - 2,0 %, плавикового штампа 0,15 - 1,0 %. Основность конечного шлака должна быть не менее 2,5.

Окисление всех примесей чугуна начинается с самого начала продувки. При этом наиболее интенсивно в начале продувки окисляется кремний и марганец. Это объясняется высоким сродством этих элементов к кислороду при сравнительно низких температурах (1450 - 1500 о С и менее).

Окисление углерода в кислородно-конвертерном процессе имеет важное значение, т. к. влияет на температурный режим плавки, процесс шлакообразования и рафинирования металла от фосфора, серы, газов и неметаллических включений.

Характерной особенностью кислородно-конвертерного производства является неравномерность окисления углерода как по объему ванны, так и в течение продувки.

С первых минут продувки одновременно с окислением углерода начинается процесс дефосфорации - удаление фосфора. Наиболее интенсивное удаление фосфора идет в первой половине продувки при сравнительно низкой температуры металла, высоком содержании в шлаке (FeO); основность шлака и его количество быстро увеличивается. Кислородно-конвертерный процесс позволяет получить < 0,02 % Р в готовой стали.

Условия для удаления серы при кислородно-конвертерном процессе нельзя считать таким же благоприятным, как для удаления фосфора. Причина заключается в том, что шлак содержит значительное количество (FeO) и высокая основность шлака (> 2,5) достигается лишь во второй половине продувки. Степень десульфурации при кислородно-конвертерном процессе находится в пределах 30 - 50 % и содержание серы в готовой стали составляет 0,02 - 0,04 %.

По достижении заданного содержания углерода дутые отключают, фурму поднимают, конвертер наклоняют и металл через летку (для уменьшения перемешивания металла и шлака) выливают в ковш.

Полученный металл содержит повышенное содержание кислорода, поэтому заключительной операцией плавки является раскисление металла, которое проводят в сталеразливном ковше. Для этой цели одновременно со сливом стали по специальному поворотному желобу в ковш попадают раскислители и легирующие добавки.

Шлак из конвертера сливают через горловину в шлаковый ковш, установленный на шлаковозе под конвертером.

Течение кислородно-конвертерного процесса обусловливается температурным режимом и регулируется изменением количества дутья и введением в конвертер охладителей - металлолома, железной руды, известняка. Температура металла при выпуске из конвертера около 1600 о С.

Во время продувки чугуна в конвертере образуется значительное количество отходящих газов. Для использования тепла отходящих газов и отчистки их от пыли за каждым конвертером оборудованы котел-утилизатор и установка для очистки газов.

Управление конвертерным процессом осуществляется с помощью современных мощных компьютеров, в которые вводится информации об исходных материалах (состав и количество чугуна, лома, извести), а также о показателях процесса (количество и состав кислорода, отходящих газов, температура и т. п.).

Кислородно-конвертерный процесс с донной продувкой.

В середине 60-х годов опытами по вдуванию струи кислорода, окруженной слоем углеводородов, была показана возможность через днище без разрушения огнеупоров. В настоящее время в мире работают несколько десятков конвертеров с донной продувкой садкой до 250 т. Каждая десятая тонна конвертерной стали, выплавленной в мире, приходится на этот процесс.

Основное отличие конвертеров с донной продувкой от конвертеров с верхним дутьем заключается в том, что они имеют меньший удельный объем, т. е. объем приходящийся на тонну продуваемого чугуна. В днище устанавливают от 7 до 21 фурм в зависимости от емкости конвертера. Размещение фурм в днище может быть различным. Обычно их располагают в одной половине днища так, чтобы при наклоне конвертера они были выше уровня жидкого металла. Перед установкой конвертера в вертикальное положение через фурмы пускается дутье.

В условиях донной продувки улучшаются условия перемешивания ванны, увеличивается поверхность металл-зарождения и выделения пузырьков СО. Таким образом, скорость обезуглероживания при донной продувке выше по сравнению с верхней. Получение металла с содержанием углерода менее 0,05 % не представляет затруднений.

Условия удаления серы при донной продувке более благоприятны, чем при верхней. Это также связанно с меньшей окисленностью шлака и увеличением поверхности контакта газ - металл. Последнее обстоятельство способствует удалению части серы в газовую фазу в виде SO 2 .

