domvpavlino.ru

Конструкционные материалы используют. Контрольная работа: Свойства конструкционных материалов. Электролиз хлоридных расплавов

1.

2. Исходные материалы и способы получения алюминия .

3. Свойства и применение древесины.

4.

1. Классификация свойств конструкционных материалов. Эксплуатационные свойства, их показатели.

Конструкционными материалами называют материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами конструкционных материалов являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества конструкционных материалов относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др.

Конструкционные материалы подразделяются (рис. 1): по природе материалов - на металлические, неметаллические и композиционные материалы, сочетающие положительные свойства тех и других материалов; по технологическому исполнению - на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т. п.); по условиям работы - на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т. д.; по критериям прочности - на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности.

Развитие техники предъявляет новые, более высокие требования к существующим Конструкционным материалам, стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе лёгкость, жёсткость и прочность. Внешнее армирование металлических замкнутых объёмов (шары, баллоны, цилиндры) стеклопластиком позволяет значительно снизить их массу в сравнении с металлическими конструкциями . Для многих областей техники необходимы Конструкционные материалы, сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами.

Рис. 1. Схема классификации конструкционных материалов

При выборе материала для того или иного изделия или конструкции учитывают экономическую целесообразность его применения (соответствие цены и качества), сохранение конструкционных критериев (требуемые долговечность, прочность, надежность) и возможность переработки в изделие (технологические критерии – обрабатываемость резанием, свариваемость, ковкость и т. п.). С учетом данных критериев выбирают материал той или иной природы.

Металлические материалы. К ним относятся металлы и сплавы на их основе. Они в свою очередь подразделяются на несколько групп, отличающихся друг от друга по свойствам:

1. Черные металлы. Это железо и сплавы на его основе – стали и чугуны;

2. Цветные металлы. В эту группу входят металлы и их сплавы, такие как медь, алюминий, титан, никель и др.;

3. Благородные металлы. К ним относятся золото, серебро, платина; 4. Редкоземельные металлы. Это лантан, неодим, празеодим.

Неметаллические материалы. Они также подразделяются на несколько групп:

1. Пластмассы. Это материалы на основе высокомолекулярных соединений – полимеров, в основном, с наполнителями;

2. Керамические материалы (керамика). Их основой являются порошки тугоплавких соединений типа карбидов, боридов, нитридов и оксидов. Например: TiC, SiC, Cr7C3, CrB, Ni3B, TiB2, BN, TiN, Al2O3, SiO2, ZrO2 и др.;

3. Металлокерамические материалы (металлокерамика). В этих материалах основой является керамика, в которую добавляется некоторое количество металла, являющегося связкой и обеспечивающего такие свойства, как пластичность и вязкость;

4. Стекло. Оно представляет собой систему, состоящую из оксидов различных элементов, в первую очередь оксида кремния SiO2;

5. Резина. Это материалы на основе каучука - углеродноводородного полимера с добавле-нием серы и других элементов;

6. Дерево. Сложная органическая ткань древесных растений.

Композиционные материалы. Они представляют собой материалы, полученные искусственным путем из двух и более различных материалов, сильно отличающихся друг от друга по свойствам. В результате композиция по своим свойствам существенно отличается от свойств составляющих компонентов, т. е. получаемый материал имеет новый комплекс свойств. В состав композиционных материалов могут входить как металлические, так и неметаллические составляющие.

Классификация свойств конструкционных материалов

1. Механические свойства характеризуются способностью материала сопротивляться деформированию и разрушаться под действием внешних воздействующих факторов.

· Прочность – это способность материала сопротивляться разрушению и пластично деформироваться под воздействием внешних нагрузок;

· Твердость – это способность материалов сопротивляться деформированию в поверхностном слое при местном, контактном и силовом воздействии;

· Упругость - это способность материала восстанавливать свою форму и размеры, под действием внешних сил без разрушения;

· Вязкость - способность материала поглощать механическую энергию и при этом испытывать значительную пластическую деформацию до разрушения;

· Хрупкость – это способность материала разрушаться под действием внешних сил, сразу после упругой деформации.

2. Физические свойства характеризуют поверхность материала в тепловых, гравитационных, электромагнитных и радиоактивных полях.

· Свет – это способность материала отражать световые лучи с определенной длиной световой волны;

· Плотность – это масса единицы объема вещества;

· Температура плавления – это температура, при которой вещество переходит из твердой фазы в жидкую;

· Электропроводность – это способность материала хорошо и без потерь проводить электрический ток;

· Теплопроводность – это способность материала переносить Тепловую энергию от более нагретого участка к менее нагретому;

· Теплоёмктсть - это способность материала поглощать определенное количество теплоты;

· Магнитные свойства - способность материалахорошо намагничиваться;

· Коэффициент объемного и линейного расширения – характеризует изменение размеров тела при изменении температуры.

3. Технологические свойства характеризуются способностью материала подвергаться различным видам горячей и холодной обработки.

Литейные свойства; К ней относятся жидкотекучесть - способность металлов и сплавов течь по каналам формы и заполнять ее. Заполняемость - она характеризует способность металлов и сплавов воспроизводить контур отливок в особо тонких сечениях, где в значительной степени проявляется действие капиллярных сил. Объемная усадка - характеризует изменение объема металла при понижении температуры в жидком состоянии, в процессе затвердевания и при охлаждении твердого металла. Линейная усадка - отражает изменение линейных размеров отливки после образования на ее поверхности жесткого кристаллического скелета и охлаждения до комнатной температуры.

· Ковкость (важно при обработке давлением) - это способность металлов и сплавов подвергаться ковке и другим видам обработки давлением (прокатка, волочение, прессование, штамповка);

· Свариваемость (это показатель того, на сколько материал может показать свариваемые соединения);

· Обработка резанием;

· Прокаливаемость;

· Закаливаемость.

4. Эксплуатационные свойства, характеризуют способность материалов обеспечивает надежную и долговечную работу изделий в конкретных условиях и эксплуатации, базируются на механических, физических и химических свойствах.
Эксплуатационные свойства. Эти свойства определяют в зависимости от условий работы машины специальными испытаниями. Одним из важнейших эксплуатационных свойств является износостойкость, хладостойкость, жаропрочность, антифрикционность и др.

Износостойкость - свойство материала оказывать сопротивление износу, т. е. постепенному изменению размеров и формы тела вследствие разрушения поверхностного слоя изделия при трении. Испытание металлов на износ проводят на образцах в лабораторных условиях, а деталей - в условиях реальной эксплуатации. При испытаниях образцов моделируются условия трения, близкие к реальным. Величину износа образцов или деталей определяют различными способами: измерением размеров, взвешиванием образцов и другими методами.

