domvpavlino.ru

Сырье и конструкционные материалы примеры. Что значит "конструкционные материалы". Производство стали в кислородных конвертерах



Физико-механические свойства конструкционных материалов подразделяются на:

  • конструкционные;
  • технологические;
  • эксплуатационные.

Конструкционные свойства

К конструкционным свойствам относятся:

  • прочность;
  • упругость;
  • пластичность;
  • твердость;
  • ударная вязкость.

Эти свойства определяют прочность и долговечность машины.

Прочность - это способность материала сопротивляться деформации и разрушению.

Деформацией называется изменение размеров и формы тела под действием внешних сил. Деформации подразделяются на упругие и пластические. Упругие деформации исчезают после окончания действия сил, а пластические остаются.

Пластичность - способность материала деформироваться. Пластичность обеспечивает конструктивную прочность деталей под нагрузкой и нейтрализует влияние концентраторов напряжений - отверстий, вырезов и т. п. При пластическом деформировании металла одновременно с изменением формы изменяется ряд свойств, в частности при холодном деформировании повышается прочность, но снижается пластичность.

Большинство механических характеристик материалов определяют в результате испытания образцов на растяжение (ГОСТ 1497-84).

При растяжении образцов с площадью поперечного сечения F a и рабочей (расчетной) длиной l о строят диаграмму растяжения в координатах: нагрузка P - удлинение ∆l образца (Рисунок 3 .).

Диаграмма растяжения характеризует поведение металла при деформировании от момента начала нагружения до разрушения образца. На диаграмме выделяют три участка:

  • упругой деформации - до нагрузки P упр ;
  • равномерной пластической деформации от P упр до P max ;
  • сосредоточенной пластической деформации от P max до P k .

Если образец нагрузить в пределах P упр , а затем полностью разгрузить и замерить его длину, то никаких последствий нагружения не обнаружится.

Такой характер деформирования образца называется упругим .
При нагружении образца более P упр появляется остаточная (пластическая) деформация.
Пластическое деформирование идет при возрастающей нагрузке, так как металл упрочняется в процессе деформирования.
Упрочнение металла при деформировании называется наклепом .

При дальнейшем нагружении пластическая деформация, а вместе с ней и наклеп все более увеличиваются, равномерно распределяясь по всему объему образца.
После достижения максимального значения нагрузки P max в наиболее слабом месте появляется местное утонение образца - шейка, в которой в основном и протекает дальнейшее пластическое деформирование. В связи с развитием шейки, несмотря на продолжающееся упрочнение металла, нагрузка уменьшается от P max до P k , и при нагрузке P k происходит разрушение образца.
При этом упругая деформация образца ∆l упр исчезает, а пластическая ∆l ост остается.

При деформировании твердого тела внутри него возникают внутренние силы. Величину сил, приходящуюся на единицу площади поперечного сечения образца, называют напряжением .
Единица измерения напряжения - мегаПаскаль (МПа) .

Отмеченные выше нагрузки на кривой растяжения (P упр, P T , P max , P k ) служат для определения основных характеристик прочности (напряжений):

  • предела упругости σ у ;
  • предела текучести σ Т ;
  • временного сопротивления σ в (предела прочности) и истинного сопротивления разрушению.


Временное сопротивление (предел прочности) σ в - это напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению образца.

σ в = Р max /F 0 ;

где Р - максимальная нагрузка, предшествующая разрушению;
F 0 - первоначальная площадь поперечного сечения образца.

Для оценки пластичности металла служат относительное остаточное удлинение образца при растяжении δ Р и относительное остаточное сужение площади поперечного сечения образца ψ Р .

Относительное остаточное удлинение определяется по формуле:

δ Р = (lк - l 0)/l 0 ,

где lк - длина образца после испытания;
l 0 -длина образца до испытания.

Относительное остаточное сужение определяется из выражения:

ψ Р = (F к - F 0) × 100%/F 0 ,

где F 0 - начальная площадь поперечного сечения образца;
F к - площадь поперечного сечения образца в месте разрушения.

Твердость - это сопротивление материала проникновению в его поверхность стандартного тела (индентора). О твердости судят либо по глубине проникновения индентора, либо по величине отпечатка от вдавливания. Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.

Наибольшее распространение получили методы определения твердости Бринелля, Роквелла, Виккерса и микротвердости.

Схемы испытаний представлены на Рисунке 4 .


Рисунок 4 . Схема определения твердости материала
по Бринеллю (а), по Роквеллу (б), по Виккерсу (в).

Твердость по Бринеллю определяют на твердомере Бринелля. В качестве индентора используется стальной закаленный шарик диаметром D 2,5; 5; 10 мм , в зависимости от толщины изделия.

Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля. Твердость определяется как отношение приложенной нагрузки P к сферической поверхности отпечатка.

Метод Роквелла основан на вдавливании в поверхность под определенной нагрузкой наконечника в виде шарика или алмазного конуса. Для мягких материалов (до НВ 230 ) используется стальной шарик диаметром 1/16” (1,6 мм ), для более твердых материалов - конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка P 0 (100 Н ) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка P 1 , в течение некоторого времени действует общая рабочая нагрузка P . После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечника h под нагрузкой P 0 .

Твердость по Виккерсу определяется по величине отпечатка индентора: алмазная четырехгранная пирамида с углом при вершине 136 o .

Твердость рассчитывается как отношение приложенной нагрузки P к площади поверхности отпечатка.

составляет 50…1000 Н . Диагональ отпечатка d измеряется при помощи микроскопа, установленного на приборе.