Преимущества процесса с донной продувкой состоят в повышении выхода годного металла на 1 - 2 %, сокращении длительности продувки, ускорении плавления лома, меньшей высоте здания цеха и т. д. Это представляет определенный интерес, прежде всего, для возможной замены мартеновских печей без коренной реконструкции зданий мартеновских цехов.

Конвертерный процесс с комбинированной продувкой.

Тщательный анализ преимуществ и недостатков способов выплавки стали в конвертерах с верхней и нижней продувкой привел к созданию процесса, в котором металл продувается сверху кислородом и снизу - кислородом в защитной рубашке или аргоном (азотом). Использование конвертера с комбинированной продувкой по сравнению с продувкой только сверху позволяет повысить выход металла, увеличить долю лома, снизить расход ферросплавов, уменьшить расход кислорода, повысить качество стали за счет снижения содержания газов при продувке инертным газом в конце операции.

Стеклокристаллические материалы (ситаллы)

СИТАЛЛЫ (стеклокристаллические материалы), неорганические материалы, получаемые направленной кристаллизацией различных стекол при их термической обработке. Состоят из одной или нескольких кристаллических фаз. В ситаллах мелкодисперсные кристаллы (до 2000 нм) равномерно распределены в стекловидной матрице. Количество кристаллических фаз в ситаллах может составлять 20-95% (по объему). Изменяя состав стекла, тип инициатора кристаллизации (катализатора) и режим термической обработки, получают ситаллы с различными кристаллическими фазами и заданными свойствами (таблица 1). Впервые ситаллы были изготовлены в 50-х гг. XX века Материалы, подобные ситаллам за рубежом называют пирокера-мом, девитрокерамом, стеклокерамом.

Ситаллы обладают высокой прочностью, твердостью, износостойкостью, малым термическим расширением, химической и термической устойчивостью, газо- и влагонепроницаемостью. По своему назначению могут быть разделены на технические и строительные. Технические ситаллы получают на основе систем: Li 2 O--Al 2 O 3 -SiO 2 , MO-Al 2 O 3 -SiO 2 , Li 2 O-MO-Al 2 O 3 --SiO 2 , где M-Mg, Ca, Zn, Ba, Sr и др.; MgO-Al 2 O 3 --SiO 2 -K 2 O-F; MO-B 2 O 3 -Al 2 O 3 (где M-Ca, Sr, Pb, Zn); PbO-ZnO-B 2 O 3 -Al 2 O 3 -SiO 2 и др. По основному свойству и назначению подразделяются на высокопрочные, радиопрозрачные химически стойкие, прозрачные термостойкие, износостойкие и химически стойкие, фотоситаллы, слюдоситаллы, биоситаллы, ситаллоцементы, ситаллоэмали, ситаллы со специфическими электрическими свойствами.

Высокопрочные ситаллы получают главным образом на основе стекол систем MgO-Al 2 O 3 -SiO 2 (кордиеритовые составы) и Na 2 O-Al 2 O 3 -SiO 2 (нефелиновые составы). Для первых инициатором кристаллизации служит TiО 2 ; s изг для них 240-350 МПа. Ситаллы нефелиновых составов после упрочнения ионообменной обработкой в расплавленных солях К имеют s изг 1370 МПа. Области применения высокопрочных ситаллов -ракето- и авиастроение (обтекатели антенн), радиоэлектроника.

Оптически прозрачные термостойкие и радиопрозрачные химически стойкие ситаллы получают на основе стекол системы Li 2 О - А1 2 О 3 - SiO 2 (сподумено-эвкриптитовые составы); инициатор кристаллизации -ТiO 2 . В оптически прозрачных ситаллах размер кристаллов не превышает длины полуволны видимого света. Ситаллы, содержащие в качестве основных кристаллических фаз эвкриптит (Li 2 O·Al 2 O 3 ·2SiO 2) или сподумен (Li 2 О · Аl 2 О 4 ·4SiO 2), имеют, кроме того, температурные коэффициент. расширения, близкие к нулю, и иногда даже отрицательные- до -5·10 -6 К -1 . Области применения -космическая и лазерная техника, астрооптика. Введение в состав таких ситаллов активаторов люминесценции и специальных добавок позволяет применять их в солнечных батареях.

Износостойкие и химически стойкие ситаллы получают на основе стекол CaO-MgO-SiO 2 (пироксеновые составы); инициаторы кристаллизации- фторид или оксид хрома. Отличаются высокой износостойкостью (истираемость 0,001 г/см 2) и стойкостью в различных химических средах. Применяются в текстильной, химической, автомобильной промышленности, буровой и горнодобывающей технике.

