domvpavlino.ru

Датчики температуры 1 wire. Монтаж линии датчиков (1-wire). A. Двухпроводный интерфейс

Датчики температуры 1-Wire используются с терминалами, которые поддерживают устройства 1-Wire DS18b20.
Датчики температуры 1-Wire не требует калибровки , просты в установке, имеет низкую стоимость.
Датчики температуры 1-Wire имеют внешнее питание , что значительно увеличивает длину трассы от датчика до терминала, и дает возможность использовать большое количество устройств на одной шине 1-Wire.
Датчики температуры 1-Wire могут работать с любым напряжением на шине 1-Wire (от 3.3 В до 5.5 В).
Датчики температуры 1-Wire имеют удобные корпуса крепления.

Датчики температуры 1-Wire выпускаются в двух модификациях:
– 1. Для эксплуатации в температурном диапазоне от -40°C до +80 °C . Длина экранированного провода – 10 метров.
– 2. Для эксплуатации в температурном диапазоне от -55
°C до +125 °C . Длина экранированного термостойкого провода – 1 метр. (Любая длинна провода под заказ. +120 руб. за каждый дополнительный метр).

Цены

Количество от 100 от 75 до 99 от 60 до 74 от 45 до 59 от 30 до 44 от 15 до 29 до 14

Цена 1-Wire -40 °C до +80 °C (руб).
Длинна экранированного провода – 10 метров.

700 730 760 790 820 850 880

Цена 1-Wire -55 °C до +125 °C (руб).
Длина экранированного термостойкого провода – 1 метр.
Любая длинна провода под заказ. +120 руб за каждый дополнительный метр.

700 730 760 790 820 850 880

Технические характеристики датчика измерения температуры 1-Wire

Диапазон измеряемых температур

от – 55 до + 125 °C
Температура эксплуатации
от – 40 до + 80 °C
или
от – 55 до + 125 °C​

Погрешность измерений

-10°C to +85°C – ±0.5 °C
-30°C to +100°C – ±1 °C
-55°C to +125°C – ±2 °C​

Напряжение на шине 1-Wire

от 3.3 до 5.5 В

Напряжение питания датчика

9-36 В

Ток потребления в режиме ожидания

0.1 mA

Ток потребления в режиме измерения

1 mA
Длина соединительного кабеля, входящего в комплект датчика
(в зависимости от выбранной модификации)
10 метров +/- 2 %
или
1 метр +/- 2 %

Класс защиты сенсора датчика

IP 68

Гарантия производителя

18 месяцев

Подключение датчика 1-Wire. Модификация № 1 (от -40 °C до +80°C)

Цвета проводов в кабеле с экранирующей оплеткой

Выводы датчика Описание
Красный-Белый Красный
Экранирующая оплетка кабеля "Масса" (Минус питания)
Белый К шине 1-Wire
Красный-Синий Красный Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Синий К шине 1-Wire
Красный-Желтый Красный Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Желтый К шине 1-Wire
Красный-Серый Красный Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Серый К шине 1-Wire
Красный-Черный Красный Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Черный К шине 1-Wire
Оранжевый-Зеленый Оранжевый Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Зеленый К шине 1-Wire
Желтый-Синий Желтый Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Синий К шине 1-Wire
Желтый-Зеленый Желтый Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Зеленый К шине 1-Wire
Желтый-Серый Желтый Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Серый К шине 1-Wire
Желтый-Черный Желтый Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Черный К шине 1-Wire
Желтый-Белый Желтый Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Белый К шине 1-Wire
Прозрачный-Зеленый Прозрачный Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Зеленый К шине 1-Wire
Жёлтый-Оранжевый Жёлтый Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Оранжевый К шине 1-Wire
Жёлтый-Коричневый Жёлтый Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Коричневый К шине 1-Wire
Красный-Прозрачный Красный Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Прозрачный К шине 1-Wire

Подключение датчика 1-Wire. Модификация № 2 (от -55 °C до +125°C)

Цвета проводов в термостойком кабеле
с экранирующей оплеткой

Выводы датчика Описание
Красный-Черный Красный Плюс питания (через предохранитель 1А)
Экранирующая оплетка кабеля "Масса" (Минус питания)
Черный К шине 1-Wire

Для одного из проектов по автоматизации потребовалось сделать устройство, которое является подчинённым 1-Wire устройством, принимает команды от мастера и выставляет на своих выходах значение аналогового сигнала в диапазоне от 0 до 10В.
Проанализировав линейку стандартных микросхем 1-Wire от Maxim, стало ясно, что нет микросхемы, которая позволит реализовать подобный функционал.
Потому было принято решение реализовывать 1-Wire slave на микроконтроллере. Надеюсь, данный материал будет интересен и полезен людям, которые делают «умный дом» своими руками, т.к. 1-Wire достаточно популярная шина в подобных проектах. В качестве камня был выбран МК Cortex M0+ ATSAMD20G16 от Atmel, но о реализации в коде расскажем во второй части. Забегая немного вперед, скажу что в третьей части цикла пойдет речь о реализации собственного семейства устройств для линуксовой библиотеки OWFS (One Wire File System). А сегодня расскажем о некоторых аппаратных решениях, к которым мы пришли в процессе разработки.

Речь в основном пойдет о том как подключить ногу микроконтроллера к 1-Wire шине с минимальным вредом для здоровья. Будем двигаться от простого к сложному.

Преобразование уровней


Самый простой вариант - двунаправленный преобразователь уровня на транзисторе. Для него потребуется где-то брать 5В со стороны шины 1-Wire.
Первый вариант - делать 5В на своем устройстве (помимо 3.3В) для «запитки» шины. Как следствие, усложнение схемотехники.
Второй вариант - прокладывать шину 1-Wire в три провода . Третьим проводом идёт линия питания +5В. Из проблем - лишний провод, просадка напряжения на длинном проводе.

Согласование уровней

Если очень не хочется использовать +5В можно разделить сигнальную линию на 2 составляющих (вход и выход)

Важно учесть, что при такой схеме линии со стороны контроллера получаются инверсными.
В качестве бонуса, разделение линии данных на 2 части позволяет несколько упростить дальнейшую отладку софта, т.к. позволяет видеть осциллографом отдельно выходящие от нас сигналы (линия 1-Wire Tx ), не смешанные с сигналами других устройств на шине.

Повышаем устойчивость

Для того что бы сделать прием данных по 1-Wire более уверенным необходимо сделать крутые фронты импульсов со стороны микроконтроллера. Для этого воспользуемся компаратором от TI LMV331 , который обеспечит более точный и резкий переход между логическими «0» и «1», а так же гистерезис 160mV. Еще заменим выходной би-полярный транзистор BC547 на полевой IRLML6346 и поставим защитный TVS диод ESD5Z6 на 6В.


Для данной схемы компаратор потребуется запитать от 5В. Где их можно взять было сказано выше.

Развязанный 1-Wire

Для обеспечения электрической развязки шины 1-Wire и внутренней электроники устройства воспользуемся изолированным транслятором уровней ADuM1201 , и изолированным DC/DC конвертор TES 1-1211 . Как и в предыдущем случае, линию данных 1-Wire делим на 2 линии: 1W_Rx и 1W_Tx.


DC/DC конвертор с 12 на 5 вольт взят для примера, можно использовать аналогичный 3.3/5.

Остальная схемотехника

Для полноты картины покажем схемотехнику подключения микроконтроллера, а так же выходных аналоговых каналов 0-10В.




Т.к. протокол 1-Wire требует наличие уникального адреса для каждого устройства на шине, на плату ставим 1-Wire UID от Maxim DS2411 . Будучи для неё мастером шины будем считывать её UID и использовать его в качестве собственного адреса. У DS2411 код семейства 0x01 (family code - старший байт UID’а). Мы же на сайте OWFS выберем незанятый код семейства для нашего нового устройства и будем подменять первый байт.

Как уже было сказано, во второй части приступим к программной реализации протокола 1-Wire Slave.

Цель этой статьи - рассказать, как использовать эти датчики (или другие устройства сети) в суровых "полевых условиях". Не секрет, что на столе под лампой светлой цифровой датчик DS18B20 или его бюджетный брат DS18S20 замечательно работает с минимальным обвязом со стороны микроконтроллера в т.н. двухпроводной схеме:







Дополнительная выделенная линия питания сулит нам следующие "бонусы":
  1. Длина сетевого кабеля 100 метров и более;
  2. Количество одновременно подключенных датчиков - не менее 32шт.;
  3. Разрешающая способность АЦП - 0,0625 °C и точность измерения - 1°C.

Однако, еще остается борьба с помехами на длинных линиях связи. Простейшей защитой является включенный в обратном направлении диод Шоттки между линией данный и общим проводом, именно так советует поступать Brian C. Lane , автор популярного проекта DigiTemp . Мы лишь немного расширим данное решение для трехпроводной схемы включения:


L1, L2 - фербиды BLM21AG221SN1D - индуктивности для защиты от высокочастотных помех, возникающих при коммутации сильноточных потребителей;

C1 - керамический конденсатор, естественный спутник ножек питания цифровой микросхемы;

IC1 - собственно цифровой датчик температуры DS18B20Z в корпусе SOIC8.