Преимущество данного способа в том, что можно измерять твердость любых материалов, тонких изделий, поверхностных слоёв. Метод обеспечивает высокую точность при высокой чувствительности.

Способ микротвердости - используется для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра). Метод аналогичен способу Виккерса. Индентор - пирамида меньших размеров, нагрузки при вдавливании P составляют 5…500 Н .

Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению. Испытания на ударную вязкость производят на маятниковых копрах. Испытуемые образцы имеют надрезы определенной формы и размеров.
Образец устанавливают на опорах копра надрезом в сторону, противоположную удару ножа маятника, который поднимают на определенную высоту.

Характеристикой вязкости является ударная вязкость a н , (удельная работа разрушения).



Федеральное агентство по образованию

ГОУ ВПО Уральский государственный экономический университет

Кафедра инженерных дисциплин

Контрольная работа

«Свойства конструкционных материалов»

Исполнитель:

студентка I курса заочного факультета

специальности «ЭПП»

Добрынкина Л. В.

Екатеринбург 2009


Понятие конструкционных материалов

Классификация свойств конструкционных материалов

Процессы производства стали

Стеклокристаллические материалы (ситаллы)

Чугун. Классификация чугунов

Графитизация чугунов

Классификация серого чугуна

Маркировка чугуна

Библиографический список


КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ

Конструкционными материалами называют материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами Конструкционные материалы являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества Конструкционные материалы относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др.

Конструкционные материалы подразделяются: по природе материалов - на металлические, неметаллические и композиционные материалы, сочетающие положительные свойства тех и других материалов; по технологическому исполнению - на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т.п.); по условиям работы - на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т.д.; по критериям прочности - на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности.

Развитие техники предъявляет новые, более высокие требования к существующим Конструкционным материалам, стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе лёгкость, жёсткость и прочность. Внешнее армирование металлических замкнутых объёмов (шары, баллоны, цилиндры) стеклопластиком позволяет значительно снизить их массу в сравнении с металлическими конструкциями. Для многих областей техники необходимы Конструкционные материалы, сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами.

В составе конструкционных материалов нашли своё применение почти все элементы таблицы Менделеева, а эффективность ставших уже классическими для металлических сплавов методов упрочнения путём сочетания специально подобранного легирования, высококачественной плавки и надлежащей термической обработки снижается, перспективы повышения свойств конструкционных материалов связаны с синтезированием материалов из элементов, имеющих предельные значения свойств.

Классификация свойств конструкционных материалов

1. Механические свойства характеризуются способностью материала сопротивляться деформированию и разрушаться под действием внешних воздействующих факторов.

· Прочность (способность материала сопротивляться разрушению и пластично деформироваться под воздействием внешних сил);

· Твердость (способность материалов сопротивляться деформированию в поверхностном слое при местном, контактном и силовом воздействии);

· Упругость (способность материала восстанавливать свою форму и размеры, под действием внешних сил без разрушения);

· Вязкость (способность материала поглощать механическую энергию и при этом испытывать значительную пластическую деформацию до разрушения);

· Хрупкость (способность материала разрушаться под действием внешних сил, сразу после упругой деформации).

2. Физические свойства характеризуют поверхность материала в тепловых, гравитационных, электромагнитных и радиоактивных полях.

· Свет (способность материала отражать световые лучи с определенной длиной световой волны);

· Плотность (масса единицы объема вещества);

· Температура плавления;

· Электропроводность (способность материала хорошо и без потерь проводить электрический ток);

· Теплопроводность (способность материала переносить Тепловую энергию от более нагретого участка к менее нагретому);

· Теплоёмктсть (способность материала поглощать определенное количество теплоты);

· Магнитные (способность материалахорошо намагничиваться);

· Коэффициент объемного и линейного расширения.

3. Технологические свойства характеризуются способностью материала подвергаться различным видам горячей и холодной обработки.

· Литейные свойства;

· Ковкость (важно при обработке давлением);

· Свариваемость (это показатель того, на сколько материал может показать свариваемые соединения);

· Обработка резанием;

· Прокаливаемость;

· Закаливаемость.

4. Эксплуатационные свойства, характеризуют способность материалов обеспечивает надежную и долговечную работу изделий в конкретных условиях и эксплуатации, базируются на механических, физических и химических свойствах.

5. Химические свойства характеризуют способность материала вступать в химическое взаимодействие с другими веществами.

· Растворимость (способность материала образовывать с одним или несколькими веществами однородные системы, называющихся растворами);

· Жаростойкость (способность материала противостоять химическому разрушению поверхности под действием воздуха или другой окислительной атмосферой при высоких температурах);

· Коррозионостойкость (способность металлических материалов противостоять разрушению в результате химического или электрохимического воздействия на их поверхности внешней агрессивной среды (аналогичное свойство для неметаллических материалов- химикостойкость ));

· Окисление (способность материалов отдавать электроны, то есть окисляться при химическом взаимодействии с окружающей средой или другой материей).

СТАЛЬ

Сталь (польск.stal , от нем. Stahl ) - деформируемый (ковкий) сплав железа с углеродом (и другими элементами), содержание углерода в котором не превышает 2,14 %, но не меньше 0,02 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.

В древнерусских письменных источниках сталь именовалась специальными терминами: «Оцел», «Харолуг» и «Уклад».

Сталь - важнейший конструкционный материал для машиностроения, транспорта, строительства и прочих отраслей народного хозяйства.

Стали делятся на конструкционные и инструментальные.