Фотоситаллы обычно получают на основе стекол системы Li 2 O-Al 2 O 3 -SiO 2 со светочувствительными добавками (соединения Аи, Ag, Сu), которые под действием УФ облучения и дальнейшей тепловой обработки стекла способствуют его избирательной кристаллизации. Находят применение в микроэлектронике, ракетной и космической технике, оптике, полиграфии как светочувствительные материалы (например для изготовления оптических печатных плат, в качестве светофильтров).

Слюдоситаллы получают на основе стекол системы MgO-Al 2 O 3 -SiO 2 -K 2 O-F (фторфлогопитовые, фтор-рихтеритовые, фторамфиболовые составы). Сочетают высокие механияеские и электрические. свойства с хорошей механической. обрабатываемостью- их можно резать, сверлить, фрезеровать, шлифовать. Применяются в машиностроении для изготовления деталей, подвергающихся трению и износу, а также в качестве материала для деталей сложной конфигурации.

Дифситаллы получают обычно на основе стекол системы СаО - MgO - SiO 2 - Р 2 О 5 (апатито- волластонитовые составы). Высокая механическая прочность, биологическая совместимость с тканями организма позволяют использовать их в медицине для зубных и костных протезов.

Ситаллоцементы , получаемые на основе стекол системы PbO- ZnO- В 2 О 3 - SiO 2 , имеют очень низкий коэффициент теплового расширения (4-10) · 10 -6 К -1 ; применяются для спаивания стеклодеталей цветных кинескопов и электроннолучевых трубок, герметизации полупроводниковых приборов, в производстве жидкокристаллических индикаторов, в микроэлектронике. Перспективно также использование таких ситаллов в качестве стеклокристаллических покрытий (стеклоэмалей), наносимых на поверхность различных металлов (W, Mo, Nb, Та, их сплавов, различных видов стали) с целью защиты их от коррозии, окисления и износа при обычных и повышенных температурах. Отличаются повышенной термо- и жаростойкостью, устойчивостью к истиранию, высокой механической и электрической прочностью. Применяются в качестве покрытий для деталей дизелей, газотурбинных установок, атомных реакторов, авиационных приборов, электронагревательных элементов.

Ситаллы со специальными электрическими свойствами получают на основе стекол систем ВаО-Аl 2 О 3 -SiO 2 -ТiO 2 и Nb 2 O 5 -CoO-Na 2 O--SiO 2 . Характеризуются высокой диэлектрической проницаемостью (e 240-1370) и низким коэффициентом диэлектрических потерь (1,5-3,2). Используются для изготовления низкочастотных конденсаторов большой емкости, пьезоэлементов и др. Разработаны полупроводниковые, ферромагнитные, ферро-электрические, сегнетоэлектрические С. с различным сочетанием электрических свойств. Ситаллы на основе стекол системы MgO-Al 2 O 3 -SiO 2 имеют очень низкий tg d (3 · 10 -4 при 25 °С и 10 4 МГц), ситаллы на основе метаниобата Рb- высокую диэлектрическую проницаемость (e 1000-2000). На основе стекол B 2 O 3 -BaO-Fe 2 O 3 получены С. с одно- и многодоменной структурой с размером доменов ~ 500 им.

К группе строительных ситаллов относят шлако-, золо-, петроситаллы, получаемые с использованием шлаков черной и цветной металлургии, зол, горных пород. В зависимости от химического состава используемых отходов, определяющих вид доминирующей кристаллической фазы, подразделяются на волластонитовые, пироксеновые (инициаторы кристаллизации-оксиды Cr, Ti, Fe, фториды), мелилитовые (система CaO-MgO-2Al 2 O 3 -SiO 2 , инициатор кристаллизации--оксид Сr), пироксен-авгитовые и геденбергитовые (система СаО - MgO - Fe 2 О 3 - Аl 2 р 3 - SiO 2), форстеритовые (система CaO-MgO-SiO 2) и эгириновые (Na 2 O--Fe 2 O 3 -SiO 2) С. Они имеют высокие прочностные характеристики (s изг 100-180 МПа), высокую микротвердость (8500-9000 МПа), относительно низкую истираемость (0,05 г/см 2), высокую стойкость к хим. и термин, воздействиям. Применяются в строительстве, горнодобывающей, химической и др. отраслях промышленности.

