domvpavlino.ru

Формула относительной влажности точка росы. Как определить точку росы. Пример определения места нахождения температуры конденсации внутри стены

Строительные технологии предполагают учет множества нюансов, влияющих на долговечность конструкции и способность к сопротивлению от негативного влияния внешних факторов. Одним из главных врагов большинства зданий и сооружений является постоянная повышенная влажность. Для борьбы с ней используются разнообразные методики.

Учитывать все факторы необходимо на первоначальной стадии проектирования, когда имеется возможность повлиять на применение материалов и формирование экстерьера зданий. Важное место в подобной ситуации отводится грамотным расчетам при утеплении зданий. Обязательным атрибутом в них является определение температуры точки росы.

Базовое знание

Крупные строительные объекты применяют сложные и громоздкие программы для вычислений. В ход идет множество коэффициентов и математических формул. В бытовых условиях методика существенно упрощается. Используется множество округлений и приближений в расчете, при этом погрешность получается минимальной.

Владельцы жилья или строители смогут самостоятельно провести расчет точки росы в стене без привлечения сторонних специалистов.

Для понимания того, чтобы найти точку, необходимо знание об окружающем воздухе и наличии в нем водяного пара. Он формируется вследствие множества событий, например, частички воды отделяются от жильцов, любых источников жидкости, емкостей с водой, появляются после влажной уборки помещения и пр.

Вместимость воздуха обладает определенным максимумом. При получении этого параметра водяные частицы начинают взаимодействовать друг с другом, образуя более крупные водяные капли. Так и получается конденсат. В природе он заметен в виде тумана или капелек на растениях.

Когда воздух насыщен максимально жидкостью и не может больше получать от нее подпитку без перехода в конденсат, то говорится о том, что в данном случае относительная влажность достигла уровня 100%. Последующие насыщения превращают воздух в туман, который представляет собой большое количество капель воды в воздухе, находящихся в подвешенном состоянии.

Особенность этого события заключается в том, что разная температура воздуха способна обеспечить различную степень насыщенности влагой до перехода в конденсат. Имеется прямая зависимость от высокой температуры и количеством растворенной жидкости в воздухе. При этом, когда воздух с влагой 70-80% получает контакт с охлажденным предметом, то происходит предел насыщения, а степень влажности в плоскости контакта моментально достигает 100%.

Что приводит к выпадению конденсата

События приводят к выпадению конденсата. Это взаимодействие во многом объясняет, что такое точка росы. Рассматривая данный пример, очевидно, что этот параметр в строительстве или в другой сфере является переменной величиной. Выражается она в градусах. Основные параметры, которые влияют на нее:

  • относительная влажность в данный момент;
  • текущая температура воздуха;
  • скорость движения воздуха;
  • толщина материалов.

Для получения расчетных значений используются измерительные приборы: психрометры и термометры. Расположение искомого значения в стене помогает рассчитать специальная таблица. Значения для проработки можно не только измерять, но и узнавать из текущего прогноза погоды. Множество сайтов предоставляет информацию не только о температуре, но и о влажности.

ВИДЕО: Почему на стенах выпадает конденсат

Роль понятия в строительном процессе

Рекомендуем воспользоваться специальной таблицей, подготовленной специалистами для определения расположения точки росы в стене. Предпочтительней воспользоваться собственным определением параметра, не прибегая к помощи множества онлайн калькуляторов. Зачастую встроенные алгоритмы в них не учитывают важные факторы.

В приведенной таблице используется шаговый принцип. Для промежуточных значений между двумя соседними можно использовать среднеарифметическое значение.

Пользоваться таблицей просто. От измеренного значения температуры в помещении ведем горизонтальную линию. От измеренного значения влажности ведем вертикальную линию. На пересечении получим искомое число температуры. Наглядно это будет выглядеть следующим образом.

Рассмотрим пример. Представим себе дом, стены которого выложены из кирпича. Внутри помещения, например, будет температура +20°С, а снаружи - прохладнее, например, -10°С. В комнате влажность воздуха составляет 60%. Соединив горизонтальную и вертикальную линии в таблице (20 и 60) получим на пересечении 12°С.

Каждый кирпич будет иметь неоднородную температуру. Внутренняя его поверхность будет обладать максимально высоким значением (+20°С), а наружная часть окажется с максимально низким параметром (-10°С). В середине кирпича окажется плоскость с температурой +12°С. В этом месте станет конденсироваться влага. Процесс будет происходить и на всем объеме с более низкими значениями.

Переломить ситуацию в позитивную сторону помогает использование различных утеплителей. Они способствуют смещению положения точки росы в стене. В зависимости от того, с какой стороны владельцы дома смонтировали утеплитель, будет перемещаться плоскость конденсации. Если все сделано правильно, то эта точка будет не в стене дома, а в утеплительном ограждении. Таким образом не будет происходить разрушения конструкции.