По химическому составу стали делятся на углеродистые и легированные; в том числе по содержанию углерода - на малоуглеродистые, среднеуглеродистые и высокоуглеродистые; легированные стали по содержанию легирующих элементов делятся на низколегированные, среднелегированные и высоколегированные.

Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.

По структуре сталь различается на аустенитную, ферритную, мартенситную, бейнитную или перлитную. Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.

Производство стали в кислородных конвертерах

Кислородно-конвертерный процесс представляет собой один из видов передела жидкого чугуна в сталь без затраты топлива путем продувки чугуна в конвертере технически чистым кислородом, подаваемым через фурму, которая вводится в металл сверху. Количество воздуха необходимого для переработки 1 т чугуна, составляет 350 кубометров.

Впервые кислородно-конвертерный процесс в промышленном масштабе был осуществлен в Австрии в 1952 - 1953 гг. на заводах в городах Линце и Донавице (за рубежом этот процесс получил название ЛД по первым буквам городов, в нашей стране - кислородно-конвертерного).

В настоящее время работают конвертеры емкостью от 20 до 450 т, продолжительность плавки в которых составляет 30 - 50 мин.

Кислородный конвертер (рис. 1) представляет собой сосуд 1 грушевидной формы из стального листа, футерованный внутри основным кирпичом 2. Рабочее положение конвертера вертикальное. Кислород подается в него под давлением 0,8...1 МПа с помощью водоохлаждаемой фурмы 3, вводимой в конвертер через горловину 4 и располагаемой над уровнем жидкого металла на расстоянии 0,3...0,8 м.

Конвертеры изготовляют емкостью 100...350 т жидкого чугуна. Общий расход технического кислорода на получение 1 т стали, составляет 50...60 м 3 .

Материалами для получения стали в кислородном конвертере служат жидкий передельный чугун и стальной лом. Для наводки шлака в конвертер добавляют железную руду и известь, а для его разжижения - боксит и плавиковый шпат.

Перед началом работы конвертер поворачивают на цапфах 5 вокруг горизонтальной оси и с помощью завалочной машины загружают до 30 % металлолома, затем заливают жидкий чугун при температуре 1250...1400 °С, возвращают конвертер в исходное вертикальное положение, вводят кислородную фурму, подают кислород и добавляют шлакообразующие материалы.

Конструкционные материалы, используемые в химическом маши - ностроении, условно делятся на четыре класса:

Цветные металлы и сплавы;

Неметаллические материалы.

Стали. Сталь представляет собой сплав железа с углеродом, содер­жание которого не превышает 1-2%. Кроме того, в состав стали входят примеси кремния, марганца, а также серы и фосфора.

Стали по химическому составу делятся на несколько групп:

Углеродистые обыкновенного качества;

Углеродистые конструкционные;

Легированные конструкционные и др.

Сталь углеродистую обыкновенного качества изготавливают в зави­симости от химического состава по ГОСТ 380-88 и ГОСТ 16523-88. Сталь углеродистая обыкновенная делится на несколько категорий - 1,2, 3,4, 5, 6 - чем больше номер, тем выше механическая прочность стали и ниже ее пластичность. По степени раскисления стали всех

В табл. 12.1 приведены примеры использования углеродистой стали обыкновенного качества в химическом машиностроении.

Свойства углеродистой стали обыкновенного качества значитель­но повышаются после термической обработки, которая для проката может выражаться в его закалке либо непосредственно после проката, либо после специального нагрева.

Например, термическое упрочнение листового проката из стали марок СтЗ, СтЗкп при охлаждении в воде повышает предел текучести более чем в 1,5 раза при высоком (15+26%) относительном удлинении.

Термическая обработка низкоуглеродистых сталей не только улуч­шает механические свойства сталей, но и приносит значительный эко­номический эффект.

Стали углеродистые конструкционные выпускаются по ГОСТ 1050-74 следующих марок: 08, 10, 15, 20, 25, 30,40,45, 55, 58 и 60. В зависимос­ти от степени раскисления по ГОСТ 1050-88 выпускаются следующие марки стали: 05кп, 08кп, 08пс, Юкп, Юпс, 11кп, 15кп, 18кп, 20кп и 20пс.

В табл. 12.2 приведены примеры использования углеродистой конструкционной стали в химическом машиностроении.

Таблица 12.2. Углеродистая сталь конструкционная

Для улучшения физико-механических характеристик сталей и придания им особых свойств (жаропрочность, кислотостойкость, жа­ростойкость и др.) в их состав вводят определенные легирующие добавки.

Наиболее распространенные легирующие добавки:

Хром (X) - повышает твердость, прочность, химическую и кор­розионную стойкость, термостойкость;

Никель (Н) - повышает прочность, пластичность и вязкость;

Вольфрам (В) - повышает твердость стали, обеспечивает ее са­мозакаливание;

Молибден (М) - повышает твердость, предел текучести при растяжении, вязкость, улучшает свариваемость;

Марганец (Г) - повышает твердость, увеличивает коррозионную стойкость, понижает теплопроводность;

Кремний (С) - повышает твердость, прочность, пределы теку­чести и упругости, кислотостойкость;

Ванадий (Ф) - повышает твердость, предел текучести при рас­тяжении, вязкость, улучшает свариваемость стали и увеличивает стой­кость к водородной коррозии;

Титан (Т) - увеличивает прочность и повышает коррозионную стойкость стали при высоких (> 800 °С) температурах.