Хладостойкость - способность материалов, элементов, конструкций и их соединений сопротивляться хрупким разрушениям при низких температурах окружающей среды.

Жаропрочность - это способность металла сопротивляться пластической деформации и разрушению при высоких температурах. Жаропрочные материалы используются для изготовления деталей, работающих при высоких температурах, когда имеет место явление ползучести. Критериями оценки жаропрочности являются кратковременная и длительная прочности, ползучесть.

Антифрикционность - это способность материала обеспечивать низкий коэффициент трения скольжения и тем самым низкие потери на трение и малую скорость изнашивания сопряженной детали.

5. Химические свойства характеризуют способность материала вступать в химическое взаимодействие с другими веществами.

· Растворимость (способность материала образовывать с одним или несколькими веществами однородные системы, называющихся растворами);

· Жаростойкость (способность материала противостоять химическому разрушению поверхности под действием воздуха или другой окислительной атмосферой при высоких температурах);

· Коррозионостойкость (способность металлических материалов противостоять разрушению в результате химического или электрохимического воздействия на их поверхности внешней агрессивной среды (аналогичное свойство для неметаллических материалов - химикостойкость ));

· Окисление (способность материалов отдавать электроны, то есть окисляться при химическом взаимодействии с окружающей средой или другой материей).

2. Исходные материалы и способы получения алюминия.

Алюминий – это один из важнейших металлов, причем количество его производства намного опережает объем выпуска всех остальных цветных металлов и уступает только производству стали. Высокая популярность алюминия обусловлена его уникальными физико - химическими свойствами, благодаря которым он нашел широкое применение в электротехнике , авиа - и автостроении, транспорте, производстве бытовой техники , строительстве, упаковке пищевых продуктов и пр.

В последнее время машиностроение во все большей мере требует легких металлов, особенно в авиастроении, ракетостроении, атомной промышленности и железнодорожном транспорте . Поэтому развитие новых и более экономичных методов получения алюминия и усовершенствование уже существующих методов имеет большое значение.

Электролиз криолитоглиноземных расплавов является основным способом получения алюминия, хотя некоторое количество алюминиевых сплавов получается электротермическим способом.

Первые промышленные электролизеры были на силу тока до 0,6 кА и за последующие 100 лет она возросла до 300 кА. Тем не менее, это не внесло существенных изменений в основы производственного процесса.

Общая схема производства алюминия представлена на рис. 2. Основным агрегатом является электролизер. Электролит представляет собой расплав криолита с небольшим избытком фторида алюминия, в котором растворен глинозем. Процесс ведут при переменных концентрациях глинозема приблизительно от 1 до 8 % (масс.). Сверху в ванну опущен угольный анод , частично погруженный в электролит. Существуют два основных типа расходуемых анодов: самообжигающиеся и предварительно обожженные. Первые используют тепло электролиза для обжига анодной массы, состоящей из смеси кокса-наполнителя и связующего – пека. Обожженные аноды представляют собой предварительно обожженную смесь кокса и пекового связующего.

Рис. 2 Схема производства алюминия из глинозема.

Расплавленный алюминий при температуре электролиза (950 – 960°С) тяжелее электролита и находится на подине электролизера. Криолитоглиноземные расплавы – очень агрессивны, противостоять которым могут углеродистые и некоторые новые материалы. Из них и выполняется внутренняя футеровка электролизера.

Для преобразования переменного тока в постоянный на современных заводах применяются полупроводниковые выпрямители с напряжением 850В и коэффициентом преобразования 98,5%, установленные в кремниевой преобразовательной подстанции (КПП). Один выпрямительный агрегат дает ток силой до 63 кА. Число таких агрегатов зависит от необходимой силы тока, так как все они включены параллельно.

Процесс, протекающий в электролизере, состоит в электролитическом разложении глинозема, растворенного в электролите. На жидком алюминиевом катоде выделяется алюминий, который периодически выливается с помощью вакуум-ковша и направляется в литейное отделение на разливку или миксер, где в зависимости от дальнейшего назначения металла готовятся сплавы с кремнием, магнием, марганцем, медью или проводится рафинирование. На аноде происходит окисление выделяющимся кислородом углерода. Отходящий анодный газ представляет собой смесь СО2 и СО.

Электролизеры обычно снабжены укрытиями, отводящими отходящие газы, и системой очистки. Это снижает выделение вредных веществ в атмосферу. Технологический процесс требует, чтобы укрытие было герметично для обеспечения отсоса газа в коллектор с помощью вентиляторов . В удаляемых газах от электролизеров преобладают диоксид углерода (большая часть оксида углерода дожигается либо над электролитом, либо в специальных горелках после газосборного колокола), азот , кислород, газообразные и твердые фториды и частицы глиноземной пыли. Для их удаления и возвращения в процесс применяются различные технологические схемы.

Современные электролизеры оборудованы системой автоматического питания глиноземом (АПГ) с периодом загрузки 10 – 30 мин.

Суммарная реакция, происходящая в электролизере, может быть представлена уравнением

Таким образом, теоретически на процесс электролиза расходуются глинозем и углерод анода, а также электроэнергия, необходимая не только для осуществления электролитического процесса – разложения глинозема, но и для поддержания высокой рабочей температуры. Практически расходуется и некоторое количество фтористых солей, которые испаряются и впитываются в футеровку. Для получения 1 т алюминия необходимо:

Производство алюминия является одним из самых энергоемких процессов, поэтому алюминиевые заводы строят вблизи источников энергии.

Все материалы, поступающие на электролиз, должны иметь минимальное количество примесей более электроположительных, чем алюминий (железо, кремний, медь и др.), так как эти примеси при электролизе практически полностью переходят в металл.

Электротермическое получение алюминиево-кремниевых сплавов.

Получить чистый алюминий непосредственным восстановлением его оксида невозможно. Карботермические процессы требуют высоких температур (около 2000°С) для восстановления глинозема и при отсутствии сплавообразующих компонентов металл связывается с углеродом, давая карбид алюминия (А14С3). Известно, что карбид алюминия и алюминий растворимы друг в друге и образуют весьма тугоплавкие смеси. Кроме того, А14С3 растворяется в А12О3, поэтому в результате восстановления оксида алюминия углеродом получаются смеси алюминия, карбида и оксида, имеющие высокие температуры плавления. Выпустить такую массу из печи обычно не представляется возможным. Даже если это и удается сделать, потребуются большие затраты на разделение.