Необходимо учитывать, что без утепления плоскость с точкой росы в нашем климате будет располагаться непосредственно в глубине стены. Это демонстрирует первый рисунок, поэтому влага станет приносить вред конструкции, обеспечиваю распространение грибка и плесени в помещении. Точка росы в стене будет располагаться на глубине, которая зависит от паропроницаемости конкретного строительного материала.

Необходимо, чтобы водяной пар проник до места с расчетной температурой. Этот фактор учитывается при выборе материала.

Требования по утеплению и теплоизоляции

Паропроницаемостью принято называть значение, демонстрирующее, какое количество водяного пара способен пропустить сквозь себя строительный материал за выделенное время. Проницаемыми по этому критерию являются практически все популярные материалы:

  • дерево;
  • бетон;
  • кирпич и пр.

От некоторых строителей можно услышать такое понятие, как «стены дышат». Пористые материалы также могут попадать в список (керамзит, минеральная вата и пр).

Бояться того, что в стене имеется какая-то стационарная часть с точкой росы, не стоит, так как это происходит на определенном участке. Строители называют место зоной возможной конденсации. Учитывая, что большинство ограждений являются «дышащими», то много влаги уходит вовне.

Правильным построением здания является такое расположение материалов, при котором определение точки росы в стене попадает в наружный утеплительный слой. Важно также обеспечить помещение качественной вентиляцией, при которой избыточная влага покидает квартиру или дом. При таких условиях материал не успевает напитываться жидкостью.

Предлагаемые производителями различные утеплители из полимеров за счет своей конструкции практически не пропускают пар. Благодаря такому свойству их рекомендуют располагать снаружи стен. В таком случае точка росы, при которой происходит конденсация, переместиться внутрь пенопласта или полистирола. Однако, к этой зоне не сможет подобраться водяной пар. Влага не сформируется.

Не рекомендуется использовать для утепления фасада экрудированый пеностерол. Его применяют только для фундамента или закрытых строительных систем. В результате постоянных перепадов температур и попадания прямых солнечных лучей уже спустя год-полтора он начинает крошиться.

Также произойдет при обратном процессе. Не стоит проводить утепление внутренних стен полимерами, ведь точка росы расположится в стене. При этом нежелательная влага просочится в стык материалов.

Разумно использовать внутреннее утепление в следующих случаях:

  • стена практически всегда является теплой и сухой;
  • в жилом здании имеется качественная вентиляция;
  • использовать необходимо качественный проницаемый утеплитель, обеспечивающий удаление избыточной влаги.

Заключение

Выявить конкретное место с точкой росы достаточно тяжело, так как эта зона является плавающая и зависит от внешних факторов. Желательно использовать внешнее утепление, чтобы перенести точку в утеплительный материал. Применять качественную вентиляцию в помещении для удаления водяного пара.

ВИДЕО: Правильное утепление или Как убрать точку росы из стены

Большинство из нас наверняка слышали про такое понятие, как точка росы. В этой статье мы рассмотрим что это такое и почему данный физический фактор обязательно следует учитывать при проведении работ по теплоизоляции дома. Точка росы - это расстояние от земли, где воздух, охлажденный до определенной температуры, образует росу. Этот показатель зависит от нескольких факторов. Ключевым является давление воздуха внутри строения и на улице.

Далеко не всегда удаётся просто определить этот показатель. Но заметим, что каждый владелец строения должен обязательно определить, какая в помещениях его дома точка росы, поскольку она оказывает влияние на комфорт при проживании.

Если в помещении точка росы завышена, в этом случае основные строительные материалыбетон, металл и дерево – не обеспечат нужного эффекта при возведении дома, и срок их службы будет непродолжительным. Здесь понадобится либо высокий цоколь, либо дополнительная защита от влаги.

Если во внутренних помещениях строения выполняется настил полов из полимерных материалов, то попадание в структуру материала конденсата во время эксплуатации напольного покрытия может привести к возникновению таких дефектов:

  • вздутие;
  • отслоение;
  • шагрень.

Чисто визуальным способом невозможно определить этот показатель в помещении. Для этого необходимо использовать специальный прибор под названием бесконтактный термометр . Кроме него следует пользоваться таблицей, в которой в специальной главе описано, как определить этот параметр в стенах сооружения и произвести его правильный расчет.

Что такое точка росы в строительстве?

Под этим термином следует понимать показатель, который определяет уровень влажности в воздухе. То есть, можно говорить о том, что чем выше уровень влажности в помещении, тем выше точка росы. Однако при определении этого показателя необходимо принимать во внимание еще два важных критерия:

О том, что измеряется показатель точки росы в градусах, знают далеко не все. В итоге получается, что точка росы - температура воздуха определенной величины , при которой он сам насыщается влажными парами. Однако необходимо принимать во внимание тот факт, что сама точка не может быть выше температуры воздуха.