Обычно в состав легированных сталей входят несколько добавок. По общему содержанию легирующих добавок легированные стали делят на три группы:

Низколегированные - с содержанием добавок до 3%;

Среднелегированные - с содержанием добавок от 3 до 10%;

Высоколегированные - с содержанием добавок > 10%.

В табл. 12.3 приведены примеры использования легированных сталей в химическом машиностроении.

Таблица 12.3. Легированные конструкционные стали

Назначение

Коррозионностойкие стали для применения в слабоагрессивных средах

Азотная и хромовая кислоты различной концентрации при температуре не более 25 °С. Уксусная кислота концентрации <5% при температуре до 25 °С. Щелочи (аммиак, едкий натр, едкое кали). Соли органические и неорганические при температуре не более 50 °С и концентрации менее 50%

Обладают повышенной твердостью, хорошей коррозионной стойкостью во влажном воздухе, водопроводной воде, в не­которых органических кислотах, растворах солей и щелочей, азотной кислоте и хлористом натре при 20 “С

Окалиностойкая до 850 °С

Продолжение табл. 12.3

Назначение

10Х14Г14Н4Т,

Заменители сталей 12Х18Н9Т, 17X18Н9, 12Х18Н10Т для оборудования, работающего в слабоагрессивных средах, а также изделий, работающих при повышенных температурах до +400 °С и пониженной температуре до -196 °С

Коррозионностойкие стали для сред средней агрессивности

Заменители стали марки 12Х18Н10Т и 12Х18Н9Т для сварных конструкций, не подвергающихся воздействию ударных нагрузок при температуре эксплуатации не ниже -20 °С. Для труб теплообменной аппаратуры. Эксплуати­ровать в интервале температур 400-700 °С не рекомендуется. Стойкие к действию азотной, фосфорной, лимонной, уксус­ной, щавелевой кислот разных концентраций при темпера­турах не более 100 °С

08X22 Н6Т, 08Х18Г8Н2Т

Заменитель сталей 12Х18Н1 ОТ и 08Х18Н1 ОТ Обладает более высокой прочностью, чем эти стали, и используется для изготовления сварной аппаратуры, работающей при темпе­ратуре не выше 300 °С.

Заменитель стали 12Х18Н9Т для сварных и паянных конст­рукций

Высокая коррозионная стойкость по отношению к азотной, холодной фосфорной и органическим кислотам (за исклю­чением уксусной, муравьиной, молочной и щавелевой), к растворам многих солей и щелочей, морской воде, влаж­ному воздуху. Неустойчивы в соляной, серной, плавиковой, горячей фосфорной, кипящих органических кислотах. Обладают удовлетворительной сопротивляемостью к меж - кристаллитной коррозии

Обладает более высокой стойкостью, чем сталь 12Х18Н 10Т. Например, сталь устойчива к действию 65% азотной кисло­ты при температуре не более 50 °С, к действию концентри­рованной азотной кислоты при температуре не более 20 °С, к большинству растворов солей органических и неорга­нических кислот при разных температурах и концентра­циях

Используются в производстве формальдегидных смол

Используются в качестве конструкционного материала в производстве пластмасс

Для сварных изделий, работающих при криогенных темпе­ратурах до -253 °С

Коррозионностойкие стали для сред повышенной и высокой агрессивности

04X18Н10, 03Х18Н11

Для оборудования и трубопроводов в производстве азотной кислоты и аммиачной селитры

Окончание табл. 12.3

Назначение

Для изготовления сварных изделий, работающих в средах высокой агрессивности. Применяется как жаростойкая сталь при температуре до 600 °С

10X171113М2Т, 10Х17Н ПМЗТ, 08Х17Н15МЗТ, 08Х17Н14МЗ, 03X21Н21М4ГБ

Для изготовления сварных конструкций, работающих в условиях действия кипящей фосфорной, серной, 10%-й уксусной кислоты и в сернокислых средах. Сварные кор­пуса, днища, фланцы и другие детали при температуре от -196 до 600 °С под давлением

Для сварных конструкций, работающих при температурах до 80 °С в условиях производства серной кислоты различных концентраций

Молочная, муравьиная кислоты при температуре до 20 “С. Едкое кали концентрации до 68% при температуре 120 вС. Азотная кислота концентрации 100% при температуре 70 “С. Соляная кислота, сухой йод концентрации до 10% при температуре до 20 °С

Существенное значение для улучшения качества стали имеет хими­ко-термическая обработка, т. е. процесс насыщения поверхности стали различными элементами с целью упрочнения се поверхностного слоя, увеличения поверхностной твердости, жаростойкости и химической стойкости.

К основным видам химико-термической обработки изделий из стали относятся:

Цементация - процесс насыщения поверхностного слоя углеро­дом, что улучшает его прочность и твердость;

Азотирование - процесс насыщения поверхностного слоя азо­том, что повышает стойкость изделий к истиранию и атмосферной коррозии;

Алитирование - процесс диффузионного насыщения поверх­ностного слоя алюминием, что повышает стойкость к окислению при температурах 800-5-1000 °С;

Хромирование - поверхностное насыщение изделий хромом, что значительно повышает твердость, износостойкость и коррозион­ную стойкость в воде, азотной кислоте, атмосфере и газовых средах при высоких температурах.

Дальнейшее улучшение качества химико-термической обработки сталей развивается по двум направлениям: насыщение диффузионно­го слоя азотом и упрочнение деталей термоциклической обработкой в процессе насыщения. Основой новых технологических процессов ста­ла нитроцементация со ступенчатым возрастанием расхода аммиака.