Общая технологическая схема производства алюминиево-кремниевых сплавов представлена на рис. 3. В качестве исходного сырья, кроме каолинов (Al2O3×2SiO2×2H2O), могут быть использованы кианиты (Al2O3×SiO2), дистенсиллиманиты (Al2O3×SiO2) и низкожелезистые бокситы.

Сплав после электроплавки поступает на очистку от неметаллических примесей. Для этого подают флюс, состоящий из смеси криолита и хлорида натрия, который смачивает эти примеси и "собирает" их. Рафинированный силикоалюминий имеет средний состав (%): А1 – 61; Si – 36; Fe – 1,7; Ti – 0,6; Zr – 0,5; Ca – 0,7. Этот сплав не годится для производства силумина и требует очистки от железа. Наиболее распространен способ очистки марганцем, который образует с железом тугоплавкие интерметаллиды.

Рис. 3. Общая схема производства алюминиево-кремниевых сплавов.

Полученный сплав разбавляют техническим электролитическим алюминием или вторичным алюминием до состава, отвечающего различным сортам силуминов, и разливают в слитки.

Преимущества такого способа получения силумина перед сплавлением электролитического алюминия с кристаллическим кремнием состоят в следующем: большая мощность единичного агрегата – современные печи имеют мощность 22,5 MB×A, что примерно в 30 раз выше мощности электролизера на 160 кА, а, следовательно, уменьшение грузопотоков , снижение капитальных затрат и затрат труда; применение сырья с низким кремниевым модулем, запасы которого в природе достаточно велики.

Теоретически из алюминиево-кремниевого сплава можно выделить различными приемами чистый алюминий. Однако из-за сложности аппаратурного и технологического оформления в промышленности эти способы в настоящее время не реализуются.

Тот-процесс

Схема получения алюминия по способу Тота представлена на рис. 4. Алюминийсодержащее сырье после соответствующей подготовки хлорируют в кипящем слое в присутствии кокса и SiCl4. Последний используется для подавления реакции хлорирования SiO2. В результате хлорирования в печах кипящего слоя (КС) получается парогазовая смесь (ПГС), в состав которой входят А1С13, FeCl3, TiCl4 и SiCl4. В первом конденсаторе из ПГС выделяется около 75 % FeCl3 в твердом состоянии и направляется в реактор-окислитель, где взаимодействует с кислородом воздуха, в результате чего образуются Fe2O3 и С12. Хлор возвращается на хлорирование. Во втором конденсаторе выделяется оставшийся FeCl3 и происходит конденсация А1С13. Хлориды титана и кремния конденсируются в третьем конденсаторе. Разделение этих хлоридов осуществляется в ректификационной колонне.

Рис. 4. Схема получения алюминия по методу Тота.

Хлориды алюминия и железа, выгруженные из второго конденсатора, нагреваются, перекачиваются в контактный очиститель, где контактируют в противотоке с подвижным слоем твердых частиц алюминия. При этом идет реакция:

Очищенный хлорид алюминия поступает на металлотермическое восстановление. Технически доступными восстановителями, имеющими большее сродство к хлору, чем алюминий, являются натрий, магний и марганец. Однако первые два элемента дороги и их производство весьма энергоемко. Поэтому, по мнению разработчиков процесса, определенные преимущества имеет использование марганца, который можно регенерировать из хлорида карботермическим методом со значительно меньшими энергозатратами. При восстановлении хлорида алюминия марганцем протекают реакции:

Алюминий из смеси МпС12 с непрореагировавшим А1С13, выделяется в циклонных сепараторах, а хлориды марганца и алюминия разделяются в выпарном аппарате. Хлорид алюминия возвращается в реактор для получения алюминия, а хлорид марганца взаимодействует с кислородом с образованием твердых оксидов марганца и хлора. Оксид марганца восстанавливается до металла карботермическим методом в шахтных печах, куда загружают кокс и известняк. Марганец в печь добавляется для восполнения потерь его в ходе процесса.

К недостаткам данного процесса, как и других металлотермических методов, относятся загрязнение получаемого продукта металлом-восстановителем, необходимость организации производства по регенерации восстановителя и увлечение капитальных затрат.

Электролиз хлоридных расплавов

В январе 1973 г. фирма "Alcoa", один из мировых лидеров по производству и переработке алюминия, заявила о разработке нового способа получения алюминия.

Принципиальная технологическая схема представлена на рис. 5.

Хлорид алюминия имеет высокое сродство к воде и тенденцию к образованию оксидов и гидрооксихлоридов. В связи с этим получение его в чистом виде является трудной задачей. Присутствие влаги вызывает коррозию, а присутствие кислородсодержащих соединений приводит к выделению осадков и окислению анодов. Фирмой "Alcoa" предложено хлорирование очищенного глинозема, что частично решает названные проблемы. Тем не менее, необходимо соблюдать повышенные требования к чистоте углерода при хлорировании в отношении водорода или влаги.

Рис. 5. Технологическая схема получения алюминия из хлорида.

Полученный хлорид алюминия в гранулированном или парообразном состоянии поступает на электролиз. Электролизер, используемый в данной технологии, состоит из стального кожуха, футерованного шамотным и в нижней части дополнительно диатомовым кирпичом, т. е. теплоизоляционным непроводящим огнеупорным материалом, который слабо взаимодействует с хлоридными расплавами. На дне ванны распо­ложен графитовый отсек для сбора жидкого алюминия. На крышке электролизера имеются отверстия для загрузки хлорида алюминия, периодического отсоса алюминия и непрерывного вывода газообразного хлора, используемого в производстве хлорида алюминия. Боковые стенки и крышка электролизера – водоохлаждаемые.

При электролизе используются графитовые нерасходуемые электроды. Это преимущество (по сравнению с электролизом криолитоглиноземных расплавов) вместе с относительно низкой температурой процесса (около 700ºС) дает возможность полной герметизации электролизеров.

Электролитическое разложение хлорида алюминия теоретически требуют более высокого напряжения, чем электролиз криолитоглиноземных расплавов, так как напряжение разложения хлорида алюминия много больше. Таким образом, к недостаткам процесса можно было бы отнести необходимость подвода в электролизер большого количества тепла и значительные потери напряжения. Однако высокие омические и тепловые потери значительно снижаются при использовании системы биполярных электродов. В электролизере верхний электрод является анодом, нижний – катодом, а между ними располагаются графитовые электроды, верхняя часть которых является катодом, а нижняя – анодом. В то же время результаты расчетов показывают, что с ростом числа биполярных электродов и снижением площади их сечения возрастают токи утечки, т. е. часть тока протекает по пропитанной электролитом части футеровки и каналам между футеровкой и биполями, не совершая электрохимическую работу. Эти токи утечки приводят к снижению выхода по току.