Необходимо вспомнить, как возникает конденсат: он образуется при соприкосновении теплого воздуха с холодной поверхностью . Чтобы всем было понятно, как этот показатель работает в реальных условиях, будет правильным рассмотреть возникновение такого явления, как туман. Для его появления необходимо, чтобы температура наружного воздуха и температура точки росы совпадали между собой. Говоря другими словами, принимая во внимание эти показатели, можно точно определить уровень влажности на улице и в помещении.

Какие факторы оказывают влияние на точку росы?

На такой показатель, как точка росы влияние оказывают несколько факторов:

  • Один из главных - толщина стен помещения . Другой не менее важный - какие материалы применяются во время теплоизоляции стен строения. Также значимым является и температура. Она может различаться в зависимости от территории расположения строения. Температурный коэффициент на северных территориях будет отличаться от регионов, расположенных на юге.
  • Еще один важный фактор - это влажность . Если в воздушном пространстве содержится влага, то чем её больше, тем более высоким будет показатель точки росы.

Чтобы было точное представление о том, что такое точка росы и какое влияние на неё могут оказать различные факторы, рассмотрим этот фактор на примерах:

  • Неутепленная стена в помещении . В этом случае точка росы будет передвигаться. Происходить это будет под влиянием погодных условий вне помещения. Если погода на улице стабильная и нет резких колебаний температуры, то точка росы будет располагаться максимально близко к наружной стене. В этом случае негативного влияния на само помещение оказываться не будет. В том случае, если наступит резкое похолодание, то произойдет постепенное перемещение точки росы во внутреннюю часть стены. А это может привести к тому, что помещение будет насыщено конденсатом, вследствие чего произойдет медленное намокание поверхностей стен.
  • Стена, имеющая утепление снаружи . Точка росы здесь будет располагаться внутри стены в теплоизоляционном слое. Выбирая материал для утепления конструкций, необходимо обращать внимание на этот фактор и правильно подходить к расчету толщины теплоизоляционного материала.
  • Стена, утепленная изнутри . Здесь точка росы располагается между утеплителем и центром стены. Такой вариант не самый лучший, ведь если в наружном воздухе преобладает высокий уровень влажности, то при резком похолодании произойдет движение точки росы на стык между утеплителем и стеной. А это может отразиться самым негативным образом на стене. Прибегать к внутреннему утеплению конструкций владелец может лишь тогда, если внутри дома имеется эффективная система обогрева, которая в состоянии обеспечить один и тот же температурный режим в каждой из комнат дома.

В том случае, если при выполнении ремонтных работ в доме погодные условия не принимаются во внимание, то устранить проблему практически невозможно. Единственно правильное решение - убрать все, что было сделано, а потом провести все работы повторно, но уже правильно с учетом точки росы. Однако это приведёт к большим затратам для владельцев строения.

Определение точки росы и выполнение расчета

Человек, проживающий в доме, в котором во внутренних помещениях преобладает повышенная влажность, сталкивается с большими проблемами. Наличие конденсата приводит к появлению сложностей со здоровьем. Высок риск заболеть таким заболеванием, как астма. К тому же конденсат негативно сказывается на конструкциях здания, сокращая срок их службы.

Если уровень влажности внутри помещений дома высок, то на стенах и потолке образуется плесень , от которой трудно избавиться. В таких случаях приходится принимать кардинальные меры - проводить замену стены и потолочной поверхности. Только так можно избавиться от вредных микроорганизмов.

Чтобы избежать этих неприятных моментов, необходимо заранее рассчитать точку росы. Таким образом, можно узнать, имеет ли смысл выполнять в отдельно взятом здании ремонтные работы, утеплять стены.

Стоит сказать, что каждое здание имеет свою индивидуальную точку росы . А это означает, что работа по её расчету будет проводиться с определенными отличиями.

Перед тем как приступать к выполнению расчета этого параметра, во внимание необходимо принимать следующие факторы:

Во время строительства застройщик должен проследить, чтобы в используемых при возведении материалах не повысилась влажность и не образовалась точка росы. Правильно произвести измерение точки росы может только специалист. Если в помещениях дома точка росы будет высокая, то специалист сделает вывод, что утепление строения было выполнено неверно.

Такой ответ можно считать отчасти правильным, поскольку при правильном утеплении происходит перемещение точки росы, в результате этот показатель изменяется. Кроме того, выполненные по технологии ремонтные работы влияют на появление конденсата на стенах.

Инструкция по определению точки росы по таблице

Инструменты для определения

Чтобы правильно определить точку росы, во время работ потребуются следующие инструменты:

  • термометр;
  • гигрометр;
  • бесконтактный термометр.

Этапы выполнения расчета

В помещении, в котором проводится измерение точки росы, необходимо от напольной поверхности отмерить 60 см и расположить на этой высоте градусник. Его можно положить на поверхность стола. С помощью термометра далее необходимо измерить температуру воздуха. Потом следует воспользоваться гигрометром и измерить влажность в помещении. Ориентируясь на значения в таблице, можно определить точку росы.