Толщина слоя при этом увеличивается до 1-2 мм и более, возрастает его твердость.

Чугуны. Серые чугуны представляют собой сплав железа, углерода и других металлургических добавок: кремния, марганца, фосфора и серы. Содержание углерода в чугунах колеблется от 2,8 до 3,7%, при лом большая его часть находится в свободном состоянии (графит) и только около 0,8-М),9% находится в связанном состоянии в виде цемен­тита (карбида железа - РеС). Свободный углерод выделяется в чугуне в виде пластинок, чешуек или зерен. По микроструктуре различают:

Чугун серый - в структуре которого углерод выделяется в виде пластинчатого или шаровидного графита;

Чугун белый - в структуре которого углерод выделяется в свя­занном состоянии;

Чугун отбеленный - в отливках которого внешний слой имеет структуру белого чугуна, а сердцевина - структуру серого чугуна;

Чугун половинчатый - в структуре которого углерод выделяется частично в связанном, а частично в свободном виде.

Детали из чугуна изготавливают методом литья в земляных и ме­таллических формах. Из чугуна получают детали сложной конфигу­рации, которые невозможно получить другими методами, например, ковкой или резанием.

Серый чугун является ценным конструкционным материалом, так как, имея сравнительно низкую стоимость, он обладает неплохими механическими свойствами.

Существенным недостатком серых чугунов является их низкая пластичность. Поэтому ковка и штамповка серого чугуна даже в нагре­том состоянии невозможна.

Марки серых чугунов (СЧ) обычно содержат два числа: первое характеризует предел прочности на растяжение, второе - предел проч­ности на изгиб, например, СЧ 12-28; СЧ 18-36 и др.

Серые чугуны обладают низкой химической стойкостью, и детали из них не могут работать в агрессивных средах.

Для повышения качества чугуна его модифицируют различными модификаторами, которые воздействуют на процессы кристаллизации жидкого чугуна, изменяя его механические свойства.

Различают ковкий чугун и высокопрочный чугун. Ковкий чугун (КЧ) отличается от серого чугуна пониженным содержанием углерода и кремния, что делает его более пластичным, способным выдерживать значительные деформации (относительное удлинение КЧ составляет 3-10%). Высокопрочный чугун (ВЧ) является разновидностью ковко­го чугуна, высокие прочностные характеристики которого достигаются модифицированием присадками магния и его сплавов. Ковкий и вы­сокопрочный чугуны идут на изготовление коленчатых валов, цилинд­ров малых компрессоров и других фасонных тонкостенных деталей.

Широкое применение в химическом машиностроении имеют ле­гированные чугуны, в состав которых входят легирующие элементы: никель, хром, молибден, ванадий, титан, бор и лр.

По суммарному содержанию легирующих добавок чугупы делят на три группы:

Низколегированные - легирующих добавок до 3%;

Среднелегированные - легирующих добавок о г 3 до 10%;

Высоколегированные - легирующих добавок более 10%.

Легирование позволяет существенно улучшить качество чугуна и

Придать ему особые свойства. Например, введение никеля, хрома, мо­либдена, кремния повышает химическую стойкость и жаропрочность чугуна; никелевые чугуны с добавкой меди (5-6%) надежно работают со щелочами; высокохромные (до 30% Сг) устойчивы к действию азот­ной, фосфорной и уксусной кислот, а также хлористых соединений; чугун с добавкой молибдена до 4% (антихлор) хорошо противостоит действию соляной кислоты.

Цветные металлы и их сплавы. Цветные металлы и их сплавы при­меняют для изготовления машин и аппаратов, работающих со средами средней и повышенной агрессивности и при низких температурах. В химической промышленности в качестве конструкционных мате­риалов используются алюминий, медь, никель, свинец, титан, тантал и их сплавы.

Алюминий. Обладает высокой стойкостью к действию органических кислот, концентрированной азотной кислоты, разбавленной серной кислоты, сравнительно устойчив к действию сухого хлора и соляной кислоты. Высокая коррозионная стойкость металла обусловлена обра­зованием на его поверхности защитной оксидной пленки, предохра­няющей его ог дальнейшего окисления. Механические свойства алю­миния в значительной степени зависят от температуры. Например, при увеличении температуры от 30 °С до 200 °С значения допускаемого напряжения на растяжение снижаются в 3-3,5 раза, а на сжатие - в

5 раз. Верхняя предельная температура применения алюминия 200 °С. Алюминий не стоек к действию щелочей.

Медь. Взаимодействие меди с кислородом начинается при комнат­ной температуре и резко возрастает при нагревании с образованием пленки закиси меди (красного цвета). Медь сохраняет прочность и ударную вязкость при низких температурах и поэтому нашла широкое применение в технике глубокого холода. Медь не обладает стойкостью к действию азотной кислоты и горячей серной кислоты, относительно устойчива к действию органических кислот. Широкое распространение получили сплавы меди с другими компонентами: оловом, цинком, свинцом, никелем, алюминием, марганцем, золотом и др. Наиболее распространенными являются сплавы меди с цинком (латуни), с оловом (бронзы), с никелем (ЛАН), с железом и марганцем (ЛЖМ), цинком (до 10% цинка - томпак; до 20% - полутомпак; более 20% - константаны, манганины и др.).