Вследствие близости температур плавления и кипения при атмосферном давлении хлорид алюминия возгоняется практически не плавясь. Температура сублимации составляет 180,2°С. Тройная точка соответствует температуре 192,6°С и абсолютному давлению 0,23 МПа. В связи с этим в качестве электролита используется расплавленная смесь хлорида алюминия (5 ± 2 % (масс.)), хлорида лития (~28% (масс.)) и хлорида натрия (67% (масс.)). В указанных расплавах снижается активность А1С13. Это в значительной степени обусловлено тем, что в расплавленных смесях хлоридов А1С13 связывается в комплексные анионы.

Основные прогнозируемые и подтвержденные при промышленном внедрении в США преимущества предложенного фирмой «Alcoa» способа производства алюминия электролизом его хлорида по сравнению с электролизом криолитоглиноземных расплавов заключаются в возможности использования низкокачественного алюминийсодержащего сырья, снижении примерно на 30 % удельного расхода электроэнергии при электролизе, исключении расхода высококачественных углеродсодержащих электродных материалов, применении менее дефицитных и агрессивных хлоридов вместо фторидов, повышении производительности труда, снижении капитальных вложений , приведенных затрат, стоимости конечной продукции и вредных выбросов в окружающую среду.

Таким образом, наиболее перспективным из альтернативных способов получения алюминия является электролиз хлорида алюминия в электролизерах с биполярными электродами.

3. Свойства и применение древесины .

Огромные пространства нашей планеты покрывают леса, они занимают около одной трети суши. Основным продуктом леса является древесина. По типу лесной растительности различают хвойные леса теплого умеренного климата, экваториальные дождевые леса, тропические влажные лиственные леса, леса сухих областей.

Древесина с древних времен используется для строительства жилищ , изготовления предметов домашнего обихода, для средств транспорта и разных изделий. Со временем наряду с древесиной в строительстве стали применяться металл, цемент, черепица, стекло, пластические массы.

Надо отметить, что древесина имеет и ряд недостатков: изменчивость свойств в направлении вдоль оси ствола и поперек; обладает гигроскопичностью, что приводит к увеличению ее массы и уменьшению прочности, а при высыхании древесина уменьшается в размерах (происходит усушка); она растрескивается и коробится; поражается грибами, что приводит к гниению; древесина способна гореть. Перечисленные недостатки в значительной мере устраняются путем химической и химико-механической переработки древесины в листовые и плитные материалы – бумагу, картон, древесностружечные и древесноволокнистые плиты, фанеру и др.

Взрослое дерево имеет ствол, крону и корни. Ствол связывает корневую систему с кроной дерева. Ствол дает основную массу древесины (от 50 до 90% объема всего дерева) и имеет главное промышленное значение. Верхняя тонкая часть ствола называется вершиной, нижняя толстая часть – комлем. Древесина занимает наибольшую часть объема ствола. Диаметр ствола изменяется в широких пределах, примерно от 6-8 до 100 см. Форма поперечного сечения ствола и, следовательно, древесины чаще всего близка к окружности, но иногда сечение приобретает форму эллипса. Диаметр уменьшается по высоте ствола. В верхней части ствола древесину пронизывают сучки, представляющие собой остатки ветвей. Снаружи древесину покрывает кора, относительный объем которой для основных пород приведен в таблице:

Порода

Объем коры, %

Лиственница

ОСНОВНЫЕ СВОЙСТВА ДРЕВЕСИНЫ

1. Химические свойства древесины

Химический состав древесины и коры. Древесина в основном состоит из органических веществ. Элементарный химический состав древесины всех пород практически одинаков. Органическая часть абсолютно сухой древесины (высушенной при 103оС) содержит в среднем 49-50 % углерода, 43-44 % кислорода, около 6 % водорода и 0,1-0,3 % азота.

Неорганическая часть может быть выделена в виде золы путем сжигания древесины. Количество золы в древесине около 0,2-1 %. В состав золы входят кальций, калий, натрий, магний, в меньших количествах фосфор, сера и другие элементы. Они образуют минеральные вещества, большая часть которых нерастворима в воде. Среди растворимых первое место занимают щелочные – поташ и сода, а из нерастворимых – соли кальция.

Химические элементы образуют сложные органические соединения. Главные из них – целлюлоза, лигнин, гемицеллюлоза, входящие в состав клеточных стенок древесины. Остальные вещества называются экстрактивными. Это смолы, дубильные и красящие вещества.

2. Физические свойства древесины

Физическими свойствами древесины называются такие, которые определяют без нарушения целостности испытываемого образца и изменения ее химического состава, т. е. выявляют путем осмотра, взвешивания, измерения, высушивания.

К физическим свойствам древесины относятся: внешний вид и запах, плотность, влажность и связанные с ней изменения – усушка, разбухание, растрескивание и коробление.

Внешний вид древесины определяется ее цветом, блеском, текстурой и макроструктурой.

Запах древесины зависит от находящихся в ней смол, эфирных масел, дубильных и других веществ. Характерный запах скипидара имеют хвойные породы – сосна, ель. Дуб имеет запах дубильных веществ, бакаут и палисандр – ванили. Приятно пахнет можжевельник, поэтому его ветви применяют при запаривании бочек. Большое значение имеет запах древесины при изготовлении тары. В свежесрубленном состоянии древесина имеет более сильный запах, чем после высыхания.

Влажность древесины. В растущем дереве вода необходима для его жизни и роста, в срубленной древесине наличие воды нежелательно, так как приводит к ряду отрицательных явлений.

Влажностью (абсолютной) древесины называется отношение массы воды к массе абсолютно сухой древесины, выраженное в процентах.

Усушка. Усушкой называется уменьшение линейных размеров и объема древесины при высыхании. Она начинается после полного удаления из древесины свободной влаги и с начала удаления связанной влаги, т. е. когда ее влажность снизится за предел насыщения клеточных стенок.

Разбухание – это свойство древесины обратное усушке и подчиняется тем же закономерностям. Разбуханием называется увеличение линейных размеров и объема древесины при повышении содержания связанной воды.

3 Механические свойства древесины

Механические свойства характеризуют способность древесины сопротивляться действию усилий. К механическим свойствам древесины относятся прочность и деформативность, а также некоторые эксплуатационные и технологические свойства.

Прочность – способность древесины сопротивляться разрушения под действием механических усилий; характеристикой ее является предел прочности – максимальное напряжение, которое выдерживает древесина без разрушения. Показатели пределов прочности устанавливают при испытании древесины на сжатие, растяжение, изгиб, сдвиг и редко при кручении.