Все компоненты - SMD (0805 и SOT23) для уменьшения размера платы датчика:



После сборки, плата температурного датчика выглядит следующим образом:


Обязательно защищаем плату датчика от влаги (цапонлаком или акриловым лаком):


Для монтажа датчика на поверхность, например на трубопровод, очень хорошо подходит самовулканизирующаяся резиновая изолента. Кроме того, необходимо хорошо теплоизолировать точку установки датчика. Я использую пористую самоклеющуюся ленту.

Контактные площадки для пайки кабеля сети 1-Wire сознательно сделаны крупными и вот почему...

Трактат о проводочках кабеля

Самой распространенной ошибкой при построении сети 1-Wire является выбор в пользу Ethernet-кабеля Cat.5 ! Подавляющее большинство читателей скажет - "у нас все очень хорошо и бодро работает на обрезках сетевухи ". Не спорю ни в коем случае, кабель Cat.5 длиной 10..30 м вполне годится для 3-х проводного способа подключения датчиков, более того - вот вам рекомендованная схема использования народного кабеля, которую и сам использую на даче для водоснабжения дома:





"Ну таки и в чем дело?" - скажет проницательный читатель. А вот в чем: в кардинальном различии "физики и логики" сетей Ethernet и 1-Wire. Не вдаваясь в сложности организации сети Ethernet, просто прошу поверить (и с мультиметром про верить) в то, что из-за значительного падения напряжения на длинных и весьма тонких проводах кабеля Cat.5e датчику сети 1-Wire банально не хватает напряжения питания !

Однопроводной интерфейс 1-Wire, разработанный в конце 90-х годов фирмой Dallas Semiconductor Corp., регламентирован разработчиками для применения в трех основных сферах-приложениях:

  • приборы в специальных корпусах MicroCAN для решения проблем идентификации, переноса или преобразования информации (технология iButton),
  • программирование встроенной памяти интегральных компонентов,
  • системы автоматизации (технология сетей
  • 1-Wire-сетей).

Если первое применение широко известно на мировом рынке, и уже давно пользуется заслуженной популярностью, а второе с успехом обеспечивает возможность легкой перестройки функций полупроводниковых компонентов с малым количеством внешних выводов, производимых фирмой Dallas Semiconductor Corp., то системы автоматизации на базе 1-Wire-шины еще не получили должного признания. Ранее такая ситуация определялась, крайне ограниченным набором компонентов для организации применений в области автоматизации. Однако, в последнее время появляется все больше сообщений и конкретных примеров использования 1-Wire-интерфейса в самых различных областях, все больше разработчиков проявляют интерес к этой технологии, что связанно, прежде всего, со значительным расширением номенклатуры однопроводных компонентов.

Так в чем же особенность этого сетевого стандарта? Ведь в качестве среды для передачи информации по однопроводной линии чаще всего возможно использование обычного телефонного кабеля и, следовательно, скорость обмена в этом случае не велика. Однако, если внимательно проанализировать большинство объектов требующих автоматизации, то более чем для 60% из них предельная скорость обслуживания в 15,4 кБит/сек будет более чем удовлетворительной. А другие преимущества 1-Wire, такие как:

  • простое и оригинальное решение адресуемости абонентов,
  • несложный протокол,
  • простая структура линии связи,
  • малое потребление компонентов,
  • легкое изменение конфигурации сети,
  • значительная протяженность линий связи,
  • исключительная дешевизна всей технологии в целом,

Говорят о необходимости обратить самое пристальное внимание на этот эффективный инструмент для решения задач комплексной автоматизации в самых различных областях деятельности.

Основные принципы

1-Wire-net представляет собой информационную сеть, использующую для осуществления цифровой связи одну линию данных и один возвратный (или земляной ) провод. Таким образом, для реализации среды обмена этой сети могут быть применены доступные кабели, содержащие неэкранированную витую пару той или иной категории, и даже обычный телефонный провод. Такие кабели при их прокладке не требуют наличия какого-либо специального оборудования, а ограничение максимальной длины однопроводной линии регламентировано разработчиками на уровне 300м.

Основой архитектуры 1-Wire-сетей, является топология общей шины, когда каждое из устройств подключено непосредственно к единой магистрали, без каких-либо каскадных соединений или ветвлений. При этом в качестве базовой используется структура сети с одним ведущим или мастером и многочисленными ведомыми . Хотя существует ряд специфических приемов организации работы однопроводных систем в режиме мультимастера.

Конфигурация любой 1-Wire-сети может произвольно меняться в процессе ее работы, не создавая помех дальнейшей эксплуатации и работоспособности всей системы в целом, если при этих изменениях соблюдаются основные принципы организации однопроводной шины. Эта возможность достигается благодаря присутствию в протоколе 1-Wire-интерфейса специальной команды поиска ведомых устройств (Поиск ПЗУ ), которая позволяет быстро определить новых участников информационного обмена. Стандартная скорость отработки такой команды составляет ~75 узлов сети в секунду.

Благодаря наличию в составе любого устройства, снабженного сетевой версией 1-Wire-интерфейса, уникального индивидуального адреса (отсутствие совпадения адресов для приборов, когда-либо выпускаемых Dallas Semiconductor Corp., гарантируется самой фирмой-производителем), такая сеть имеет практически неограниченное адресное пространство. При этом, каждый из однопроводных приборов сразу готов к использованию в составе 1-Wire-сети, без каких-либо дополнительных аппаратно-программных модификаций. Однопроводные компоненты являются самотактируемыми полупроводниковыми устройствами, в основе обмена информацией между которыми, лежит управление изменением длительности временных интервалов импульсных сигналов в однопроводной среде и их измерение. Передача сигналов, для 1-Wire-интерфейса, асинхронная и полудуплексная, а вся информация, циркулирующая в сети, воспринимается абонентами либо как команды, либо как данные. Команды сети генерируются мастером и обеспечивают различные варианты поиска и адресации ведомых устройств, определяют активность на линии даже без непосредственной адресации отдельных компонентов, управляют обменом данными в сети и т.д.

Стандартная скорость работы 1-Wire-сети, которая составляет 15,4Кбит/сек, была выбрана, во-первых, с учетом обеспечения максимальной надежности передачи данных на большие расстояния, и, во-вторых, с учетом быстродействия наиболее широко распространенных типов микроконтроллеров, которые в основном должны использоваться при реализации ведущих устройств однопроводной шины. Это значение скорости обмена может быть уменьшено до любого возможного значения благодаря введению принудительной задержки между передачей в линию отдельных битов данных (растягиванию временных слотов протокола). Или увеличено за счет перехода на специальный ускоренный режим обмена (скорость Overdrive - до 125Кбит/сек), который допускается для отдельных типов однопроводных компонентов на небольшой по расстоянию, качественной, не перегруженной другими приборами линии связи.

Пожалуй, особенно привлекательным качеством технологии 1-Wire является исключительная простота настройки, отладки и обслуживания сети практически любой конфигурации, построенной по этому стандарту. Действительно, для начала работы достаточно любого персонального компьютера, недорогого адаптера 1-Wire-линии, а также свободно распространяемой фирмой Dallas Semiconductor Corp. программы iButton Viewer. При наличии этого небольшого числа составляющих контроль и управление сетью практически любой сложности, построенной на базе стандартных однопроводных компонентов, организуется буквально в течение нескольких минут. Программа iButton Viewer, в этом случае, позволяет с максимальным комфортом для разработчика идентифицировать любое из ведомых однопроводных устройств на линии и проверить в полном объеме правильность его функционирования в составе конфигурируемой сети.

Организация ведущих

Отдельные виды адаптеров, которые позволяют наделить любой персональный компьютер возможностью обслуживать в качестве мастера 1-Wire-сеть, выпускаются самой фирмой Dallas Semiconductor Corp. К ним относятся адаптеры для параллельного порта типа DS1410E, для COM-порта типа DS9097E и DS9097U, для USB-порта типа DS9490R. Эти приборы имеют различные функциональные возможности и конструктивные особенности, что обеспечивает разработчику максимальную свободу выбора при конструировании. А наличие у пользователя небольших навыков в создании электронной аппаратуры, позволяет легко произвести самостоятельную сборку схемы простейшего адаптера 1-Wire-сети для компьютера из небольшого числа доступных электронных компонентов.

Часто в качестве ведущего однопроводной шины выступает не компьютер, а простейший универсальный микроконтроллер. Для организации его сопряжения с 1-Wire-сетью используются различные программно-аппаратные методы. От простейшего, когда управляющая программа контроллера полностью реализует протокол 1-Wire-интерфейса на одном из своих функциональных двунаправленных выводов, связанных с однопроводной линией, до вариантов, позволяющих высвободить значительные ресурсы контроллера, благодаря использованию специализированных микросхем сопряжения с 1-Wire-сетью. Такие микросхемы подключаются к процессору, играющему роль ведущего однопроводной шины, через периферийные узлы ввода/вывода, входящие в состав любого универсального микроконтроллера. Например, устройство DS1481 предназначено для подключения непосредственно к функциональным выводам параллельного обмена контроллера.