Свинец - обладает сравнительно высокой кислотостойкостью, осо­бенно, к серной кислоте, вследствие образования на его поверхности защитной пленки из сернокислого свинца. Исключительно высокая мягкость, легкоплавкость и большой удельный вес резко ограничи­вают применение свинца в качестве конструкционного материала. Однако широкое применение в машиностроении нашли сплавы с ис­пользованием свинца в качестве легирующего компонента: свинцовая бронза, свинцовая латунь, свинцовый баббит (свинец, олово, медь, сурьма).

Никель - обладает высокой коррозионной стойкостью в поде, в растворах солей и щелочей при разных концентрациях и темперагурах. Медленно растворяется в соляной и серной кислотах, не стоек к дейст­вию азотной кислоты. Широко применяется в различных отраслях тех­ники, главным образом для получения жаропрочных сплавов и спла­вов с особыми физико-химическими свойствами. Никель-медные сплавы обладают улучшенными механическими свойствами и повы­шенной коррозионной стойкостью.

Никедьхромсодержащие жаропрочные сплавы. Никелевые сплавы, легированные хромом и вольфрамом, являются стойкими в окисли­тельных средах. Никелевые сплавы с добавкой меди, молибдена и же­леза стойкие в неокислитсльных средах. Никель-медные сплавы с добавлением кремния стойкие в горячих растворах серной кислоты, а сплавы никеля с молибденом обладают повышенной стойкостью к действию соляной кислоты.

Титан и тантал. Титан химически стоек к действию кипящей азот­ной кислоты и царской водки всех концентраций, нитритов, нитратов, сульфидов, органических кислот, фосфорной и хромовой кислот. Однако изделия из титана в 8-10 раз дороже изделий из хромоникеле­вых сталей, поэтому применение титана в качестве конструкционного материала ограничено. Тантал химически стоек к действию кипящей соляной кислоты, царской водки, азотной, серной, фосфорной кислот. Однако не обладает стойкостью к действию щелочей.

Титан и тантал по механическим свойствам не уступают высоколе­гированным сталям, а по химической стойкости намного превосходят их. Эти ценные металлы находят широкое применение в химическом машиностроении как в чистом виде, так и в виде сплавов.

Неметаллические конструкционные материалы. Применение в хими­ческом машиностроении неметаллических конструкционных матери­алов позволяет экономить дорогостоящие и дефицитные металлы.

Фторопласт (тефлон) - элементы конструкций из фторсодер­жащих полимеров обладают высокой стойкостью практически во всех агрессивных средах в широком интервале температур.

Углеграфитовые материалы ~ графит, пропитанный фенолфор - мальдегидной смолой, или графитопласт, - прессованная пластмасса на основе фснолформальдегидной смолы с графитовым наполнителем. Обладают высокой коррозионной стойкостью в кислых и щелочных средах.

Стекло и эмали. Стекло применяется в качестве конструкционного материала в производствах особо чистых веществ. Эмали - специ­альные силикатные стекла, обладающие хорошей адгезией с металлом. Промышленностью выпускаются чугунные и стальные эмалиро­ванные аппараты, работающие в широком интервале температур от -15 до +250 °С при давлениях до 0,6 МПа.

Керамика - выпускается кислотоупорный кирпич для футеровки химического оборудования, крупноблочная керамика для аппаратов башенного типа, например, в производстве серной кислоты. Кера - мические материалы обладают высокой устойчивостью ко многим агрессивным средам, исключение составляют щелочные среды. Трубо­проводы из кислотостойкой керамики широко применяют для транс­портировки серной и соляной кислот.

Фарфор - обладает высокой стойкостью ко всем кислотам, за исключением плавиковой. Недостаточно стоек к действию щелочей. Фарфор используется в качестве конструкционного материала в про­изводствах, где к чистоте продуктов предъявляются повышенные требования.

Винипласт - термопластичная масса, обладающая высокой устой­чивостью почти во всех кислотах, щелочах и растворах, за исключени­ем азотной и олеума. Детали из винипласта надежно работают в интер­вале температур 0-40 °С и давлении до 0,6 МПа.

Асбовинил - композиция из кислотостойкого асбеста и лака, обла­дающая сравнительно высокой стойкостью к действию большинства кислот и щелочей в интервале температур от -50 до +110 °С.

Полиэтилен, полипропилен - термопластичные материалы, стойкие к действию минеральных кислот и щелочей при условиях:

Полиэтилен - температура от -60 до +60 “С, давление до 1 МПа;

Полипропилен - температура от -10 до +100 °С, давление до

Фаолит - кислотостойкая пластмасса с наполнителями: асбест, графит, кварцевый песок. Используют при температуре до 140 СС и дав­лении до 0,06 МПа. Фаолит стоек к действию многих кислот, в том чис­ле серной (концентрацией до 50%), соляной (всех концентраций), уксусной, муравьиной (до 50%), фосфорной, а также бензола, но не стоек в растворах щелочей и окислителей.

Текстолит - по механической прочности превосходит фаолит и отличается высокой стойкостью к агрессивным средам, в том числе к кислотам - серной (концентрацией до 30%), соляной (до 20%),

Фосфорной (до 25%), уксусной (всех концентраций). Верхний темпе­ратурный предел применения текстолита 80 °С.

Пропитанный графит - графит, полученный после прокалки ка­менноугольной смолы и пропитанный связующими смолами - фенол - форматьдегидными, кремнеорганическими, эпоксидными и др.

Вследствие хорошей теплопроводности пропитанного графита его широко применяют для изготовления теплообменников и трубопро­водной арматуры. Пропитанный графит стоек во многих химически активных средах, в том числе в кислотах - азотной (низкой концент­рации), плавиковой (концентрацией до 40%), серной (до 50%), соля­ной, уксусной, муравьиной, фосфорной. Некоторые сорта пропитан­ного графита стойки к действию щелочей.