Деформативностью называется изменение формы и размеров древесины под действием внешних сил.

Твердость – это свойство древесины сопротивляться внедрению тела определенной формы.

Ударная вязкость характеризует способность древесины поглощать работу при ударе без разрушения. Определяется при испытаниях на изгиб. Чем больше требуется затратить работы на разрушение образца, тем выше вязкость.

Износостойкость древесины – способность поверхностных слоев противостоять износу, т. е. разрушению в процессе трения.

Древесина используется для получения различных древесных материалов. К этим материалам относятся: круглые материалы, пиленые, строганные, лущеные, колотые лесоматериалы, измельченная древесина, композиционные древесные материалы. Все эти материалы широко используются в мебельной промышленности, судостроении, вагоностроении, машиностроении, электротехнике, строительстве, при изготовлении стандартных деревянных домов , в производстве автомобилей , пластмасс, линолеума, промышленных взрывчатых веществ, для упаковки продовольственных и промышленных товаров, для изготовления фибриловых плит и др., а также в других отраслях промышленности в качестве конструкционного, изоляционного и отделочного материала .

4. Чугун. Маркировка, свойства и применение серого чугуна.

К чугунам относятся сплавы железа с углеродом, содержащие более 2,14 %С (рис. 6).

Практическое применение находят чугуны с содержанием углерода до 4.0 – 4,5 %. При большем количестве углерода, механические свойства существенно ухудшаются.

Промышленные чугуны не являются двойными сплавами, а содержат кроме Fe и С, такие же примеси, как и углеродистые стали Мn, Si, S, P и др. Однако в чугунах этих примесей больше и их влияние иное, чем в сталях. Если весь имеющийся в чугуне углерод находится в химически связанном состоянии, в виде карбида железа (F3C - цементит), то такой чугун называется белым. Чугуны, в которых весь углерод или большая часть, находится в свободном состоянии в виде графитных включений той или иной формы, называются графитизированными.

Рис. 6. Структурная диаграмма состояния системы железо-цементит

В зависимости от формы графитных включений графитизированный чугун бывает серым, высокопрочным, ковким чугуны и с вермикулярным графитом.

Серые чугуны получают при меньшей скорости охлаждения отливок, чем белые. Они содержат 1 – 3 %Si – обладающего сильным графитизирующим действием.

Серый чугун хорошо обрабатывается режущим инструментом. Из него производят станины станков, блоки цилиндров, фундаментные рамы, цилиндровые втулки, поршни и т. д.

Механические свойства серого чугуна

Марка чугуна

Предел прочностипри растяжении, кгс/мм2, не менее

Предел прочностипри изгибе, кгс/мм2, не менее

Стрела прогиба, мм, при расстоянии между опорами, мм

Твердость по Бринеллю, НВ

Испытания не производятся

Графит в сером чугуне наблюдается в виде темных включении на светлом фоне нетравленного шлифа. По нетравленному шлифу оценивают форму и дисперсность графита, от которых в сильной степени зависят механические свойства серого чугуна.

Серые чугуны подразделяют по микроструктуре металлической основы в зависимости от полноты графитизации. Степень или полноту графитизации оценивают по количеству свободно выделившегося (несвязанного) углерода (рис. 7).

Полнота графитизации зависит от многих факторов, из которых главными являются скорость охлаждения и состав сплава. При быстром охлаждении кинетически более выгодно образование цементита, а не графита. Чем медленнее охлаждение, тем больше степень графитизации. Кремний действует в ту же сторону, что и замедление охлаждения, т. е. способствует графитизации, а марганец – карбидообразующий элемент – затрудняет графитизацию.

Рис. 7. Классификация чугунов по структуре металлической основы и в форме

графитовых включений

Если графитизация в твердом состоянии прошла полностью, то чугун содержит две структурные составляющие – графит и феррит. Если же эвтектоидный распад аустенита прошел в соответствии с метастабильной системой

эвтектоид (перлит), то структура чугуна состоит из графита и перлита. Такой сплав называют серым чугуном на перлитной основе. Также возможен промежуточный вариант, когда аустенит частично распадается по эвтектоидной реакции на феррит и графит, а частично с образованием перлита. В этом случае чугун содержит три структурные – графит, феррит и перлит. Такой сплав называют серым чугуном на феррито-перлитной основе.

Феррит и перлит в металлической основе чугуна имеют те же микроструктурные признаки, что и в сталях. Серые чугуны содержат повышенное количество фосфора, увеличивающего жидкотекучесть и дающего тройную эвтектику.

В металлической основе серого чугуна фосфидная эвтектика обнаруживается в виде светлых, хорошо очерченных участков.

Конструкторы при выборе материала для какой-либо конструкции или изделия не могут учитывать только один или два какие-либо критерия, характеризующие свойства материала. Как минимум, таких критериев должно быть четыре: жесткость конструкции, прочность материала, долговечность и надежность материала в условиях работы данной конструкции.

Жесткость конструкции.

Для многих силовых эле-ментов конструкций — шпангоутов, стрингеров, плоских пластинок, цилиндрических оболочек и т. п. — условием, определяющим их работоспособность, является местная или общая жесткость (устойчивость), определяемая их конструктивной формой, схемой напряженного состоя-ния и т. д., а также и свойствами материала. Как было отмечено в гл. 3, показателем жесткости материала яв-ляется модуль нормальной упругости Ε (модуль жест-кости) — структурно нечувствительная характеристика, зависящая только от природы материала.

Среди главных конструкционных материалов наибо-лее высокое значение модуля Ε имеет сталь, наиболее низкое — магниевые сплавы и стеклопластики. Однако оценка этих материалов существенно изменяется при учете их плотности (удельного веса) и использовании критериев удельной жесткости и устойчивости: Е/у, √ Е/у, 3 √E/y, (табл. 1).

При оценке по этим критериям, выбираемым в соот-ветствии с формой и напряженным состоянием, во мно-гих случаях наиболее выгодным материалом являются магниевые сплавы и стеклопластики, наименее выгод-ным материалом— углеродистые и легированные стали.