А для организации мастера однопроводной системы на базе микроконтроллеров с 3хвольтовым питанием поставляются пассивные микросхемы DS1482, выполняющие согласование с уровнями сигналов стандартной 1-Wire-магистрали. Если же мастер однопроводной линии должен быть организован на базе стандартного узла последовательного интерфейса UART микроконтроллера, используется микросхема DS2480В, а микросхема DS2490 адаптирует однопроводную линию для работы от встроенного узла UBS-интерфейса. Обе микросхемы реализуют так называемый программируемый механизм активной подтяжки шины данных 1-Wire-магистрали, обеспечивающий качественную передачу сигналов в длинных проблемных линиях и увеличение нагрузочной способности ведущего по количеству обслуживаемых им ведомых устройств. Кстати большинство выше упомянутых адаптеров для персональных компьютеров, также построены на базе подобных микросхем. Более того, учитывая особенности работы современных операционных сред Windows, использование именно этих компонентов, которые по своей сути являются управляемыми по последовательному интерфейсу цифровыми автоматами, обеспечивает полномасштабное обслуживание однопроводных линий в реальном масштабе времени.

При построении сложных законченных микропроцессорных систем, имеющих дефицит машинного времени для реализации 1-Wire-протокола, наиболее рациональной является идея о возложении отдельной задачи по обслуживанию однопроводной линии на специальный узел заказной или полузаказной СБИС, для последующего сопряжения такого цифрового автомата, через системную магистраль, непосредственно с основным процессорным узлом. Фирма Dallas Semiconductor Corp. даже разработала набор рекомендаций по организации подобного узла под названием DS1WM, который был реализован, в том числе, специалистами Xilinx Inc. в виде законченного практического примера для программируемых перестраиваемых матриц семейств Virtex и Spartan. Более того, и Dallas Semiconductor Corp., которая в том числе известна как поставщик высокоскоростных контроллеров клона MCS51, выпускает специализированный связной микроконтроллер DS80C400, который содержит встроенный в кристалл автомат поддержки 1-Wire-протокола с возможностью реализации механизма активной подтяжки.

Достаточно перспективным представляется также направление, связанное с применением карманных компьютеров (или PDA (Personal Digital Assistant)) популярных платформ PalmOS, Handspring и WinCE/PocketPC для обслуживания однопроводных компонентов, в том числе работающих в составе 1-Wire-сетей. При этом, для подключения PDA к однопроводной шине применяют специализированные адаптеры последовательного порта, которые отличаются малым потреблением и построены на базе схемных решений, использующих выше перечисленные микросхемы сопряжения с 1-Wire-линией. Именно такой подход в настоящее время является наиболее рациональным при организации автономных и мобильных 1-Wire-систем.

Проблема подготовки программного обеспечения для управления мастером линии при обслуживании 1-Wire-сетей, также не представляется неразрешимой. Фирмой Dallas Semiconductor Corp. свободно распространяется профессиональный программный пакет разработчика iButton TMEX SDK, являющийся универсальным средством для профессиональных программистов, который значительно упрощает процесс создания программ для обслуживания однопроводных устройств, подключенных через стандартные типы адаптеров к персональным компьютерам, которые оснащены операционной системой Windows. Он содержит комплект отлаженных драйверов и утилит для реализации полномасштабного 1-Wire-протокола. В качестве среды взаимодействия с разработчиком пакет iButton TMEX SDK использует специальный стандартизованный программный API-интерфейс. Кроме того, с fttp-сервера кампании Dallas Semiconductor Corp. свободно доступен ряд примеров реализации 1-Wire-протокола для некоторых, наиболее популярных видов микропроцессоров, а также готовые библиотеки функциональных программных модулей однопроводного интерфейса для различных программных платформ.

Ведомые однопроводные компоненты

Ведомые однопроводные компоненты, содержащие 1-Wire-интерфейс, выпускаются в двух различных видах. Либо в корпусах MicroCAN, похожих внешне на дисковый металлический аккумулятор, либо в обычных корпусах для монтажа на печатную плату. Футляр MicroCAN полый внутри. Он выполняет функцию защиты содержащегося в нем полупроводникового кристалла однопроводной микросхемы, который соединен с внешним миром лишь через две, изолированные друг от друга, половинки корпуса, являющиеся по существу контактными площадками для подключения однопроводной линии. В подобных "таблеточных" корпусах поставляются, как правило, приборы iButton. Компоненты, которые предназначены для использования в составе 1-Wire-сетей, упаковываются в пластиковые корпуса, используемые для изготовления транзисторов и интегральных схем. Такой подход объясняется тем, что в отличие от устройств iButton однопроводные приборы для 1-Wire-сетей часто имеют более двух выводов. Помимо выводов, которые требуются для обмена данными по однопроводной магистрали, они располагают дополнительными выводами необходимыми, для обеспечения их питания и организации внешних цепей, связывающих такие приборы с объектами автоматизации, например, датчиками или исполнительными устройствами.

К наиболее простым ведомым однопроводным компонентам относятся кремневый серийный номер DS2401 (или модифицированный вариант этого прибора с внешним питанием DS2411) и электронный ключ DS2405, управляемый по 1-Wire-интерфейсу. Первое из этих устройств часто используется в качестве электронной метки, которая позволяет идентифицировать состояние, например, механического переключателя, коммутирующего линию данных однопроводного интерфейса. С помощью DS2405 можно дистанционно осуществить простейшие функции переключения внешнего оборудования, изменяя состояние управляемого ключа относительно возвратного проводника 1-Wire-магистрали.

Четырехканальный однопроводной АЦП типа DS2450 и двухканальный однопроводной счетчик, совмещенный с буферной памятью, типа DS2423 позволяют решать задачи, связанные с оцифровкой аналоговых и импульсно-временных сигналов. Первое из этих устройств по существу разрешает проблему обслуживания источников аналоговой информации в составе 1-Wire-сетей, к которым относится большинство выпускаемых в настоящее время датчиков различных физических величин (давление, вес, напряжение, влажность, ток, освещенность, ускорение, та же температура, но в диапазонах недоступных для регистрации посредством использования цифровых термометров и т.д.). Второй прибор может с успехом обслуживать многие виды применяемых в технике импульсных сенсоров (различные оптические счетчики, сенсоры количества оборотов, выходной сигнал с расходомеров-вертушек, емкостные датчики влажности, включенные в задающие цепи управляемых генераторов импульсов, счетчики уровня радиации, интегрирующие преобразователи напряжения в частоту и т.д.).

Но все-таки наиболее незаменимыми "кирпичиками", лежащими в основе фундамента однопроводных сетей автоматизации, являются универсальные сдвоенные адресуемые транзисторные ключи типа DS2406P (современная версия широко известных приборов DS2407P).

На базе этих устройств может быть реализована масса применений, и, прежде всего, узлы контроля логических состояний (уровней) и схемы обслуживания датчиков "сухого контакта", а также разнообразные ключевые схемы. Таким образом, именно благодаря использованию этих компонентов осуществляется сбор дискретной информации с территориально рассредоточенных датчиков (мониторов дверей, контакторов положения арматуры, любых датчиков имеющих выход ДА/НЕТ, как-то датчики положения, прохода, присутствия, пожарной и охранной сигнализации и т.д.). Подобные же приборы обеспечивают управление переключением любых видов силового оборудования, которые имеют два рабочих состояния: включено/выключено (нагревателей, кондиционеров, моторов, вентиляторов, арматурных задвижек и т.д.). Кроме того, двунаправленные, индивидуально программируемые выводы DS2406P могут быть использованы для организации медленного последовательного интерфейса между локальным микроконтроллером и 1-Wire-сетью. Не смотря на невысокую скорость при реализации подобного способа обмена информацией по однопроводной сети, когда один бит данных передается за две стандартные посылки, такое решение является приемлемым и достаточно надежным для большого числа конкретных применений.

Тем не менее, самой фирмой Dallas Semiconductor Corp. в качестве стандартного "мостика" обмена между любыми схемами, построенными на микроконтроллерах различных типов, и 1-Wire-сетями рекомендуется применение специализированной двухпортовой статической памяти DS2404. Поскольку к массиву памяти этого прибора возможен доступ, как со стороны однопроводной шины, так и со стороны подчиненного последовательного интерфейса, управляемого микроконтроллером, обмен информацией между ведущим сети и подчиненным интеллектуальным устройством, решающим какую-либо локальную задачу, производится достаточно легко. Более того, благодаря наличию в составе микросхемы DS2404 дополнительного узла часов реального времени и календаря, возможно снабжение данных, сохраняемых процессором в общем массиве памяти, индивидуальными временными метками.

На базе узла часов реального времени кристалла DS2404 кампанией Dallas Semiconductor Corp. выпускается еще два компонента, весьма полезных для создания однопроводных систем автоматизации. Это устройства DS2415 и DS2417. Применяя любой из этих приборов можно организовать дешевые часы/календарь с однопроводным сетевым интерфейсом. Кроме того, второе устройство благодаря наличию в его составе отдельного вывода прерывания, может также дополнительно управлять по времени переключением внешнего оборудования или обеспечивать синхронизацию работы других устройств с процессами, происходящими на 1-Wire-линии.