После этого остается узнать, возможно ли проведение работ в таком помещении. Например, владелец планирует утеплить помещение или устроить в нем полимерные полы . Чтобы узнать, есть ли смысл в проведении таких работ, прибегают к использованию специального бесконтактного термометра. Для этого снова от пола отмеряют расстояние 60 см, после чего измеряют температуру поверхности. Если у вас нет бесконтактного термометра, то в этом случае необходимо взять обычный градусник и обернуть тканью. По прошествии 15 минут необходимо снять показания.

На завершающем этапе необходимо сравнить два результата. Если температура поверхности от определенной точки росы отличается на 4 градуса, это говорит о том, что в помещении преобладает повышенная влажность и имеет место высокая точка росы . В этом случае работы по утеплению сооружений должны проводиться под контролем специалиста. Перед их началом должны быть произведены расчеты толщины материала, которая будет оптимальной для качественного утепления.

Как решить проблему с появившейся точкой росы?

На стенах здания есть несколько возможных мест, где может появиться точка росы:

В таких случаях для решения проблемы, можно добавить пароизоляцию на поверхность стены. Это обеспечит удержание водяного пара, и он не будет проходить сквозь стены внутрь помещения. А это исключит возникновение точки росы на поверхности стены и потолочной поверхности.

Заключение

Точка росы - важный показатель, на который многие застройщики не обращают внимания во время строительства. А именно от него зависит срок службы конструкций строения. Если этот параметр не учитывается, то стены в процессе эксплуатации будет влажными, что может привести к развитию процессов гниения конструкции. На стенах образуется плесень, а это может негативно отразиться на здоровье человека.

Когда проводится утепление стен, то этот параметр должен приниматься во внимание. Только в этом случае можно провести качественную теплоизоляцию конструкций. Для определения этого параметра, если владелец строения не имеет опыта в этом деле, лучше привлекать квалифицированного специалиста. Он сможет не только правильно рассчитать этот параметр в здании, но и дать рекомендации, которые помогут вам качественно выполнить ремонтные работы и избежать повышенной влажности в помещениях дома.

Для того чтобы понять, к каким последствиям приведёт отсутствие вентилируемого зазора в стенах, выполненных из двух и более слоев разных материалов, и всегда ли нужны зазоры в стенах, необходимо напомнить о физических процессах, происходящих в наружной стене в случае разности температур на её внутренней и наружной поверхностях.

Как известно в воздухе всегда содержатся водяные пары. Парциальное давление пара зависит от температуры воздуха. С повышением температуры парциальное давление водяных паров увеличивается.

В холодное время года парциальное давление паров внутри помещения значительно выше, чем снаружи. Под действием разницы давлений водяные пары стремятся попасть изнутри дома в область меньшего давления, т.е. на сторону слоя материала с меньшей температурой — на наружную поверхность стены.

Также известно, что при охлаждении воздуха водяной пар, содержащийся в нём, достигает предельного насыщения, после чего конденсируется в росу.

Точка росы – это температура, до которой должен охладиться воздух, чтобы содержащийся в нём пар достиг состояния насыщения и начал конденсироваться в росу.

На приведённой диаграмме, Рис.1., представлено максимально возможное содержание водяного пара в воздухе в зависимости от температуры.

Отношение массовой доли водяного пара в воздухе к максимально возможной доле при данной температуре называется относительной влажностью, измеряемой в процентах.

Например, если температура воздуха составляет 20 °С , а влажность – 50%, это означает, что в воздухе содержится 50% того максимального количества воды, которое может там находится.

Как известно строительные материалы обладают разной способностью пропускать содержащиеся в воздухе водяные пары, под действием разности их парциальных давлений. Это свойство материалов называется сопротивление паропроницанию, измеряется в м2*час*Па/мг .

Кратко резюмируя вышесказанное, в зимний период воздушные массы, в состав которых входят водяные пары, будут проходить сквозь паропроницаемую конструкцию внешней стены изнутри наружу.

Температура воздушной массы будет уменьшаться по мере приближения к внешней поверхности стены.

В сухой стене — пароизоляция и вентилируемый зазор

Точка росы в правильно спроектированной стене без утеплителя окажется в толще стены, ближе к наружной поверхности, где пар будет конденсироваться и увлажнять стену.

Зимой, в результате превращения пара в воду на границе конденсации, наружная поверхность стены будет накапливать влагу.

В теплое время года эта накопленная влага должна иметь возможность испариться.

Необходимо обеспечивать смещение баланса между количеством поступающих в стену паров изнутри помещения и испарением из стены накопившейся влаги в сторону испарения.

Баланс влагонакопления в стене можно смещать в сторону удаления влаги двумя путями:

  1. Уменьшать паропроницаемость внутренних слоев стены, сокращая тем самым количество пара в стене.
  2. И (или) увеличивать испарительную способность наружной поверхности на границе конденсации.

Имеют одинаковое сопротивление паропроницанию по всей толщине, а также равномерное изменение температуры по толщине стены. Граница конденсации водяных паров в правильно спроектированной стене без утеплителя находится в толще стены, ближе к наружной поверхности. Это обеспечивает таким стенам положительный баланс удаления влаги из толщи стены во всех случаях, кроме помещений с повышенной влажностью.