Таблица 1

Удельная жесткость (устойчивость) конструкционных материалов

Материал

Е, кгс/мм 2

γ, г/см 3

√ Е/у

3 √E/y

Углеродистые и легирован-ные стали

18 000— 22 000

Титановые сплавы

Алюминиевые сплавы

Магниевые сплавы

Стеклоплас-тики

Прочность конструкционных материалов, используе-мых в технике, изменяется в очень широком диапазо-не— от 10—15 до 250—350 кгс/мм 2 . Однако выбор мате-риала только по абсолютному значению показателей прочности σ τ (σ 0,2), σ Β и др. не дает правильной оценки возможностей материала. Для создания конструкции (машины) с минимальной массой большое значение имеет плотность (удельный вес) материалов γ. С учетом этого более правильно оценивать значение его удельной прочности отношением характеристик прочности σ Β , σ τ и т. д. к плотности (удельному весу) материала, напри-мер σ Β /γ, σ τ /γ, где γ —плотность (удельный вес) мате-риала, г/см 3 .

Таблица 2

Удельная прочность некоторых конструкционных материалов

Материал

σ Β , · кгс / мм 2

γ, г/см 3

σ Β /γ· 10 5 см

Углеродистая конструкционная сталь

Легированная конструкционная сталь 30ХГСА

Высокопрочные стали.

Магниевые сплавы МА2, МА8

Алюминиевые сплавы Д16, В95

Титановые сплавы

Стеклопластики типа СВАМ

Из данных, приведенных в табл. 2, видно, что, на-пример, алюминиевые сплавы, имея значительно мень-шую абсолютную прочность, чем углеродистые и мно-гие легированные стали, превосходят их по удель-ной прочности. Это означает, что при равной проч-ности масса изделия из алюминиевых сплавов меньше, чем изделия из стали. Наиболее высокую удельную прочность имеют стеклопластики типа СВАМ, а из металлических конструкционных материалов — титано-вые сплавы.

Оценивая реальную прочность конструкционного ма-териала, следует учитывать характеристики пластично-сти δ, ψ, а также вязкость материала, так как именно эти показатели в основном определяют возможность хрупкого разрушения.

Надежность конструкции — это ее способность крат-ковременно работать вне расчетной ситуации, например выдерживать ударные нагрузки. Главным показателем надежности является запас вязкости материала

Долговечность конструкции также зависит от усло-вий ее работы. Прежде всего это сопротивление износу при трении и контактная прочность (сопротивление ма-териала поверхностному износу, возникающему при тре-нии качения со скольжением). Долговечность изделия, кроме того, зависит от предела выносливости, зависяще-го в свою очередь от состояния поверхности. Определяется долговечность и коррозионной стойкостью материала.

Сплавы железа — сталь и чугун являются основными металлическими материалами, используемыми в раз-личных отраслях народного хозяйства.

Наиболее универсальным и широко используемым ма-териалом является сталь. Кроме перечисленных требо-ваний, стали должны иметь и хорошие технологические свойства: легко обрабатываться давлением (многие из-делия получают прокаткой, ковкой или штамповкой), а также хорошо обрабатываться на металлорежущих станках, хорошо свариваться. В ряде случаев от сталей требуется высокая коррозионная стойкость или жаро-прочность и т. д.

Достоинством сталей является возможность полу-чать в них нужный комплекс свойств, изменяя их состав и обработку.

КЛАССИФИКАЦИЯ И МАРКИРОВКА СТАЛЕЙ

Все стали можно разделить на две группы — углеро-дистые и легированные. Углеродистые стали являются основным конструкционным материалом, который ис-пользуют в различных

областях промышлен-ности. Эти стали про-ще в производстве и значительно дешевле легированных. Но уг-леродистые стали — это не только сплав железа с углеродом, это сплав сложного хи-мического состава. По-этому свойства таких сталей определяются и количеством углеро-да, и содержанием присутствующих в них примесей, которые взаимодействуют и с железом, и с углеро-дом.

Влияние углерода.

В углеродистой стали механиче-ские свойства зависят главным образом от содержания углерода. С увеличением содержания углерода в стали увеличивается количество цементита и соответственно уменьшается количество феррита, т. е. увеличиваются прочность и твердость и уменьшается пластичность (рис. 1). Как видно из графика, приведенного на рис. 135, прочность повышается только до 1% С, а при более высоком содержании углерода она начинает уменьшаться. Происходит это потому, что образующая-ся по границам зерен в заэвтектоидных сталях сетка вторичного цементита уменьшает прочность стали.

Кроме углерода, в стали обязательно присутствуют еще другие элементы, наличие которых обусловлено

Постоянные примеси.

Это кремний, марганец, фос-фор и сера.

Марганец и кремний вводят в процессе вы-плавки в сталь для ее раскисления, т. е. для удаления закиси железа, поэтому их также называют технологи-ческими примесями.

Кроме того, марганец способствует уменьшению со-держания сульфида железа FeS в стали: FeS+Mn->MnS+Fe. Марганец и кремний растворяются в фер-рите, повышая его прочность; марганец может также растворяться и в цементите. Углеродистые стали обычно содержат до 0,7—0,8% Май до 0,5% Si.

Сера — вредная примесь — попадает в сталь глав-ным образом с исходным сырьем —чугуном. Сера не-растворима в железе, она образует с ним соединение FeS —сульфид железа. При взаимодействии с железом образуется эвтектика (Fe-FeS) с температурой плав-ления 988° С. Поэтому при нагреве стальных заготовок для пластической деформации выше 900° С сталь стано-вится хрупкой. При горячей пластической деформации заготовки разрушаются. Это явление называется крас-ноломкостью. Одним из способов уменьшения влияния серы является введение марганца. Соединение MnS плавится при 1620° С, эти включения пластичны и не вызывают красноломкости.

Фосфор попадает в сталь главным образом также с исходным чугуном, использованным для выплавки ста-ли. До 1,2% фосфора растворяется в феррите, уменьшая его пластичность. Фосфор обладает большой склон-ностью к ликвации, поэтому даже при незначительном среднем количестве фосфора в отливке всегда могут об-разовываться участки, богатые фосфором. Располага-ясь вблизи границ зерен, фосфор повышает температуру перехода в хрупкое состояние, т. е. вызывает хладно-ломкость. Поэтому фосфор, как и сера, является вредной примесью, содержание его в углеродистой ста-ли допускается до 0,050%.

Чем больше углерода в стали, тем сильнее влияние фосфора на ее хрупкость.

Рис. 1. Зависимость свойств горяче-катаной углеродистой стали от содер-жания углерода различными причинами. Различают примеси: постоян-ные, скрытые, случайные и специально введенные.

Скрытые примеси.

Так называют присутствующие в стали газы — азот, кислород, водород — ввиду сложно-сти определения их количества. Газы попадают в сталь при ее выплавке. В твердой стали они могут присутст-вовать, либо растворяясь в феррите, либо образуя хими-ческие соединения (нитриды, оксиды). Газы могут на-ходиться и в свободном состоянии в различных несплошностях.