Значительно расширяет возможности однопроводных сетей по аналоговому управлению рассредоточенным, в том числе силовым, оборудованием цифровой потенциометр DS2890 укомплектованный сетевым 1-Wire-интерфейсом. Используя этот прибор можно создавать самые разнообразные системы удаленного безударного управления, благодаря возможности плавного изменения аналогового регулирующего сигнала по 256 градациям.

При всем многообразии однопроводных компонентов, очевидно, что наиболее универсальным из них является уникальный прибор DS2408. Это индивидуально двунаправленный восьмиразрядный свободно поразрядно программируемый по 1-Wire-шине порт ввода/вывода, который позволяет реализовать любой интерфейс между внешним устройством произвольной модификации и однопроводной линией. Этот прибор имеет двунаправленный вывод внешней синхронизации, обеспечивающий аппаратное тактирование передаваемых или принимаемых данных. Использование микросхемы DS2408 позволяет обеспечить управление посредством 1-Wire-шины: сосредоточенным двунаправленным вводом/выводом по 8 независимым каналам, приводом светодинамических, жидкокристаллических индикаторов и дисплеев различных видов, сканированием матричных клавиатур и дискретных датчиков самых различных типов, а так же позволяет реализовать действительно полномасштабный интерфейс с различными типами микроконтроллеров, как в последовательной, так и в параллельной моде.

Некоторые компоненты 1-Wire-сетей содержат в своем составе массив постоянной (однократно заполняемой пользователем) или энергонезависимой памяти того или иного объема. Это позволяет хранить специальную служебную информацию, связанную с применением конкретного компонента и особенностями его использования (идентификатор, территориальное положение, калибровочные коэффициенты, размерность, значение уставок по умолчанию и т.д.), непосредственно в составе однопроводного прибора. Благодаря этому для организации работы каждой новой однопроводной сети не нужно готовить отдельное специальное программное обеспечение, достаточно иметь одну стандартную программу, которая переконфигурируется в зависимости от специфики конкретной системы (конечно, если память всех компонентов 1-Wire-системы заполнена в соответствии с определенными, заранее оговоренными правилами). Если же в процессе работы системы требуется хранить дополнительные объемы информации, в распоряжении разработчика имеются специальные однопроводные приборы, содержащие как постоянную (DS2502/ DS2505/ DS2506), так и энергонезависимую (DS2430A/ DS2432/ DS2433) память различных объемов.

Целый ряд компонентов семейства iButton в корпусах MicroCAN также может быть использован в составе 1-Wire-сетей в качестве ведомых однопроводных устройств, которые решают специфические задачи идентификации, накопления, хранения и переноса информации. Например, для реализации процедуры идентификации в системах промышленной автоматизации обычно достаточно применения распространенных носимых электронных меток DS1990A. А многоточечный температурный мониторинг легко может быть выполнен сетью из нескольких приборов DS1921# или иначе устройств ТЕРМОХРОН, каждое из которых регистрирует температурные значения, измеренные через определённые, заранее заданные, промежутки времени и сохраняет полученную информацию в собственной энергонезависимой памяти, по существу, являясь программируемым "температурным магнитофоном". Для решения проблемы переноса данных, накопленных автономной 1-Wire-системой, к персональному компьютеру выпускаются разнообразные приборы iButton, которые в этом случае играют роль, так называемых, "транспортных таблеток". К подобным устройствам, прежде всего, относятся приборы энергонезависимой памяти, включающие в состав своей конструкции литиевый элемент питания. Это целый ряд "таблеток" начиная с DS1992 (1Кбит) до DS1996 (64Кбита), и среди них, конечно, модификация DS1994 (4Кбита), содержащая дополнительно узел часов реального времени, удобный для генерации временных меток сохраняемых данных или для организации автономных логгеров ресурса.

Кроме того, для этих же целей могут быть использованы приборы с электрически стираемой памятью типа EEPROM модификаций DS1971(32байта), DS1973(512байт) и DS1977(32Кбайта). При перемещении больших массивов информации "транспортную таблетку" удобно использовать совместно с адаптером USB-порта типа DS9490B, который обеспечивает высокую скорость передачи при обмене данными между устройством iButton и персональным компьютером. Если же речь идет только о решении задачи накопления и хранения данных в 1-Wire-сети, любая из перечисленных выше "транспортных таблеток" может быть легко включена в состав подобной сети. При этом для подключения приборов в корпусах MicroCAN к проводникам однопроводной линии используют специальные защелки типа DS9100 или DS9098P, или же более простые зажимы типа DS9094.

С точки зрения схемотехнической реализации однопроводного интерфейса и устойчивости работы на проблемных линиях все ведомые однопроводные компоненты исторически отличаются друг от друга, делясь при этом на группы:
1. DS2401, DS2405 - первые приборы с 1-Wire-интерфейсом в пластиковых корпусах, полностью аналогичны по схемотехнике первым моделям приборов iButton, которые были ориентированные для работы на коротких шинах (до 1994 года),
2. DS1820, DS2407P, DS2450, DS2404, DS2415, DS2417, DS1920 и т.д. - вторая версия, специально ориентированная для работы на длинных линиях (до 2000 года сейчас эти компоненты в основном снимаются с производства),
3. DS18S20, DS18B20, DS1822, DS2438, DS2406P, DS2409, DS2890, DS1973 и т.д. - третий вариант, более устойчивый к коллизиям на 1-Wire-магистрали по сравнению с предыдущим (с 2000 года),
4. DS2411, DS2408, DS1921#, DS1977 и т.д. - последний вариант, наиболее удачной по надежности схемотехники 1-Wire-интерфейса (c 2003 года).

Линия связи и топология

Большую роль при построении 1-Wire-сетей играет исполнение однопроводной линии связи. Как правило, такие линии имеют структуру, состоящую из трех основных проводников: DATA - шина данных, RET - возвратный или земляной провод, EXT_POWER - внешнее питание не только обслуживаемых ведомых устройств, но и внешних относительно них цепей датчиков и органов управления. В зависимости от способа прокладки, сопряжения с ведомыми устройствами и используемых при прокладке материалов, в соответствии с ниже следующей Таблицей различают три основных варианта качества организации 1-Wire-сетей, каждый из которых подразумевает использование особой технологии и аксессуаров при реализации линии.

Часто при организации сложных однопроводных сетей, с целью удобства проводки линии связи, уменьшения ее протяженности или снижения электрической нагрузки на линии благодаря уменьшению одновременно работающих на ней устройств, необходимо обеспечить древовидную или лучевую структуру магистрали, значительно отличающуюся от структуры общей шины. Для этого используют ветвления 1-Wire-сетей одного или нескольких уровней. Основным элементом при построении таких ветвей является либо обычный адресуемый ключ типа DS2406, который обеспечивает ветвление благодаря коммутации возвратного провода однопроводной линии, либо специализированный ветвитель DS2409, коммутирующий непосредственно шину данных 1-Wire-линии. Последний вариант является более предпочтительным т.к. компоненты на отключенной ветви, ведомой ветвителем, остаются всегда в активном состоянии. Поочередное обслуживание мастером сети каждой из ветвей, при отключенных остальных ветвях, позволяет значительно увеличить общую длину линии и количество ведомых устройств на ней.

Если же организация 1-Wire-системы на базе персонального компьютера связанна с особыми трудностями, наиболее оптимально использование интеллектуального адаптера для COM-порта типа LINK. Он реализован на базе микропроцессора. При этом, устройство, полностью эмулируя со стороны последовательного порта работу популярного адаптера DS9097U, производства Dallas Semiconductor Corp., и таким образом поддерживая все разработанное ранее для персональных компьютеров программное обеспечение, благодаря встроенным собственным интеллектуальным ресурсам реализует льготный режим работы однопроводных приборов на проблемных 1-Wire-линиях в условиях сложной помеховой обстановки. LINK многократно улучшает механизм активной подтяжки на линии, что позволяет действительно получать идеальные сигналы обмена при длинах кабеля более 300 метров и числе сопровождаемых однопроводных компонентов большем 100шт, а использование процессором прибора алгоритмов цифровой фильтрации многократно улучшает устойчивость обслуживаемой однопроводной линии к электромагнитным помехам.

Применения

О признании однопроводной шины в качестве международного стандарта и серьезности отношения к этому интерфейсу со стороны маститых разработчиков и производителей электроники говорят многочисленные факты. Например, нет практически ни одного универсального микроконтроллера, в литературе по применению которого не обсуждались бы способы организации на его базе мастера однопроводной линии.

Наиболее последовательно отстаивает линию на использование технологии 1-Wire-сетей в области автоматизации американская фирма Embedded Data Systems, LLC (приемница PointSix, Inc.). Можно сказать, что эта кампания сделала себе имя на внедрение и пропаганде достижений однопроводной шины в области автоматизации. И это, не смотря на то, что основной областью ее деятельности является не автоматизация оранжерей и не создание систем пожарной сигнализации, а разработка средств и систем для обслуживания высокотехнологичных отраслей машиностроения и химической промышленности, и даже создание уникального экспериментального и научного оборудования. Подтверждением этому служит широчайший спектр продукции, который выпускается фирмой (разнообразные зонды для измерения высоких и низких температур, датчики влажности, давления и кислотности с особыми функциями, специальные оптические сенсоры, платы сбора информации, устройства сопряжения с различным аналитическим оборудованием и многое другое), причем каждый из приборов содержит элементы однопроводной технологии.