В многослойных стенах с утеплителем используются материалы с разным сопротивлением паропроницанию. Кроме того, распределение температуры в толще многослойной стены не равномерное. На границе слоев в толще стены имеем резкие перепады температуры.

Чтобы обеспечить требуемый баланс перемещения влаги в многослойной стене необходимо, чтобы сопротивление паропроницанию материала в стене уменьшалось по направлению от внутренней поверхности к наружной.

В противном случае, если наружный слой будет иметь большее сопротивление паропроницанию, баланс влагоперемещения сместится в сторону накопления влаги в стене.

Например.

Сопротивление паропроницанию газобетона значительно меньше, чем у керамики. При фасадной отделке дома из газобетона керамическим кирпичом обязателен вентилируемый зазор между слоями. При отсутствии зазора блоки будут накапливать влагу .

Вентилируемый зазор между лицевой кладкой из керамического кирпича и несущей стеной из керамзитобетонных блоков не нужен, т.к. сопротивление паропроницанию кирпичной облицовки меньше, чем у стены из керамзитобетонных блоков.

При неправильном устройстве стены, влага в утеплителе будет накапливаться постепенно.

Уже на второй, максимум третий-пятый отопительный период, можно будет ощутить существенное увеличение расходов на отопление. Связано это, естественно, с тем, что увеличилась влажность теплоизоляционного слоя и всей конструкции в целом, а соответственно существенно снизился показатель термического сопротивления стены.

Влага из утеплителя будет передаваться и в соседние слои стены. На внутренней поверхности наружных стен может образовываться грибок и плесень.

Кроме накопления влаги, в утеплителе стены происходит еще один процесс — замерзание сконденсировавшейся влаги. Известно, что периодическое замерзание и оттаивание большого количества воды в толще материала разрушает его.

Стеновые материалы различаются по своей способности противостоять замерзанию конденсата. Поэтому, в зависимости от паропроницаемости и морозостойкости утеплителя, необходимо ограничивать общее количество конденсата, накапливающегося в утеплителе за зимний период.

Например, минераловатный утеплитель имеет высокую паропроницаемость и очень низкую морозостойкость. В конструкциях с минераловатным утеплителем (стены, чердачные и цокольные перекрытия, мансардные крыши) для уменьшения поступления пара в конструкцию со стороны помещения всегда укладывают паронепроницаемую пленку.

Без пленки стена имела бы слишком малое сопротивление паропроницанию и, как следствие, в толще утеплителя выделялось и замерзало бы большое количество воды. Утеплитель в такой стене через 5-7 лет эксплуатации здания превратился бы в труху и осыпался.

Толщина теплоизоляции должна быть достаточной для того, чтобы удерживать точку росы в толще утеплителя, рис.2а.

При малой толщине утеплителя температура точки росы окажется на внутренней поверхности стены и пары будут конденсироваться уже на внутренней поверхности наружной стены, рис.2б.

Понятно, что количество влаги, сконденсировавшейся в утеплителе, будет увеличиваться с ростом влажности воздуха в помещении и с увеличением суровости зимнего климата в месте строительства.

Количество испаряемой из стены влаги в летнее время также зависит от климатических факторов — температуры и влажности воздуха в зоне строительства.

Как видим, процес перемещения влаги в толще стены зависит от многих факторов. Влажностный режим стен и других ограждений дома можно рассчитать, Рис. 3.

По результатам расчета определяют необходимость уменьшения паропроницаемости внутренних слоев стены или необходимость вентилируемого зазора на границе конденсации.

Результаты проведенных расчетов влажностного режима различных вариантов утепленных стен (кирпичные, ячеистобетонные, керамзитобетонные, деревянные) показывают, что в конструкциях с вентилируемым зазором на границе конденсации накопления влаги в ограждениях жилых зданий не происходит во всех климатических зонах России.

Многослойные стены без вентилируемого зазора необходимо применять, основываясь на расчете влагонакопления. Для принятия решения, следует обратиться за консультацией к местным специалистам, профессионально занимающимся проектированием и строительством жилых зданий. Результаты расчета влагонакопления типовых конструкций стен в месте строительства, местным строителям давно известны.

— это статья об особенностях влагонакопления и утепления стен из кирпича или каменных блоков.

Особенности влагонакопления в стенах с фасадным утеплением пенопластом, пенополистиролом

Утеплители из вспененных полимеров — пенопласта, пенополистирола, пенополиуретана, обладают очень низкой паропроницаемостью. Слой плит утеплителя из этих материалов на фасаде служит барьером для пара. Конденсация пара может происходить только на границе утеплителя и стены. Слой утеплителя препятствует высыханию конденсата в стене.

Для предотвращения накопления влаги в стене с полимерным утеплителем необходимо исключить конденсацию пара на границе стены и утеплителя . Как это сделать? Для этого необходимо сделать так, чтобы на границе стены и утеплителя температура всегда, в любые морозы, была бы выше температуры точки росы.