Жаропрочный кислотостойкий бетон - применяется для бетониро­вания дниш башенного оборудования сернокислотного производства, дня изготовления фундаментов под оборудование. Надежно работает в условиях 900-1200 °С. В последнее время находят применение поли­мербетоны на основе органических смол, которые обладают высокой стойкостью к действию концентрированных кислот, щелочей, бен­зола, толуола и фторсодержащих сред.

Природные силикатные материалы: диабаз, базальт, асбест, хри­зотил, андезит обладают высокой кислотостойкостью, исключение составляет хризотил, который не стоек в кислотах, но устойчив к дейст­вию щелочей. Все эти материалы обладают хорошими физико-механи­ческими свойствами и широко используются в качестве конструкци­онных теплоизоляционных и футеровочных материалов.

Конструкционные материалы – это материалы, на основе которых изготавливают детали для машин, инженерных сооружений и конструкций. Они в ходе работы неоднократно будут подвергаться механическим нагрузкам. Такие детали характеризуются большим разнообразием не только форменным, но и эксплуатационным. Их применяют в разных отраслях промышленности, с их помощью делают промышленные печи, детали для автомобилей, их используют в авиационной сфере. Задача производителя выполнить конструкционную деталь, готовую работать при разных температурах, в разных средах и с достаточно интенсивными нагрузками. Главным отличием продукции от остальных дополнений конструкций является их готовность долговременно принимать на себя максимальные нагрузки.

Виды, типы, классификации

Ввиду того что металлы являются практически самыми надежными и долговечными составляющими, конструкционные материалы изготавливаются в большей степени из них. Поэтому КМ классифицируются и распознаются по материалу, из которого были изготовлены. Зачастую из металлов предпочитают сталь из-за ее прочности, надежности и легкости в обработке.

За основу материалов берут сплавы, выполненные из стали, чугуна и железа. Данный вид имеет хорошую прочность, детали и элементы используются чаще других. Также используют сплавы с магнитными и немагнитными формами. Применяются цветные и не цветные сочетания металлов. Зачастую это алюминий, но в некоторых деталях возможно использование сплавов на его основе. Сплавы используют в том случае, когда деталь нужно деформировать и преобразовывать неоднократно. Из цветных также используют медь (бронзу), титан.

Неметаллические материалы стали использоваться гораздо позднее предыдущей группы. Развитие технологий помогло создать более дешевую альтернативу. При этом неметаллы также прочны и надежны. Неметаллические конструкционные материалы изготавливают из древесины, керамики, стекла и разных видов резины.

  • Композиционные материалы

Композиционные материалы состоят из элементов, сильно отличающихся друг от друга по свойствам. Они позволяют создавать конструкции с заранее определенными характеристиками. Материалы применяют для повышения эффективности. Название состава задается материалом матрицы. Такие материалы все имеют основу. Композиты, имеющие металлическую матрицу – металлические, керамическую – керамические и так далее. Они созданы искусственным путем, материал, который получают на выходе, имеет новый комплекс свойств. Композиционные материалы могут включать в себя как металлические, так и с неметаллические составляющие.

Существует еще одна классификация, позволяющая распознать какой именно необходим материал для выполнения выбранной задачи – это разбор на виды по техническим критериям.

  • Материалы с повышенной прочностью;
  • Материалы, имеющие отличительные технологические возможности;
  • Долговечные материалы (элементы, на эксплуатацию которых не влияют механические раздражители);
  • Упругие конструкционные материалы;
  • Неплотные материалы;
  • Материалы устойчивые к природным воздействиям;
  • Материалы, имеющие высокую прочность.

Сферы применения

Использование конструкционных материалов приходится на любую сферу, связанную со строением и производством. Наиболее широкий спектр в использовании получили электроэнергетическая, строительная и машиностроительная отрасли. Именно здесь собрание конструкций является первой частью для созидания большого проекта.

Группы Материалы Сфера применения Мех. свойства
Металлические конструкционные материалы Бронза Для получения фасонных отливок, втулок, подшипников, зубчатых колес и шестерен. Высокая прочность на сжатие и фрикционные нагрузки, не окисляется.
Инструментальная сталь Для изготовления мерительных инструментов, режущих частей и мерных шаблонов. Прочная, тяжелая, не окисляется, водостойкая.
Титан Ответственные детали в сфере авиации, ракетостроения и медицине. Легкий, водостойкий, токопроводящий.
Неметаллические конструкционные материалы Резина Уплотняющие элементы любых конструкций, изоляторы от напряжения, герметизация, гибкие детали в сфере автомобилестроения, медицины, ракетостроения. Низкая плотность при высокой упругости. Устойчивость к химическим и термическим воздействиям.
Пластмассы Широкое применение для изготовления изделий народного хозяйства, автомобилестроения, пищевой, авиационной, строительной промышленностей. Низкая плотность и хорошая прочность. Низкая температура плавления. Устойчивость к химическим воздействиям.
Азбест Производство труб, покрытия домов, огнеупорных тканей и уплотнителей. Низкая прочность при ударе. Устойчивость к природным воздействиям и химическим.
Керамика Изготовление посуды, изделий для туалета и ванной. Изготовление моделей и сувениров. Отдельные виды используются для изготовления ножей и режущего инструмента. Высокая плотность, хрупкость, устойчивость к коррозии. Низкая упругость. Устойчивость к стиранию.
Производство бронежилетов, армирующего слоя автомобильных шин, защитного слоя кабелей, экипировка для космонавтов, мотоциклистов, пожарников. Высокая прочность, гибкость и низкая плотность. Устойчивость к химическому и механическому воздействию.
Композиционные материалы Фанера Мебельное производство, отделка помещений, сборно-щитовые конструкции в строительстве Низкая плотность при высокой прочности. Простота обработки
Бетон Строительство самых разнообразных домов и конструкций. Высокая прочность на сжатие. Большая плотность.
Стеклопластик Изготовление корпусов лодок и катеров. Обвеска автомобиля и диэлектрические детали. Корпуса бассейнов и декоративных изделий. Высокая прочность и низкая плотность. Низкая пластичность.