Получают ситаллы и изделия из них главным образом с использованием стекольной и керамической технологии, иногда по химическому способу. Наиболее распространена так называемая стекольная технология, включающая варку стекла из шихты. формование изделий (прессование, прокатка, центробежное литье) и термическую обработку. Последняя стадия обеспечивает кристаллизацию стекла вследствие введения в стекольную массу специальных инициаторов- каталитических добавок - оксидов Ti, Сг, Ni, Fe, фторидов, сульфидов, металлов платиновой группы, а также вследствие склонности стекол к ликвации, способствующей образованию поверхности раздела фаз и приближающей химический состав микрообластей к составу будущих кристаллов. Термическую обработку осуществляют обычно по двухступенчатому режиму; температура первой ступени лежит в области температуры размягчения стекла и соответствует максимальной скорости зарождения центров кристаллизации, при т-ре второй ступени происходит выделение кристаллов ведущей фазы, определяющей основные свойства ситаллов.

По керамической (порошковой) технологии получения ситаллы из расплава стекла вначале получают гранулят, который измельчают и сушат, после чего в него добавляют термопластическую связку и из образовавшейся массы прессованием или шликерным литьем формуют изделия. Затем их спекают при высокой температуре с одновременной кристаллизацией. По сравнению с керамикой аналогичного состава спеченные ситаллы характеризуются более низкими температурами обжига и расширенным интервалом спекания. Порошковая технология позволяет получать из ситаллов термически стойкие изделия сложной конфигурации и малых размеров.

По химическому способу ситаллы получают главным образом по золь-гель технологии, в основе которой лежит низкотемпературный синтез (посредством реакций гидролиза и конденсации) металлоорганические соединения элементов, составляющих стекло, при температуре ниже температуры плавления стекольной шихты. Этот метод позволяет получать ситаллы на основе составов, не склонных к стеклообразованию, обеспечивает получение стекол высокой чистоты и однородности, что резко улучшает свойства ситаллов, синтезируемых на их основе.

ЧУГУН

Чугуны - это железоуглеродистые сплавы, содержащие более 2 % углерода и затвердевающие с образованием эвтектики. В отличие от стали чугуны обладают низкой пластичностью. Однако, благодаря высоким литейным свойствам, достаточной прочности и относительной дешевизне, чугуны нашли широкое применение в машиностроении.

Чугуны выплавляют в доменных печах, вагранках и электропечах. Выплавляемые в доменных печах чугуны бывают передельными, специальными (ферросплавы) и литейными. Передельные и специальные чугуны используются для последующей выплавки стали и чугуна. В вагранках и электропечах переплавляют литейные чугуны. Около 20 % всех выплавляемых чугунов используют для изготовления отливок.

Литейные и механические свойства чугуна зависят от того, насколько близок его состав к эвтектическому. Для оценки этого применяют два показателя:

Степень эвтектичности S Э - отношение концентрации углерода С в чугуне к его концентрации в эвтектике с учетом влияния кремния и фосфора:


где 4,26 - концентрация углерода в эвтектике системы «железо-графит» (см. рис. 7.1.), Si и P - содержание этих элементов в чугуне, %.

Углеродный эквивалент определяется как:

С эк = С + 0,3(Si + P)

Чугуны подразделяются на: доэвтектические (S э < 1, C эв < 4,2–4,3), эвтектические (S э 1, С эк 4,2–4,3) и заэвтектические (S э > 1, C эв > 4,2–4,3).

Чугуны при кристаллизации и дальнейшем охлаждении могут вести себя по-разному (рис. 1): либо в соответствии с метастабильной диаграммой состояний Fe-Fe 3 C (белые чугуны, в которых углерод присутствует в виде Fe 3 C), либо в соответствии со стабильной диаграммой Fe-C (серые чугуны, в которых углерод присутствует в виде графита).

На представленных диаграммах (рис.1) кроме общих линий АС, АЕ, GS остальные линии не совпадают. В системе Fe-C графитная эвтектика (аустенит-графит) содержит 4,26 % С и образуется при 1 153 ° С. По линии E" S" в интервале температур 1 153–738 ° С выделяется вторичный графит. Эвтектоидное превращение протекает при 738 ° С с образованием эвтектоида (феррит + графит). Пользование диаграммами Fe-C и Fe-Fe 3 C принципиально не отличается друг от друга.