Указанное выше условие распределения температур в стене обычно легко выполняется, если сопротивление теплопередаче слоя утеплителя будет заметно больше, чем у утепляемой стены. Например, утепление «холодной» кирпичной стены дома пенопластом толщиной 100 мм. в климатических условиях средней полосы России обычно не приводит к накоплению влаги в стене.

Совсем другое дело, если пенопластом утепляется стена из «теплого» бруса, бревна, газобетона или поризованной керамики. А также, если для кирпичной стены выбрать очень тонкий полимерный утеплитель. В этих случаях температура на границе слоев может легко оказаться ниже точки росы и, чтобы убедиться в отсутствии влагонакопления, лучше выполнить соответствующий расчет.

Выше на рисунке показан график распределения температуры в утепленной стене для случая, когда сопротивление теплопередаче стены больше, чем слоя утеплителя. Например, если стену из газобетона с толщиной кладки 400 мм. утеплить пенопластом толщиной 50 мм. , то температура на границе с утеплителем зимой будет отрицательной. В результате будет происходить конденсация пара и накопление влаги в стене.

Толщину полимерного утеплителя выбирают в два этапа:

  1. Выбирают, исходя из необходимости обеспечить требуемое сопротивление теплопередаче наружной стены.
  2. Затем выполняют проверку на отсутствие конденсации пара в толще стены.

Если проверка по п.2. показывает обратное, то приходится увеличивать толщину утеплителя. Чем толще полимерный утеплитель - тем меньше риск конденсации пара и влагонакопления в материале стены. Но, это приводит к увеличению расходов на строительство.

Особенно большая разница в толщине утеплителя, выбранного по двум вышеуказанным условиям, имеет место при утеплении стен с высокой паропроницаемостью и низкой теплопроводностью. Толщина утеплителя для обеспечения энергосбережения получается для таких стен сравнительно маленькой, а для отсутствия конденсации - толщина плит должна быть неоправданно большой.

Поэтому, для утепления стен из материалов с высокой паропроницаемостью и низкой теплопроводностью выгоднее использовать минераловатные утеплители . Это относится прежде всего к стенам из дерева, газобетона, газосиликата, крупнопористого керамзитобетона.

Устройство пароизоляции изнутри обязательно для стен из материалов с высокой паропроницаемостью при любом варианте утепления и облицовки фасада.

Для устройства пароизоляции выполняют из материалов с высоким сопротивлением паропроницанию - на стену наносят грунтовку глубокого проникновения в несколько слоев, цементную штукатурку, виниловые обои или используют паронепроницаемую пленку.Опубликовано

Содержащийся в газе, охлаждаемом изобарически, становится насыщенным над плоской поверхностью воды.

На приведённой диаграмме представлено максимальное содержание водяного пара в воздухе на уровне моря в зависимости от температуры. Чем выше температура, тем выше равновесное парциальное давление пара.

Точка росы определяется относительной влажностью воздуха. Чем выше относительная влажность , тем точка росы выше и ближе к фактической температуре воздуха. Чем ниже относительная влажность , тем точка росы ниже фактической температуры. Если относительная влажность составляет 100 %, то точка росы совпадает с фактической температурой.

Формула для приблизительного расчёта точки росы в градусах Цельсия (только для положительных температур):

T p = точка росы, a = 17.27, b = 237,7 °C, , T = температура в градусах Цельсия, RH = относительная влажность в объёмных долях (0 < RH < 1.0), ln - натуральный логарифм .

Формула обладает погрешностью ±0.4 °C в следующем диапазоне значений:

0 °C < T < 60 °C 0.01 < RH < 1.0 0 °C < T р < 50 °C

Точка росы и коррозия

Точка росы воздуха - важнейший параметр при антикоррозионной защите , говорит о влажности и возможности конденсации . Если точка росы воздуха выше, чем температура подложки (субстрат, как правило поверхность металла), то на подложке будет иметь место конденсация влаги.

Краска, наносимая на подложку с конденсацией, не достигнет должной адгезии , за исключением случаев использования красок, разработанных по специальной рецептуре (Справку можно получить в Технологической карте продукта или покрасочной спецификации).

Таким образом, последствием нанесения краски на подложку с конденсацией будет плохая адгезия и образование дефектов, таких как шелушение, пузырение и др., приводящее к преждевременной коррозии и/или обрастанию.

Определение точки росы

Значения точки росы в градусах °C для ряда ситуаций определяют с помощью пращевого психрометра и специальных таблиц. Сначала определяют температуру воздуха, затем влажность, температуру подложки и с помощью таблицы Точки росы определяют температуру, при которой не рекомендуется наносить покрытия на поверхность.