Это материалы, из которых изготавливаются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку и отличающихся износостойкостью.

Длительный период в своем развитии человеческое общество использовало для своих практических нужд ограниченный круг материалов: дерево, камень, натуральные волокна, обожженную глину, стекло, железо и др. Промышленный переворот XVIII в. и дальнейшее развитие техники, особенно создание паровых машин и двигателей внутреннего сгорания, электрических машин и автомобилей, усложнили требования к материалам их деталей, к их прочности, температурной стойкости и т. п. В то время основными конструкционными материалами были сплавы на основе железа (см. Железо, сталь, чугун), меди (бронза, латунь), свинца и олова.

При конструировании самолетов от конструкционных материалов потребовалась высокая удельная прочность; широкое распространение получили древесные пластики (фанера), малолегированные стали, алюминиевые и магниевые сплавы. Дальнейшее развитие авиационной техники привело к созданию новых жаропрочных сплавов на основе никеля и кобальта, титановых, алюминиевых, магниевых сплавов, пригодных для длительной работы при высоких температурах.

С совершенствованием техники требования к конструкционным материалам все более усложняются. Так, судостроению необходимы стали и сплавы, хорошо поддающиеся сварке, коррозионностойкие, а химическому машиностроению - с высокой и длительной стойкостью в агрессивных средах. Ядерная энергетика использует конструкционные материалы, которые при наличии прочности должны удовлетворять еще одному требованию - малому поперечному сечению захвата нейтронов.

Существует огромное количество различных конструкционных материалов. По своей природе они подразделяются на металлические, неметаллические и композиционные.

К металлическим конструкционным материалам относится большинство марок стали. Сталь получают в конвертерах, мартеновских и электрических печах, а также способами электрошлакового переплава (см. Литье), вакуумирования и др. Чугун широко применяется в машиностроении для изготовления станин, коленчатых валов, зубчатых колес, цилиндров двигателей внутреннего сгорания и т. д.

Никелевые и кобальтовые сплавы сохраняют прочность при 1000-1100° С, выплавляются в вакуумно-дуговых, плазменных и электроннолучевых печах (см. Плазмотрон, плазменная технология, Электроннолучевая технология). Эти сплавы используются в авиационных и ракетных двигателях, паровых турбинах и др. Алюминиевые сплавы служат для изготовления корпусов самолетов, вертолетов, ракет, судов. Магниевые сплавы применяются в конструкциях летательных аппаратов, в автомобилестроении, в текстильной и полиграфической промышленности и др. Титановые сплавы, отличающиеся особенно высокой удельной прочностью и коррозийной стойкостью, используются в авиационной, химической промышленности, медицине и др. В различных отраслях техники нашли применение также сплавы на основе меди, цинка, молибдена, циркония, хрома, бериллия.

Неметаллические конструкционные материалы включают пластики, термопластичные полимеры, керамику, огнеупоры и др. Пластики на основе термореактивных, эпоксидных, фенольных смол и фторопластов, армированные (упрочненные) стеклянными, кварцевыми, асбестовыми и другими волокнами, применяются в конструкциях самолетов, ракет, энергетических и транспортных машин. Термопластичные полимерные материалы - полистиролы, полиамиды, фторопласты - используются в деталях электро- и радиооборудования и др.

Из керамических материалов изготовляют детали, работающие при высокой температуре. Резины на основе различных каучуков, упрочненные кордными тканями, применяются для производства покрышек или монолитных колес самолетов и автомобилей.

Современная техника продолжает предъявлять все новые требования к конструкционным материалам. Так, например, для уменьшения массы летательных аппаратов используются многослойные конструкции, отличающиеся одновременно легкостью, прочностью и жесткостью. Для многих областей техники необходимы материалы, сочетающие конструкционную прочность с высокими электрическими, теплоизоляционными, оптическими и другими свойствами.

В составе конструкционных материалов нашли применение почти все элементы таблицы Менделеева. Эффективность классических металлических сплавов достигается сочетанием особого легирования, высококачественной плавки и термической обработки.

В перспективе одним из методов получения эффективных конструкционных материалов будет широкое синтезирование их из элементов, имеющих предельные значения свойств, т. е. предельно прочных, предельно тугоплавких, термостабильных и т. п. Такие материалы получили название композиционных. При их изготовлении используются высокопрочные элементы (волокна, нити, нитевидные кристаллы, тугоплавкие соединения и т. п., составляющие армировку или наполнитель), связуемые матрицей из прочного и пластичного материала (металлических сплавов или полимерных материалов). Композиционные материалы по удельной прочности могут на 50- 100% превосходить стали или алюминиевые сплавы и обеспечивают экономию массы конструкции на 20-50%. Поэтому сейчас производству конструкционных материалов и улучшению их качества уделяется особое внимание.

Загрузка...