Вероятность образования цементита из жидкой фазы значительно выше, чем графита. Любой процесс определяется термодинамическими и кинетическими условиями протекания. Движущей силой процесса графитизации является стремление системы уменьшить запас свободной энергии. Цементит термодинамически менее устойчивая фаза, чем графит. Однако разница между температурами образования цементита и графита невелика, и при сравнительно небольшом переохлаждении будет происходить кристаллизация цементита, а не графита.

Графит образуется только при малых скоростях охлаждения в узком интервале температур, когда мала степень переохлаждения жидкой фазы. При ускоренном охлаждении и при переохлаждении жидкого чугуна ниже 1 147 ° С происходит образование цементита.

Графитизацией называется процесс выделения графита при кристаллизации или охлаждении чугунов. Графит может образовываться как из жидкой фазы при кристаллизации, так и из твердой фазы. В соответствии с диаграммой Fe-C ниже линии C" D" образуется первичный графит, по линии E" C" F" - эвтектический графит, по линии Е" S" - вторичный графит и по линии P" S" К" - эвтектоидный графит.

Графитизация чугуна и ее полнота зависит от скорости охлаждения, химического состава и наличия центров графитизации.

Влияние скорости охлаждения обусловлено тем, что графитизация чугуна протекает очень медленно и включает несколько стадий:

· бразование центров графитизации в жидкой фазе или аустените;

· диффузия атомов углерода к центрам графитизации;

· рост выделения графита.

При графитизации цементита добавляются стадии предварительного распада Fe 3 C и растворение углерода в аустените. Чем медленнее охлаждение чугуна, тем большее развитие получает процесс графитизации.

В зависимости от степени графитизации различают чугуны белые , серые и половинчатые .

Белые чугуны - получаются при ускоренном охлаждении и при переохлаждении жидкого чугуна ниже 1 147 °С, когда в силу структурных и кинетических особенностей будет образовываться метастабильная фаза Fe 3 C, а не графит. Белые чугуны, содержащие связанный углерод в виде Fe 3 C, отличаются высокой твердостью, хрупкостью и очень трудно обрабатываются резанием. Поэтому они как конструкционный материал не применяются, а используются для получения ковкого чугуна путем графитизирующего отжига.

Серые чугуны - образуются только при малых скоростях охлаждения в узком интервале температур, когда мала степень переохлаждения жидкой фазы. В этих условиях весь углерод или его большая часть графитизируется в виде пластинчатого графита, а содержание углерода в виде цементита составляет не более 0,8 %. У серых чугунов хорошие технологические и прочностные свойства, что определяет широкое применение их как конструкционного материала.

Половинчатые чугуны - занимают промежуточное положение между белыми и серыми чугунами, и в них основное количество углерода (более 0,8 %) находится в виде Fe 3 C. Чугун имеет структуру перлита, ледебурита и пластинчатого графита.

Промышленные чугуны содержат 2,0–4,5 % С, 1,0–3,5 % Si, 0,5–1,0 % Mn, до 03 % Р и до 0,2 % S. Наиболее сильное положительное влияние на графитизацию оказывает кремний. Меняя содержание кремния, можно получать чугуны с различной структурой и свойствами. Структурная диаграмма (рис. 2) приближенно указывает границы структурных областей в зависимости от содержания кремния и углерода при содержании 0,5 % Mn и заданной скорости охлаждения (при толщине стенки отливки 50 мм).

Марганец препятствует графитизации, увеличивая склонность чугуна к отбеливанию. Сера является вредной примесью. Ее отбеливающее влияние в 5–6 раз выше, чем марганца. Кроме того, сера снижает жидкотекучесть, способствует образованию газовых пузырей, увеличивает усадку и склонность к образованию трещин. Фосфор не влияет на графитизацию и является полезной примесью, увеличивая жидкотекучесть серого чугуна за счет образования легкоплавкой (950–980) ° С фосфидной эвтектики.

Рис. 2. Структурная диаграмма: 1 - белые чугуны; 2 - половинчатые чугуны; 3, 4, 5 - серые чугуны на перлитной, феррито-перлитной и ферритной основе соответственно

Таким образом, регулируя химический состав и скорость охлаждения можно получать в отливках нужную структуру чугуна.

Классификация серых чугунов

Серый чугун можно рассматривать как структуру, которая состоит из металлической основы с графитными включениями. Свойства чугуна зависят от свойств металлической основы и характера графитных включений.