Даже в очень малых количествах азот, кислород и водород сильно ухудшают пластические свойства стали. Содержание их допускается 10 -2 —10 -4 %. В результате вакуумирования стали их содержание уменьшается, свойства улучшаются.

Случайной примесью может быть любой элемент (медь, алюминий, вольфрам, никель), который попал в шихту вместе с металлоломом или чугуном при выплав-ке стали. Содержание этих элементов ниже тех преде-лов, когда их вводят специально как легирующие до-бавки.

Специальные примеси. Это элементы, специально вводимые в сталь для получения каких-либо заданных свойств. Такие элементы называют легирующими, а ста-ли, их содержащие, — легированными сталями.

Содержание легирующих элементов в сталях может изменяться в очень широких пределах. Сталь считают легированной хромом или никелем, если содержание этих элементов составляет 1% или более. При содержа-нии ванадия, молибдена, титана, ниобия и других эле-ментов более 0,1—0,5% стали считают легированными этими элементами. Сталь является легированной и в том случае, если в ней содержатся только элементы, харак-терные для углеродистой стали, марганец или кремний, но их количество должно превышать 1%.

В конструкционных сталях легирование осуществля-ют с целью улучшения механических свойств — прочно-сти, пластичности и т. д. Кроме того, легирующие эле-менты изменяют физические, химические и другие свой-ства стали.

Нужный комплекс свойств достигается не только ле-гированием, но и рациональной термической обработ-кой, в результате которой получается необходимая структура.

Как правило, легирующие элементы существенно увеличивают стоимость стали, а некоторые из них к то-му же являются дефицитными металлами, поэтому добавление их в сталь должно быть строго обосно-вано.

Существует несколько классификаций, позволяющих систематизировать стали, что упрощает поиск нужной марки стали с учетом ее свойств.

Стали классифицируют по химическому составу, спо-собу выплавки, по структуре в отожженном или нор-мализованном состоянии, по качеству и по назначе-нию.

Классификация по химическому составу

По химическому составу прежде всего все стали мож-но разделить на две большие группы: углеродистые и легированные. В свою очередь легированные стали в зависимости от числа легирующих элементов различают как трехкомпонентные (содержат кроме железа и угле-рода один какой-либо легирующий элемент), четырех -компонентные и т. д. Более применительной является классификация с указанием легирующих элементов: стали хромистые, хромоникелевые, хромоникельмолибденовые и т. д.

По степени легирования, т. е. по содержанию ле-гирующих элементов, стали условно подразделяют на низколегированные (содержат в общем 2,5—5% леги-рующих элементов), среднелегированные (до 10%) и высоколегированные (более 10%)·

Классификация по способу выплавки

Углеродистые стали выплавляют главным образом мартеновским и кислородно-конверторным способами. Наиболее качественную углеродистую сталь выплавляют в электрических дуговых печах.

В зависимости от степени раскисления при выплавке стали могут быть спокойными (сп), полуспокойными (пс) или кипящими (кп), что и указывают в марке. Спокойные, полуспокойные и кипящие стали при одина-ковом содержании углерода имеют практически одина-ковую прочность. Главное их различие заключается в пластичности, которая обусловлена содержанием крем-ния. Содержание кремния в спокойной стали 0,15— 0,35%, в полуспокойной 0,05—0,15%, в кипящей < 0,05%.

Легированные стали выплавляют только спокойными в печах мартеновских или электрических.

В результате уменьшения содержания кремния в фер-рите кипящих сталей они становятся мягкими, поэтому кипящая сталь хорошо штампуется в холодном состоя-нии (например, для изготовления деталей глубокой вы-тяжкой). Но из-за большого содержания газов, особен-но азота, кипящие стали склонны к деформационному старению. Кроме того, большое содержание кислорода в этой стали повышает порог хладноломкости, кипящие стали становятся хрупкими уже при —10° С, в то время как спокойные стали, содержащие одинаковое количе-ство углерода, могут работать до —40° С. Они более склонны к зональной ликвации. Это наиболее дешевые стали, но качество металла низкое, поэтому их исполь-зуют для изготовления неответственных деталей и кон-струкций.

Классификация по структуре

По структуре в отожженном состоянии стали разде-ляют на доэвтектоидные, эвтектоидную и заэвтектоидные. Легированные стали, кроме того, могут быть ферритного, аустенитного и ледебуритного классов. К ферритному классу относятся стали, в которых при малом содержании углерода имеется большое количест-во ферритообразующих легирующих элементов, напри-мер хрома. К ледебуритному классу относятся стали с большим содержанием углерода и карбидообразующих элементов, в результате чего в их структуре имеются первичные карбиды — легированный ледебурит.

Рис. 2. Диаграммы изотермического распада аустенита трех классов стали

По структуре после охлаждения на воздухе легиро-ванные стали разделяют на три основных класса: пер-литный, мартенситный и аустенитный (рис. 2) (струк-туру во всех случаях определяют по образцам неболь-шого сечения, диаметром до 25 мм). Ранее было отмечено, что легирующие элементы увеличивают ус-тойчивость аустенита в перлитной области и понижают температуру мартенситного превращения. Поэтому при одинаковой скорости охлаждения до комнатных темпе-ратур при различном содержании легирующих элемен-тов и углерода получаются различные структуры.

Классификация по качеству

В основе классификации сталей по качеству лежит содержание вредных примесей — серы и фосфора. Раз-личают углеродистую сталь обыкновенного качества, сталь качественную конструкционную и сталь высоко-качественную.

Сталь обыкновенного качества содержит повышенное количество серы (до 0,05%) и фосфора (до 0,04%, Ст0 до 0,07% Р). Эти стали выплавляют преимущественно в больших мартеновских печах скрап-рудным процессом или в кис-лородных конверторах. Обозначение марок стали — бук-венно-цифровое: буквы Ст означают «сталь», цифры от 0 до 6 — условный номер марки, например Ст0, Ст2... Ст6. Степень раскисленности стали обозначают бук-вами кп, пс и сп. Кипящими выплавляют стали ма-рок Ст 0 — Ст 4, полуспокойными и спокойными могут выплавляться все марки сталей от Ст 1 до Ст6.

Сталь подразделяют на три группы: А, Б и В. В мар-ках указывают только группы Б и В, например Ст2кп (сталь 2, группы А, кипящая); Б СтЗкп (сталь 3, груп-пы Б, кипящая); В Ст 3пс (сталь 3, группы В, полуспо-койная); В Ст 4сп (сталь 4, группы В, спокойная) и т. п.