К перспективным примерам в области применения 1-Wire-технологии для автоматизации, несомненно, можно отнести деятельность таких известных мировых производителей как SYSTRONIX или AAG Electronica. LLC.

Линейки законченных инструментальных средств, а также многочисленные примеры их использования, и высокий рейтинг продаж поставляемых изделий, позволяют говорить об успешности и востребованности концепции однопроводной шины применяемой этими фирмами для решения самых разнообразных проблем распределенной автоматизации.

Другим примером, наглядно демонстрирующим на практике возможности технологии однопроводной шины, является проект построения полностью автоматических метеорологических станций (1-Wire Weather Station), который разрабатывался совместно фирмами PointSix, Inc., AAG Electronica LLC, Dallas Semiconductor Corp. и Texas Weather Instruments, Inc. Вначале (еще в середине 90-х годов) было создано несколько экспериментальных систем, построенных на базе ведущего персонального компьютера с адаптером DS9097U, который является сердцем комплекса, из трех термометров DS18S20, выполняющих контроль температуры, микросхемы DS2438 для обслуживания датчика влажности воздуха, компонента DS2423 для определения скорости ветра и 16-ти электронных меток DS2401 определяющих его направление. Эти первые метеосистемы были установлены и успешно испытаны в процессе длительной эксплуатации в штате Техас. Причем отдельные из них комплектовались дополнительными однопроводными решениями, которые обеспечивали контроль сигналов от датчиков: барометрического давления, разрядов молнии, количества осадков на поверхности, солнечной активности, влажности почвы и т.д. Данные со всех сенсоров, регистрируемые каждой из подобных систем, поступали в персональный компьютер и через Интернет транслировались в режиме реального времени на центральный операторский пульт, где выполнялся прием и архивация данных о погоде региона, получаемый благодаря анализу информации от нескольких территориально рассредоточенных станций. После успешного завершения проекта Texas Weather Instruments Inc. уже на протяжении нескольких лет успешно торгует готовыми полностью автоматическими метеостанциями, не требующими обслуживания человеком. Причем популярность подобных устройств настолько велика по всему миру, что фирма Dallas Semiconductor Corp. была вынуждена начать производство специализированного набора микросхем WS-1, который включает комплект однопроводных компонентов, минимально необходимый для построения подобной станции. А полную комплектацию подобных систем для многочисленных пользователей со всего мира, включая платы для самостоятельной сборки, сертифицированные механические и конструкционные элементы, выполняет фирма AAG Electronica LLC.

Довольно перспективной областью, в которой в полной мере используются преимущества технологии 1-Wire-сетей, и которой, особенно много внимания уделяет кампания Dallas Semiconductor Corp. является менеджмент автономных химических источников тока - аккумуляторных батарей. Под менеджментом здесь понимается, - прежде всего, строгая и полная идентификация источников энергии, сохранение в памяти каждого отдельного встроенного в батарею электронного устройства особенностей ее изготовления и индивидуальных технических характеристик, наиболее полный мониторинг их основных эксплуатационных параметров на протяжении всего срока службы, а также формирование корректного управляющего воздействия, связанного с восстановлением заряда обслуживаемого автономного источника энергии. От правильного менеджмента и знания истории эксплуатации батареи во многом зависит выбор алгоритма ее повторного заряда, что непосредственно связанно с эффективностью использования и сроком службы многих типов аккумуляторов. Для этого каждая из батарей многоэлементных энергетических конструкций (особенно для мобильных устройств и средств бесперебойного питания) снабжается индивидуальным однопроводным компонентом, превращаясь по существу в интеллектуальный системный элемент автономного питания. Целый ряд микросхем, выпускаемых фирмой, связан с этим направлением. Dallas Semiconductor Corp. сегодня доминирует на рынке интеллектуальных систем обслуживания автономных источников питания, исповедуя при этом новый комплексный сетевой подход к проблеме менеджмента энергетических элементов. При этом, используются 1-Wire-решения, позволяющие организовать многоточечную шину обслуживания устройств менеджмента и управления зарядом, что дает возможность сопровождать не только отдельные источники энергии, но и целые батареи, составленные из множества отдельных подобных элементов. Более того, подобные устройства способны обеспечить не только идентификацию или простейший температурный контроль аккумуляторов, но и полномасштабный мониторинг их основных параметров (напряжение, ток, разряд, контроль "короткого замыкания" и т.д.) на протяжении всего времени эксплуатации. Результаты, накопленные такими приборами, сохраняются во встроенной энергонезависимой памяти либо в виде гистограммы (DS2436), либо в виде массива последовательных отсчетов "привязанных" к временным меткам (DS2438).

В настоящее время кампания Dallas Semiconductor Corp. выпускает целый ряд прецизионный кристаллов для мониторинга, менеджмента, защиты и управления восстановлением заряда автономных источников питания самых различных типов и назначений (DS2720, DS2740, DS2751, DS2770 и т.д.). К ним, в том числе, относятся кристаллы семейства DS276#, которые в отличие от иных модификаций подобных устройств, требующих внешней обвязки с использованием прецизионных и стабильных пассивных компонентов, обеспечивают более высокую точность при контроле тока, расходуемого контролируемой батареей. Это достигается, в том числе, за счет встроенной калиброванной резистивной схемы (шунта), выполненной по специальной полупроводниковой технологии, а также благодаря наличию в составе подобных приборов специального аппаратно-программного механизма предварительной калибровки.

Ограничения и сопряжение с промышленными сетями

Безусловно, 1-Wire-сети имеют свою нишу для применения при построении систем автоматизации. Бессмысленно всерьез использовать их для передачи больших массивов информации, при построении, к примеру, систем видео-наблюдения или скоростного обмена, связанных с обслуживанием быстрых процессов, или же сравнивать возможности однопроводных сетей с такими мощными сетевыми промышленными интерфейсами, как ProfiBus, FeldBus, LonWorks, CAN, Industrial Internet и т.д. Можно даже сформулировать основные на сегодняшний день ограничения для применения систем на базе однопроводных 1-Wire-сетей в области автоматизации:

  • необходимость непрерывной временной синхронизации или синхронной работы отдельных устройств в сети (эта проблема может быть решена вводом в структуру шины сети дополнительной линии для передачи сигнала общей синхронизации),
  • низкая скорость обмена информацией, и как следствие невозможность высокой динамики при обслуживании быстрых процессов в режиме реального времени (если контролируемый быстрый процесс является относительно непродолжительным, локальный микроконтроллер в составе однопроводной шины может обслужить его, сохранив результирующие данные в буферной памяти, а затем уже осуществить их передачу непосредственно к мастеру),
  • сложность в реализации мультимастерного режима работы сети (специализированный ветвитель 1-Wire-сетей DS2409 разрешает проблему конфликтов между несколькими ведущими на одной однопроводной шине).

Как видно из замечаний приведенных в скобках, даже эти очевидные для 1-Wire-сетей, трудности не являются непреодолимыми. Более того, существуют подходы, позволяющие органично интегрировать медленные однопроводные территориально рассредоточенные структуры в состав таких производительных сетей как CAN и Industrial Internet. Это достижимо благодаря применению специальных аппаратно-программных решений, реализуемых на базе современных микроконтроллеров, а так же уникального инструмента кампании Dallas Semiconductor Corp. - устройства TINI (Tiny InterNet Interface ).

TINI400 - это целая микросистема, основой которой является центральный процессор, реализованный на высокопроизводительном сетевом микроконтроллере DS80С400, который объединяет ресурсы целого ряда наиболее распространенных сетевых интерфейсов, как-то: RS232, 1-Wire, CAN 2.0B, Ethernet, не говоря о возможности использования параллельной шестнадцатиразрядной синхронной магистрали, а также автономных узлов для организации стандартных локальных последовательных интерфейсов I2C и SPI. Кроме того, плата TINI400 содержит 1Мбайт программной Flash-памяти, 1Мбайт статического ОЗУ, узел часов реального времени, литиевую батарею и кремниевый идентификационный номер. Работает TINI400 под управлением мощной операционной среды, которая включает в себя поддержку TCP/IP и виртуальной машины Java, которая тщательно отработана и испытана еще на модели TINI предыдущего поколения - плате TINI390. Последнее определяется тем фактом, что технология программной поддержки для TINI390 на протяжении нескольких лет развивалась специалистами Dallas Semiconductor Corp. совместно с сотрудниками компании Sun Microsystems, Inc., являясь при этом полностью открытым проектом. Такой подход позволил иметь максимально эффективную обратную связь с конечными пользователями, что помогло выявить и устранить большинство недостатков программного обеспечения. И сейчас на сайте Dallas Semiconductor Corp. можно найти всю необходимую документацию и средства разработки программного обеспечения, что значительно облегчает построение на базе устройства TINI локальных однопроводных систем удаленного контроля и управления, объединяющих достоинства быстрых и производительных, но дорогих, и медленных, но дешевых и эффективных интерфейсов.