Металлическая основа может быть: перлитной , когда 0,8 % С находится в виде цементита, а остальной углерод в виде графита; феррито-перлитной, когда количество углерода в виде цементита менее 0,8 % С; ферритной , когда углерод находится практически в виде графита.

В зависимости от формы графитных включений серые чугуны классифицируются на:

· чугун с пластинчатым графитом;

· чугун с хлопьевидным графитом (ковкий чугун);

· чугун с шаровидным графитом (высокопрочный чугун);

· чугун с вермикулярным графитом.

На рис.3 дана обобщенная классификация чугунов по строению металлической основы и форме графита.

Микроструктура чугунов приведена на рис. 7.4.

Рис. 3. Классификация чугунов по структуре металлической основы и в форме графитовых включений

Рис. 4. Различные формы графита в чугуне: а) пластинчатый графит; б) хлопьевидный графит; в) шаровидный графит; г) вермикулярный графит. × 200

По сравнению с металлической основой графит имеет низкую прочность. Поэтому графитовые включения можно считать нарушениями сплошности (пустотами) в металлической основе, и чугун можно рассматривать, как сталь, пронизанную включениями графита, ослабляющими его металлическую основу. Вместе с тем наличие графита определяет и ряд преимуществ чугуна: хорошая жидкотекучесть и малая усадка; хорошая обрабатываемость резанием (графит делает стружку ломкой); высокие демпфирующие свойства; антифрикционные свойства и др.

В отдельную группу при классификации выделены чугуны со специальными свойствами. Как правило, эти чугуны легированные и делятся по назначению на следующие виды: антифрикционные, износостойкие, жаростойкие, коррозионностойкие, жаропрочные.

Маркировка чугунов

По принятой в СССР маркировке обозначения марок доменных чугунов содержат буквы и цифры. Буквы указывают основное назначение чугуна: П - передельный для кислородно-конверторного и мартеновского производства и Л - литейный для чугунолитейного производства. Литейный коксовый чугун обозначают ЛК, в отличие от чугуна, выплавленного на древесном угле (ЛД). С увеличением числа в обозначении марки уменьшается содержание кремния (например, в чугуне ЛК5 содержится меньше кремния, чем в чугуне ЛК4). Каждая марка чугуна в зависимости от содержания Mn, Р, S подразделяется соответственно на группы, классы и категории.

Марки чугуна литейного производства, как правило, обозначаются буквами, показывающими основной характер или назначение чугуна: СЧ - серый Ч., ВЧ - высокопрочный, КЧ - ковкий; для антифрикционного чугуна в начале марки указывается буква А (АСЧ, АВЧ, АКЧ). Цифры в обозначении марок нелегированного чугуна указывают его механические свойства. Для серых чугунов приводят регламентированные показатели пределов прочности при растяжении и изгибе (в кгс/мм 2), например СЧ21-40,СЧ 15, CЧ 20, СЧ 35.

Для высокопрочного и ковкого чугуна цифры определяют предел прочности при растяжении (в кгс/мм 2) и относительное удлинение (в %), например ВЧ60-2. Обозначение марок легированных чугунов состоит из букв, указывающих, какие легирующие элементы входят в состав чугуна, и стоящих непосредственно за каждой буквой цифр, характеризующих среднее содержание данного легирующего элемента; при содержании легирующего элемента менее 1,0% цифры за соответствующей буквой не ставятся. Условное обозначение химических элементов такое же, как и при обозначении сталей. Пример обозначения легированных чугунов: ЧН19ХЗ – чугун, содержащий ~19% Ni и ~3% Cr. Если в легированном чугуне регламентируется шаровидная форма графита, в конце марки добавляется буква Ш (ЧН19ХЗШ).


Библиографический список

1. Соколов Р. С. «Химическая технология», 2003 г.;

2. Макмиллан П.У. «Стеклокерамика», 1967 г.;

3. Павлушкин Н.М. «Основы технологии ситаллов», 1970 г.;

4. Гиршович Н.Г. «Чугунное литьё», 1949 г.;

5. Дриц М.Е., Москалев М.А. «Технология конструкционных материалов и материаловедение», 1990 г.;

6. Для подготовки данной работы были использованы материалы с сайтов:

http://www.orbeta.ru/stati/chugunyi.html

http://ru.wikipedia.org

Загрузка...