Если вы не можете найти точно ваши показания на пращевом психрометре , то найдите один показатель на одно деление выше по обеим шкалам, как относительной влажности, так и температуры, а другой показатель соответственно на одно деление ниже и интерполируйте необходимое значение между ними. Стандарт ISO 8502-4 используется для определения относительной влажности и точки росы на стальной поверхности, подготовленной для окраски.

Таблица температур

Значения точки росы (°С) в разных условиях приведены в таблице.

Температура , шарика сухого термометра, °С 0 2,5 5 7,5 10 12,5 15 17,5 20 22,5 25
Относительная влажность %
20 −20 −18 −16 −14 −12 −9,8 −7,7 −5,6 −3,6 −1,5 −0,5
25 −18 −15 −13 −11 −9,1 −6,9 −4,8 −2,7 −0,6 1,5 3,6
30 −15 −13 −11 −8,9 −6,7 −4,5 −2,4 −0,2 1,9 4,1 6,2
35 −14 −11 −9,1 −6,9 −4,7 −2,5 −0,3 1,9 4,1 6,3 8,5
40 −12 −9,7 −7,4 −5,2 −2,9 −0,7 1,5 3,8 6,0 8,2 10,5
45 −10 −8,2 −5,9 −3,6 −1,3 0,9 3,2 5,5 7,7 10,0 12,3
50 −9,1 −6,8 −4,5 −2,2 0,1 2,4 4,7 7,0 9,3 11,6 13,9
55 −7,9 −5,6 −3,3 −0,9 1,4 3,7 6,1 8,4 10,7 13,0 15,3
60 −6,8 −4,4 −2,1 0,3 2,6 5,0 7,3 9,7 12,0 14,4 16,7
65 −5,8 −3,4 −1,0 1,4 3,7 6,1 8,5 10,9 13,2 15,6 18,0
70 −4,8 −2,4 0,0 2,4 4,8 7,2 9,6 12,0 14,4 16,8 19,1
75 −3,9 −1,5 1,0 3,4 5,8 8,2 10,6 13,0 15,4 17,8 20,3
80 −3,0 −0,6 1,9 4,3 6,7 9,2 11,6 14,0 16,4 18,9 21,3
85 −2,2 0,2 2,7 5,1 7,6 10,1 12,5 15,0 17,4 19,9 22,3
90 −1,4 1,0 3,5 6,0 8,4 10,9 13,4 15,8 18,3 20,8 23,2
95 −0,7 1,8 4,3 6,8 9,2 11,7 14,2 16,7 19,2 21,7 24,1
100 0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0 22,5 25,0

Диапазон комфорта

Человек при высоких значениях точки росы чувствует себя некомфортно. В континентальном климате условия с точкой росы между 15 и 20 °C доставляют некоторый дискомфорт, а воздух с точкой росы выше 21 °C воспринимается как душный. Нижняя точка росы, менее 10 °C, коррелирует с более низкой температурой окружающей среды, и тело требует меньшего охлаждения. Нижняя точка росы может пойти вместе с высокой температурой только при очень низкой относительной влажности.

См. также

  • Психрометрическая диаграмма (диаграмма Молье)

Литература

  • Бурцев С. И., Цветков Ю. Н. Влажный воздух. Состав и свойства (djvu, полный текст)
  • Самостоятельный расчет точки росы внутри ограждающих конструкций

Wikimedia Foundation . 2010 .

Собираясь утеплять свои жилища, многие владельцы домов сталкиваются с проблемой выбора утеплительных материалов. Действительно, ассортимент теплоизоляторов достаточно велик и все они имеют разные характеристики и области применения. Одним из основных параметров утеплителя является паропроницаемость - свойство материалов и конструкций, выполненных из них, пропускать сквозь себя водяной пар. Зачем нам нужно знать этот параметр?

Дело в том, что влажные, тем более мокрые, теплоизоляционные материалы существенно увеличивают свою теплопроводность. И как следствие перестают выполнять теплоизолирующие функции, т.е. утеплитель уже не утепляет, а присутствует только для вида. Мало того влага, сконденсировавшаяся в материале ограждающей конструкции, замерзая зимой, разрушает его изнутри, ослабляя конструктивную прочность, что чревато резким ухудшением здоровья жильцов.

При изучении этих процессов появляется на свет так называемая «точка росы» - термин, связанный с конденсацией водяного пара. Какое отношение он имеет к строительству, мы сейчас и попробуем разобраться. По-простому, что называется «на пальцах».

Начнем издалека. Вода - основа жизни на нашей планете - присутствует в наших домах в трех агрегатных состояниях:

  • в жидком - в водопроводных трубах, стакане, наших животиках;
  • в газообразном - в виде пара над кастрюлькой с супом, в паровом утюге, в выдыхаемом нами воздухе;
  • в твердом - в сосульках на крыше, в виде льда на крыльце (куда смотрят дворники?!), в морозилке холодильника и бокале виски.

Помимо этих очевидных мест, вода еще находится в ограждающих конструкциях (стенах, перекрытиях, кровле) нашего дома. С целью упрощения понимания в дальнейшем мы будем рассматривать только стены (точнее одну стену), подразумевая, что схожие процессы протекают и в других конструкциях здания.