В заключении необходимо еще раз отметить безусловную эффективность и рациональность использования технологии 1-Wire при построении систем автоматизации контроля и управления для разнообразного рассредоточенного оборудования, когда не требуется высокая скорость при обслуживании, но необходима существенная гибкость и наращиваемость при не высоких затратах на реализацию.

В статье приводится подробное описание интегрального датчика температуры DS18B20 на русском языке. Информация переведена на русский из официальной документации производителя датчика – компании Dallas Semiconductor.

Общее описание.

DS18B20 это цифровой измеритель температуры, с разрешением преобразования 9 - 12 разрядов и функцией тревожного сигнала контроля за температурой. Параметры контроля могут быть заданы пользователем и сохранены в энергонезависимой памяти датчика.

DS18B20 обменивается данными с микроконтроллером по однопроводной линии связи, используя протокол интерфейса 1-Wire.

Диапазон измерения температуры составляет от -55 до +125 °C. Для диапазона от -10 до +85 °C погрешность не превышает 0,5 °C.

У каждой микросхемы DS18B20 есть уникальный серийный код длиной 64 разряда, который позволяет нескольким датчикам подключаться на одну общую линию связи. Т.е. через один порт микроконтроллера можно обмениваться данными с несколькими датчиками, распределенными на значительном расстоянии. Режим крайне удобен для использования в системах экологического контроля, мониторинга температуры в зданиях, узлах оборудования.

Коротко об особенностях DS18B20.

  • Для однопроводного интерфейса 1-Wire достаточно одного порта связи с контроллером.
  • Каждое устройство имеет уникальный серийный код длиной 64 разряда.
  • Возможность подключения нескольких датчиков через одну линию связи.
  • Нет необходимости во внешних компонентах.
  • Возможность получать питание непосредственно от линии связи. Напряжение питания в пределах 3,0 В … 5,5 В.
  • Диапазон измерения температуры -55 ... +125 °C.
  • Погрешность не превышает 0,5 °C в диапазоне -10 ... +85 °C.
  • Разрешение преобразования 9 … 12 бит. Задается пользователем.
  • Время измерения, не превышает 750 мс, при максимально возможном разрешении 12 бит.
  • Возможность программирования параметров тревожного сигнала.
  • Тревожный сигнал передает данные об адресе датчика, у которого температуры вышла за заданные пределы.
  • Совместимость программного обеспечения с DS1822.
  • Крайне широкие области применения.

Назначение выводов.

Обзор датчика DS18B20.

На рисунке 1 блок-схема датчика DS18B20. 64-битное ПЗУ (ROM) хранит уникальный серийный код устройства. Оперативная память содержит:

  • значение измеренной температуры (2 байта);
  • верхний и нижний пороговые значения срабатывания тревожного сигнала (Th, Tl);
  • регистр конфигурации (1 байт).

Через регистр конфигурации можно установить разрешение преобразования термодатчика. Разрешение может быть задано 9, 10, 11 или 12 бит. Регистр конфигурации и пороги тревожного сигнала содержатся в энергонезависимой памяти (EEPROM).

Режим – измерение температуры.

Основная функция DS18B20 – преобразование температуры датчика в цифровой код. Разрешение преобразования задается 9, 10, 11 или 12 бит. Это соответствует разрешающей способность - 0,5 (1/2) °C, 0,25 (1/4) °C, 0,125 (1/8) °C и 0,0625 (1/16) °C. При включении питания, состояние регистра конфигурации устанавливается на разрешение 12 бит.

После включения питания DS18B20 находится в низко-потребляющем состоянии покоя. Чтобы инициировать измерение температуры мастер (микроконтроллер) должен выполнить команду ПРЕОБРАЗОВАНИЯ ТЕМПЕРАТУРЫ . После завершения преобразования, результат измерения температуры будет находиться в 2 байтах регистра температуры, и датчик опять перейдет в состояние покоя.

Если DS18B20 включен по схеме с внешним питанием, то мастер может контролировать состояние команды конвертации. Для этого он должен читать состояние линии (выполнять временной слот чтения), по завершению команды, линия перейдет в высокое состояние. Во время выполнения команды конвертации линия удерживается в низком состоянии.

DS18B20 измеряет температуру в градусах по шкале Цельсия. Результат измерения представляется как 16-разрядное, знаковое число в дополнительном коде (рис. 2.) . Бит знака (S) равен 0 для положительных чисел и равен 1 для отрицательных. При разрешении 12 бит, у регистра температуры все биты значащие, т.е. имеют достоверные значения. Для разрешения 11 бит, не определен бит 0. Для 10-битного разрешения не определены биты 0, 1. При разрешении 9 бит, не достоверное значение имеют биты 0, 1 и 2. В таблице 2 показаны примеры соответствия цифровых кодов значению температуры.

Для людей не искушенных в двоичной математике, напишу, что для вычисления температуры надо:

  • При положительном значении (S=0) код перевести в десятичный и умножить на 0,0625 °C.
  • При отрицательном значении (S=1) сначала необходимо перевести дополнительный код в прямой. Для этого надо инвертировать каждый разряд двоичного кода и прибавить 1. А затем перевести в десятичный и умножить на 0,0625 °C.

Режим – передача тревожного сигнала.

После выполнения команды преобразования температуры, измеренное значение сравнивается с верхним и нижним порогами из регистров Th, Tl (формат на рисунке 3). Это байтовые значения, знаковые, в дополнительном коде, S =0 означает, что число положительное, а S=1 – отрицательное. Хранятся пороговые значения в энергонезависимой памяти (EEPROM). Th и Tl доступны для чтения и записи через байты 2, 3 оперативной памяти. Подробно об этом в разделе .

Из-за разной длины регистров TH, TL и температуры, они сравниваются только с битами 11 по 4 регистра температуры. Если значение измеренной температуры превышает TH или ниже, чем TL, то формируется признак аварии в DS18B20. Признак перезаписывается с каждым измерением температуры, и если температура возвращается в заданные пределы, то он сбрасывается.

Ведущее устройство может проверить состояние признака аварии с помощью команды ПОИСК ТРЕВОЖНОГО СИГНАЛА . Любой датчик с активным признаком ответит на команду поиска. Таким образом, мастер точно определит, какой DS18B20 вырабатывает сигнал тревоги. После изменения значений регистров TH и TL, только следующее преобразование температуры сформирует достоверный признак тревоги.

Питание термодатчика DS18B20.

Однако когда DS18B20 выполняет операцию преобразования температуры или копирования данных памяти в EEPROM, потребляемый ток может достигать величины 1,5 мА. Такой ток может вызвать снижение напряжения питания устройства до недопустимого значения. Тока подтягивающего резистора и энергии, запасенной на Cpp, не достаточно для питания в этих двух режимах. Для того чтобы гарантировать достаточное питание устройства, необходимо обеспечить мощную подтяжку шины к высокому уровню в то время, когда происходит преобразование температуры или копирование данных памяти в EEPROM. Это можно сделать с помощью MOSFET транзистора, как показано на схеме (рисунок 4). Шина данных должна быть подключена к мощному питанию:

  • в течение 10 мкс после команд КОНВЕРТИРОВАНИЯ и КОПИРОВАНИЯ ПАМЯТИ ;
  • в течение времени преобразования (tconv) и передачи данных (не менее t WR =10мс).

Никаких других операций в это время на шине допускать нельзя.

Как правило, у современных микроконтроллеров выходного тока высокого уровня вполне достаточно для питания DS18B20. Тогда в MOSFET транзисторе необходимости нет.

Для питания DS18B20 может быть использован обычный метод – подключение внешнего питания через вывод V DD (рисунок 5). Очевидные преимущества этого метода в отсутствии необходимости в MOSFET транзисторе и в том, что во время преобразования шина остается свободной и может использоваться в других целях.

Я, в таких случаях, использую следующую схему подключения DS18B20.

В этой схеме термодатчик работает в режиме с внешним питанием, которое запасается на дополнительном конденсаторе через диод. В моих устройствах схема работает отлично.

64-разрядный серийный код устройства.

Память датчика.

Организация памяти DS18B20 показана на рисунке 7. Вся память включает в себя оперативную (SRAM) и энергонезависимую (EEPROM) память. В EEPROM хранятся регистры TH, TL и регистр конфигурации. Если функция тревожного сигнала не используется, то регистры TH и TL могут использоваться как регистры общего назначения. Все команды управления памятью подробно описаны в разделе .

В байтах с адресами 0 и 1 хранятся младший и старший байты регистра измеренной температуры. Эти байты доступны только для чтения. 2й и 3й байты – TH и TL регистры. Байт 4 – регистр конфигурации. Подробно об этом регистре в разделе РЕГИСТР КОНФИГУРАЦИИ. Байты 5, 6, 7 зарезервированы, не могут быть записаны и, при чтении, всегда возвращают 1.

Байт 8 доступен только для чтения. Он содержит циклический код (CRC) для первых восьми байтов. DS18B20 формирует этот код по способу, описанному в части .

Запись данных в байты 2, 3 и 4 происходит командой ЗАПИСЬ ПАМЯТИ . Данные должны передаваться, начиная с младшего бита байта 2. Для проверки записи данных можно прочитать память командой ЧТЕНИЕ ПАМЯТИ [код BEh]. При чтении данные передаются по шине, в последовательности начиная с младшего бита байта 0. Запись данных TH, TL и регистра конфигурации в EEPROM происходит по команде КОПИРОВАНИЕ ПАМЯТИ .

При включении питания, данные из энергонезависимой памяти EEPROM перегружаются в оперативную память (SRAM). Перезагрузку данных из EEPROM можно также сделать командой ПЕРЕЗАГРУЗКА E 2 . Мастер должен контролировать состояние шины, чтобы определить завершение перезагрузки. Слот чтения низкого уровня означает, что перезагрузка еще не закончилась. По завершению перезагрузки DS18B20 передает слот чтения 1.

Регистр конфигурации термодатчика.

Байт 4 памяти это регистр конфигурации (формат на рисунке 8). Битами R0, R1 можно установить разрешение преобразования (коды в таблице 3). При включении питания состояние битов R0, R1 = 11, что соответствует разрешению 12 бит. Надо помнить, что существует прямая зависимость времени преобразования от разрешающей способности. Биты 7 и 0…4 зарезервированы, не могут использоваться, при чтении возвращают 1.

Генерация циклического кода (CRC)

Байты циклического кода (CRC) расположены в 64-битовом ROM коде и в девятом байте памяти SRAM. Циклический код из ROM вычисляется для 56ти битов кода ROM и располагается в старшем байте ROM. Циклический код из SRAM вычисляется из байтов 0…7 SRAM. Циклический код позволяет контролировать правильность чтения данных из DS18B20. Мастер вычисляет циклический код для полученных данных и сравнивает с принятым кодом. На основании этого принимается решение о корректности данных.

Образующий полином циклического кода выглядит так:

C R C = X 8 + X 5 + X 4 + 1

Мастер может вычислить циклический код используя генератор полинома, по схеме на рисунке 9. Он состоит из регистра сдвига и логических элементов типа “исключающее ИЛИ”. Регистр сдвига изначально находится в состоянии 0. Биты поступают в регистр сдвига, начиная с младшего бита, кода из ROM или из SRAM, один бит в один такт сдвига. После сдвига 56го бита ROM или старшего бита 7го байта SRAM, в регистре сдвига будет вычисленный циклический код. Если сдвинуть в генератор 8 бит ROM или SRAM, принятые из DS18B20, то в случае правильных данных, регистр сдвига будет содержать все 0.

Однопроводной интерфейс 1-Wire

Система с шиной 1-Wire состоит из одного ведущего устройства (МАСТЕР), которое управляет одним или несколькими ведомыми устройствами (СЛЕЙВ). DS18B20 может быть только ведомым. Система, в которой одно ведомое устройство, называется одноточечной. Система с несколькими ведомыми – многоточечной. Все команды и данные обмена передаются по шине младшим битом вперед. В дальнейшей информации об интерфейсе 1-Wire выделены три раздела: аппаратная конфигурация, последовательность операций и сигналы (типы и временные требования).

Аппаратная конфигурация.

Интерфейс 1-Wire имеет одну линию связи. Каждое устройство (ведущее или ведомое) подключено к шине данных портом с выходом типа открытый коллектор или с тремя состояниями. Такая конфигурация позволяет каждому устройству системы не занимать линию связи, когда оно не активно, и держать шину свободной для других устройств. В микросхеме DS18B20 выход (DQ) – открытый сток. Его эквивалентная схема приведена на рисунке 10. Шина 1-Wire требует применения внешнего подтягивающего резистора сопротивлением приблизительно 5 кОм, для обеспечения высокого уровня сигнала при неактивном состоянии устройств. Если операция должна быть приостановлена, шина должна быть установлена в неактивное состояние до следующей операции. Шина может находиться в состоянии высокого уровня сколь угодно долгое время. Перевод шины в состояние низкого уровня на время более чем 480 мкс приведет к тому, что все компоненты системы будут сброшены.

Последовательность операций.

Очередность операций для доступа к термодатчику DS18B20 выглядит так.

  • Инициализация.
  • Команда ROM (необходима для любого обмена данными).
  • Функциональная команда (необходима для любого обмена данными).

Такая последовательность должна строго соблюдаться. В противном случае DS18B20 не будет реагировать на команды. Исключением являются команды ПОИСК ПЗУ [код F0h] и ПОИСК АВАРИИ [код ECh]. После формирования этих двух команд, ведущее устройство (мастер) должно вернуться к первому шагу (инициализация).

Инициализация.

Обмен по шине всегда начинается с операции ИНИЦИАЛИЗАЦИИ. Для инициализации ведущее устройство вырабатывает импульс сброса, за ним должен последовать импульс присутствия от ведомого устройства. Импульс присутствия сообщает ведущему устройству, что ведомое устройство присутствует в системе и готово к выполнению операции. Временные параметры импульсов сброса и присутствия описаны в разделе .

Команды ROM кодов.

После того как ведущее устройство получит импульс присутствия, оно может оперировать командами ROM. Это команды для операций с 64-битными индивидуальными кодами каждого ведомого устройства. Они позволяют ведущему устройству выбрать конкретное ведомое устройство среди многих других. Также, используя эти команды, можно узнать, сколько ведомых устройств подключено к шине, их типы, выделить устройства в состоянии тревоги. Существует 5 команд ROM, длиной 8 бит каждая. Ведущее устройство должно послать команду ROM перед выполнением функциональных команд DS18B20. Блок-схема выполнения ROM команд изображена на рисунке 11.

Поиск ROM

После включения питания, ведущее устройство должно считать ROM коды всех ведомых устройств, подключенных к шине. Это позволит определить число ведомых устройств и их типы. Ведущее устройство изучает ROM коды через процесс идентификации кодов каждого устройства на шине. Оно должно выполнить команду поиска ROM столько раз, сколько необходимо для идентификации всех ведомых устройств. При одном ведомом устройстве в системе проще использовать команду ЧТЕНИЕ ROM. После поиска ROM, операции на шине должны опять начаться с инициализации.

Чтение ROM

Команда применяется в одноточечных системах, с одним ведомым устройством. Она дает возможность ведущему устройству прочитать 64-битный ROM код, без использования команды ПОИСК ROM. Применение команды ЧТЕНИЕ ROM в многоточечной системе приведет к конфликтам данных между ведомыми устройствами.

Совпадение ROM

Команда СОВПАДЕНИЕ ROM, после которой должен следовать 64-битный код ROM, позволяет мастеру обращаться к конкретному ведомому устройству. Только одно ведомое устройство, код которого совпадает с переданным кодом, прореагирует на функциональные команды. Другие ведомые устройства будут неактивными до следующего импульса сброса.

Пропуск ROM

Команда позволяет ведущему устройству обращаться ко всем устройствам шины одновременно, без использования ROM кодов. Например, можно запустить на всех устройствах операцию преобразования температуры, выполнив команду ПРОПУСК ROM, а затем КОНВЕРТАЦИЯ ТЕМПЕРАТУРЫ. Команда ЧТЕНИЕ ПАМЯТИ может следовать за командой ПРОПУСК ROM только при одном ведомом устройстве, подключенным к линии связи. Такая последовательность команд значительно экономит время обмена с датчиками. Особенно она эффективна при использовании в системе одного ведомого устройства.

Поиск тревожного сигнала

Команда действует идентично команде ПОИСК ROM. Отличается тем, что на нее ответят только ведомые устройства в состоянии тревоги. Команда позволяет ведомому устройству определить, какие термодатчики находятся в состоянии тревоги после последнего преобразования температуры. После каждого ПОИСКА ТРЕВОГИ необходимо возвращаться на ИНИЦИАЛИЗАЦИЮ.

Группа функциональных команд

После выполнения ROM команды для выбора DS18B20 с нужным кодом, ведущее устройство может посылать функциональные команды датчика. Они позволяют записать и прочитать данные из оперативной памяти DS18B20, инициировать преобразование температуры и определить режим питания. Функциональные команды DS18B20 описываются ниже, собраны в таблице 4, алгоритм работы с ними приведен на рисунке 12.

Преобразование температуры

Запись памяти

Команда позволяет загрузить 3 байта в оперативную память датчика. Первый байт записывается в регистр Th (2 байт памяти), второй байт в Th (байт 3 памяти) и третий байт в регистр конфигурации (байт 4). Ведущее устройство передает данные, начиная с младшего бита. Все три байта необходимо записать до того как ведущее устройство сформирует сигнал сброс.

Чтение памяти

Команда используется для чтения памяти устройства. Передача данных происходит начиная с младшего бита байта 0 памяти, и продолжается до тех пор, пока все 9 байтов будут считаны. Если требуется только часть данных, ведущее устройство может прервать передачу, сформировав импульс сброса.