Прежде чем рассматривать паропроницаемость стен, остановимся на водяном паре. Как и все газы, составляющие воздух в помещении, он обладает парциальным давлением (парциальный - частичный, составляющий часть чего-либо). То есть водяной пар давит на стену с определенной силой. И если снаружи (с улицы) на эту же стену давит с такой же силой тот же водяной пар, то он (пар) никуда двигаться не будет.

Но если дома жарко и сыро, а за окном холодный сухой морозец, то пар, как скаковая лошадь, ринется туда, где его парциальное давление ниже (так как влаги в уличном воздухе нет или очень мало), т.е. на улицу, проникая сквозь поры материала стены. При этом охлаждаясь по пути (ведь температура внутренней поверхности стены +25 °С, а наружной, например, –20 °С, мороз, однако), и по мере остывания превращаясь в воду (конденсируясь).

Переходить в другое агрегатное состояние (воду) водяной пар может при понижении температуры, повышении атмосферного давления, увеличении количества пара в воздухе (повышении влажности). Нормальное атмосферное давление (760 мм ртутного столба) там, где живут люди, может изменяться всего лишь на пару–тройку процентов в обе стороны, поэтому его влияние мы учитывать не будем.

Рассмотрим физику процесса конденсации пара в материале стены по мере его продвижения изнутри наружу. Для простоты будем считать, что температура воздуха внутри и снаружи помещения постоянны. Количество водяного пара в граммах в единице объема воздуха (1 м 3) называется абсолютной влажностью воздуха. В строительных теплофизических расчетах применяется параметр относительная влажность воздуха . Он показывает количество водяного пара в воздухе в долях от максимально возможного при конкретной температуре и чаще всего выражается в процентах.

Например, относительная влажность воздуха 60% при температуре 20 °С, говорит о том, что в одном кубическом метре воздуха в виде пара находится 10,4 грамма воды, что составляет 60% (6/10) от максимального количества воды (17,3 грамма в 1 м 3), которое может находиться в парообразном состоянии в том же кубометре воздуха при данной температуре.

Каждый i –тый газ, составляющий наш воздух (азот, кислород, аргон, углекислый газ и др.) как и водяной пар, создает свое собственное парциальное давление е i , определяемое согласно уравнению Клапейрона (формулу смотрите на картинке). Сумму парциальных давлений газов воздуха можно измерить с помощью обыкновенного барометра. Доля давления насыщенного пара в ней не превышает 0,1 % и для температуры 20 °С составляет примерно 2,34 кПа (смотри таблицу).

При 100% относительной влажности воздух максимально насыщен водяным паром и называется насыщенным (по аналогии с объевшимся человеком). Степень насыщенности воздуха водяным паром зависит только от его температуры, чем она выше, тем больше молекул воды в единице объема может находиться в парообразном состоянии. Зависимость давления насыщенного пара от его температуры была снята экспериментальным путем и занесена в специальные таблицы. Парциальное давление насыщенного водяного пара называется давлением насыщения воздуха водяным паром и обозначается символом Е (смотри картинку с графиками).

Если увеличить температуру воздуха с некоторой (отличной от ноля) абсолютной влажностью его относительная влажность понизится, так как величина парциального давления водяного пара растет линейно от температуры, причем достаточно медленно, а давление насыщения растет по экспоненте (т.е. гораздо быстрее). Наоборот, при охлаждении воздуха относительная влажность возрастет вследствие более быстрого снижения величины давления насыщения.

По мере остывания влажного воздуха до некоторой температуры, когда парциальное давление пара станет равным давлению насыщения паром при этой же температуре, относительная влажность воздуха составит 100%, то есть воздух достигнет максимального насыщения водяным паром. Эта температура называется точкой росы . Если воздух будет и далее охлаждаться, то часть влаги начнет из него конденсироваться. Воздух при этом будет по-прежнему полностью насыщен водяным паром, а его давление насыщения будет снижаться в соответствии с падающей температурой.

В процессе снижения температуры, она в каждый момент времени будет точкой росы для новой сформировавшейся абсолютной влажности воздуха. Другими словами, по мере продвижения (диффузии) водяного пара сквозь материал стены в сторону холодной улицы, он с каждым сантиметром будет попадать во все более холодные слои, и, остывая, продолжит конденсироваться, увлажняя при этом стену.

Условием отсутствия образования конденсата на внутренней поверхности стены и в ее толще является поддержание температуры ограждающих конструкций и воздуха в помещении выше точки росы, а это значит, что парциальное давление водяных паров в каждой точке сечения стены должно быть меньше давления насыщения пара. Соблюдения этого условия можно добиться наружным утеплением стен, их внутренней пароизоляцией, снижением абсолютной влажности воздуха в помещении путем его проветривания и вентилирования.

О том, чем и , не опасаясь обрушения перекрытий, расскажем в следующей статье.

Загрузка...