Копирование памяти

Команда перезагружает значения регистров Th, Tl и регистра конфигурации из EEPROM в оперативную память. После посылки команды ПЕРЕЗАГРУЗКА, ведущее устройство может выполнить слот чтения, и DS18B20 сообщит состояние перезагрузки. Передача 0 будет означать, что операция еще выполняется, 1 – операция завершена. Операция перезагрузки автоматически происходит при включении питания. Поэтому в оперативной памяти содержатся достоверные данные сразу после подачи питания.

Чтение режима питания

Таблица 4. Функциональные команды DS18B20.

КОМАНДА ОПИСАНИЕ КОД ОПЕРАЦИИ НА ШИНЕ ПРИМЕЧАН.
КОМАНДА КОНВЕРТИРОВАНИЯ ТЕМПЕРАТУРЫ
Измерение температуры Инициализирует измерение температуры 44h DS18B20 передает мастеру состояние операции преобразования температуры 1
КОМАНДЫ РАБОТЫ С ПАМЯТЬЮ
Чтение памяти Читает всю оперативную память, включая циклический код CRC BEh DS18B20 передает мастеру до 9 байт 2
Запись памяти Записывает в оперативную память байты 2, 3 и 4
(TH, TL и регистр конфигурации)
4Eh Мастер передает 3 байта на DS18B20. 3
Копирование памяти Копирует TH, TL, и регистр конфигурации из оперативной памяти в EEPROM 48h 1
Перегружает TH, TL, и регистр конфигурации из EEPROM в оперативную память. B8h DS18B20 передает состояние перезагрузки мастеру
Чтение режима питания Информирует мастера о режиме питания DS18B20. B4h DS18B20 передает мастеру режим питания

Примечания.

Интерфейс 1-Wire

Для обмена данными DS18B20 использует протокол интерфейса 1-Wire, обеспечивающий контроль целостности данных. Этот протокол определяет сигналы:

  • импульс сброса,
  • импульс присутствия,
  • запись бита со значением 0,
  • запись бита со значением 1,
  • чтения бита со значением 0,
  • чтения бита со значением 1.

Все эти сигналы, кроме импульса присутствия, формирует ведущее устройство.

Инициализация – импульсы сброса и присутствия

Любые коммуникационные операции DS18B20 начинаются с последовательности инициализации, которая состоит из импульса сброса от ведущего устройства ведомому, и ответного импульса присутствия из DS18B20. Этот процесс показан на рисунке 13. Термодатчик посылает импульс присутствия в ответ на импульс сброса, чтобы сообщить ведущему устройству, что он подключен к шине и готов к использованию.

Во время последовательности инициализации ведущее устройство передает импульс сброса (Tx), формируя на шине сигнал низкого уровня в течение времени не менее 480 мкс. Далее, ведущее устройство освобождает шину и переходит в режим приема (Rx). Когда шина освобождается, она подтягивается к высокому логическому уровню резистором 5 кОм. Датчик выделяет положительный фронт, ждет 15-60 мкс и передает импульс присутствия, удерживая низкий уровень линии на время 60-240 мкс.

Временные слоты чтения и записи.

Обмен данными по шине 1-Wire происходит временными слотами (тайм-слотами). Один временной слот передает один бит информации.

Временные слоты записи.

Протокол определяет два типа тайм-слотов записи данных в DS18B20: для записи значения 1 и записи значения 0. Длительность слота записи - не менее 60 мкс с паузой на восстановление между слотами 1,0 мкс, как минимум. Инициируется любой слот записи отрицательным фронтом сигнала шины (рис. 14).

Для формирования слота записи 1, после перевода шины в низкое состояние, ведущее устройство должно освободить шину на время 15 мкс. Подтягивающий резистор 5 кОм создаст на шине напряжение высокого уровня.

Для формирования слота записи 0, после перевода шины в низкое состояние, ведущее устройство должно продолжать удерживать шину в низком состоянии в продолжение всего времени слота (как минимум 60 мкс).

DS18B20 проверяет состояние сигнала в отрезке времени между 15 и 60 мкс, отсчитывая его от начала слота записи. Состояние шины на этом отрезке соответствует значению бита для записи в датчик.

Временные слоты чтения.

Длительность слота чтения, как и слота записи, должна быть не менее 60 мкс с паузой на восстановление между слотами 1 мкс, как минимум. Инициируется любой слот чтения отрицательным фронтом сигнала шины (рисунок 14).

После того как ведущее устройство инициализировало слот чтения, DS18B20 передает бит данных. Для передачи 1 датчик оставляет шину свободной (в высоком состоянии), а для передачи 0 – формирует на шине низкий уровень.

При передаче 0, DS18B20 должен освободить шину в конце слота. Подтягивающий резистор сформирует на ней высокий уровень. Выходные данные DS18B20 достоверны в течение 15 мкс, от начала слота чтения.

На рис. 15 показано, что общая сумма временных интервалов слота чтения Tinit , TRC и TSAMPLE должна быть не более 15 мкс.

Рис. 16 показано, что для максимальной надежности приема данных необходимо уменьшить Tinit и TRC и читать состояние шины в конце отрезка 15 мкс.

Пример 1 работы с DS18B20.

РЕЖИМ МАСТЕРА

ДАННЫЕ ШИНЫ

ПОЯСНЕНИЯ

TX Reset RX Presence TX 55h TX 64-бит ROM код TX 44h Мастер посылает команду конвертирования температуры. TX TX Reset Мастер формирует импульс сброса. RX Presence DS18B20 отвечают импульсом присутствия. TX 55h Мастер выполняет команду соответствия ROM кода. TX 64-бит ROM код Мастер посылает ROM код DS18B20. TX BEh RX 9 байтов данных

Пример 2 работы с DS18B20.

РЕЖИМ МАСТЕРА

ДАННЫЕ ШИНЫ

ПОЯСНЕНИЯ

TX Reset Мастер формирует импульс сброса.
RX Presence
TX CCh
TX 4Eh Мастер выполняет команду записи памяти.
TX 9 байта данных Мастер посылает три байта (TH, TL, и регистр конфигурации).
TX Reset Мастер формирует импульс сброса.
RX Presence DS18B20 отвечает импульсом присутствия.
TX CCh Мастер выполняет команду пропустить ROM.
TX BEh Мастер посылает команду чтения памяти.
RX 9 байтов данных Мастер читает всю оперативную память, включая циклический код CRC. Затем вычисляет CRC для первых восьми байтов и сравнивает с принятым кодом. Если коды не равны, мастер повторяет операцию чтения.
TX Reset Мастер формирует импульс сброса.
RX Presence DS18B20 отвечает импульсом присутствия.
TX CCh Мастер выполняет команду пропустить ROM.
TX 48h Мастер выполняет команду копирования памяти.
TX DQ линия подключена к шине питания Мастер подключает DQ к шине питания на время преобразования.

Предельно-допустимые параметры DS18B20

Указаны предельные величины параметров. Превышение этих параметров недопустимо. Эксплуатация длительное время с предельными значениями параметров может уменьшить надежность устройства.

Примечания:

Электрические характеристики EEPROM переменного тока (- 55 … + 125 °C, V DD = 3,0 ... 5,5 В).

ПАРАМЕТР ОБОЗНАЧЕНИЕ УСЛОВИЯ МИН. ТИП. МАКС. ЕД. ИЗМ.
Время цикла записи t wr 2 10 мс
Число записей N EEWR -55°C - +55°C 50000 цикл
Время хранения t EEDR -55°C - +55°C 10 лет

Электрические характеристики переменного тока (- 55 … + 125 °C, V DD = 3,0 ... 5,5 В).

ПАРАМЕТР ОБОЗНАЧЕНИЕ УСЛОВИЯ МИН. ТИП. МАКС. ЕД. ИЗМ. ПРИМЕ
ЧАНИЕ
Время преобразования температуры t CONV разрешение 9 бит 93.75 мс 1
разрешение
10 бит
187.5 мс 1
разрешение
11 бит
375 мс 1
разрешение
12 бит
750 мс 1
Время подключения к мощному питанию t SPON Посылка команды конвертации температуры 10 мкс
Время слота t SLOT 60 120 мкс 1
Время восстановления t REC 1 мкс 1
Время записи 0 r LOW0 60 120 мкс 1
Время записи 1 t LOW1 1 15 мкс 1
Время чтения данных t RDV 15 мкс 1
Время высокого уровня сброса t RSTH 480 мкс 1
Время низкого уровня сброса t RSTL 480 мкс 1,2
Время высокого уровня присутствия t PDHIGH 15 60 мкс 1
Время низкого уровня присутствия t PDLOW 60 240 мкс 1
Емкость C IN/OUT 25 пкФ

Примечания:

Рисунок 18. Временные диаграммы.

Описание получилось большим. С датчиками работать не просто. Они требуют достаточно сложных программных функций, но с аппаратной точки зрения DS18B20 просто подключаются, точно измеряют, не требуют АЦП и т.д.

Как пример использования термодатчиков DS18B20, могу привести мою разработку - . Используются два термодатчика. Один измеряет температуру воздуха в , второй - температуру радиатора .

Рубрика: . Вы можете добавить в закладки.
Загрузка...