Химический состав стали группы А не регламентиру-ется, его только указывают в сертификатах металлурги-ческого завода-изготовителя. Стали этой группы обычно заказчики используют в состоянии поставки, поэтому их поставляют по механическим свойствам (σ Β , σ τ и δ).

С увеличением номера стали прочность увеличивается, а пластичность уменьшается:

Стали группы Б поставляют по химическому составу, так как эти стали в дальнейшем обычно подвергают раз-личной обработке (ковке, сварке, термической обработ-ке) с целью получения нужного заказчику комплекса механических свойств.

Стали группы В поставляют по химическому составу и механическим свойствам — по нормам для сталей групп А и Б.

Углеродистая сталь обыкновенного качества — де-шевая и во многих случаях удовлетворяет требованиям по механическим свойствам, предъявляемым к металлу. Ее выплавка составляет около 80% всего производства углеродистых сталей.

Качественные стали.

В качественных сталях макси-мальное содержание вредных примесей составляет не более 0,04% серы и 0,04% фосфора. Качественная сталь менее загрязнена неметаллическими включениями и имеет меньшее содержание растворенных газов. Поэто-му при примерно одинаковом содержании углерода ка-чественные стали имеют более высокую пластичность и вязкость по сравнению со сталями обыкновенного каче-ства особенно при низких температурах. Качественные углеродистые стали поставляют по химическому соста-ву и по механическим свойствам. Марки сталей обозна-чают цифрами, указывающими среднее содержание уг-лерода в сотых долях процента (пределы по углероду 0,07—0,08% для одной марки), степень раскисленности — буквами пс, кп (спокойные качественные стали маркируют без индекса). Например, сталь 10 кп (0,10% С, кипящая), сталь 30пс (0,30% С, полуспокойная), сталь 45 (0,45% С, спокойная) и т. д. Качественные углеро-дистые стали поставляются заказчику в различном со-стоянии: без термической обработки, после нормализа-ции, различной степени пластической деформации и т. д. Состав некоторых качественных углеродистых сталей и их механические свойства приведены в приложении, табл. 5,

В высококачественных сталях стремятся получить минимально возможное содержание серы и фосфора (S <0,035% и Р<0,035%). Поскольку при этом стои-мость стали существенно увеличивается, конструкцион-ные углеродистые стали редко выплавляют высококаче-ственными. Для обозначения высокого качества стали в конце обозначения марки стали ставят букву А, напри-мер сталь У10А. Легированные стали выплавляют толь-ко качественными, а чаще —высококачественными. Для обозначения марок легированных сталей в СССР при-нята буквенно-цифровая система.

Легирующие элементы обозначают следующими бук-вами: хром — X, никель — Н, молибден — М, вольфрам — В, кобальт —К, титан —Т, азот —А, марганец —Г, медь — Д, ванадий —Ф, кремний —С, фосфор —П, алюминий —Ю, бор —Р, ниобий —Б, цирконий — Ц.

Марка стали обозначается сочетанием букв и цифр. Для конструкционных марок стали первые две цифры показывают среднее содержание углерода в сотых до-лях процента. Содержание легирующих элементов, если оно превышает 1%, ставят после соответствующей буквы в целых единицах. Например, сталь марки 18ХГТ содер-жит около 0,18% С; 1% Cr; 1 % Μn и около 0,1 % Ti; мар-ки 12ХН3-0,12% С; 1% Сr и 3% Ni.

Нестандартные стали обозначают различным обра-зом. Наиболее часто встречается обозначение буквами ЭИ и ЭП и номером. Такая маркировка показывает, что сталь выплавлена на заводе «Электросталь» (буква Э), сталь исследовательская (буква И) или пробная (бук-ва П), например стали ЭИ395, ЭИ347, ЭП398 и т. д. Состав таких сталей приведен в справочниках.

Особо высококачественными выплавляют только ле-гированные стали и сплавы. Они содержат не более 0,015% серы и 0,025% фосфора. К ним предъявляют по-вышенные требования и по содержанию других приме-сей.

Классификация по назначению

По назначению стали подразделяют на три основные группы: конструкционные, инструментальные и с особы-ми свойствами. В основу классификации первых двух групп положено содержание углерода. Стали, содержа-щие углерода до 0,25%, используют как котельные, строительные и для деталей машин, подвергаемых це-ментации. Низкое содержание углерода в котельных и строительных сталях обусловлено тем, что детали котлов и строительных конструкций соединяют сваркой, а углерод ухудшает свариваемость.

Сталь

Ст 1пс

Ст Зпс и Ст Зсп

Ст 6сп

σ Β , кгс/мм 2 .

σ Т, кгс/мм 2 ,

Для деталей машин , испытывающих ударные нагруз-ки, используют стали, содержащие 0,30—0,50% С (сталь 35, сталь 40, сталь 45, сталь 40ХН и т. д.). Эти стали подвергают термической обработке — закалке с после-дующим высокотемпературным отпуском (улучшению).

Для пружин и рессор используют стали, содержащие 0,50—0,70% С. Эти стали также применяют только пос-ле соответствующей термической обработки.

Стали, содержащие 0,7—1,5% С, используют для изготовления ударного и режущего инструмента. Угле-родистые стали маркируются У7, У8, У13, где бук-ва У обозначает углеродистую сталь, а число показыва-ет содержание углерода в десятых долях процента, т. е. сталь У10 содержит 1% С. Эти стали иногда выплавля-ют высококачественными и тогда их маркируют У10А или У8А и т. п. У инструментальных легированных сталей содержа-ние углерода также обозначают в десятых долях про-цента, например сталь марки 9ХС содержит 0,9% С; 1% Сr и 1,4% Si. Если углерода больше 1%, то цифры не указывают, например стали ХВГ, ХГ и т. д.

Стали и сплавы с особыми свойствами . К этой группе относятся стали, коррозионностойкие, нержавеющие и кислотоупорные; жаропрочные и жаростойкие стали и сплавы; с особыми магнитными свойствами и т. д.

ДЕФЕКТЫ ЛЕГИРОВАННЫХ СТАЛЕЙ

Кроме дефектов, характерных для углеродистых ста-лей, в легированных сталях проявляются и специфиче-ские дефекты: дендритная ликвация, флокены и от-пускная хрупкость II рода.

Дендритная ликвация. Наличие легирующих элемен-тов увеличивает температурный интервал кристаллиза-ции. Кроме того, как было отмечено, диффузионные процессы в легированных сталях протекают медленно. В результате увеличивается склонность таких сталей к дендритной ликвации и полосчатости в структуре. Ус-траняется дендритная ликвация диффузионным отжигом.

Флокены. Ранее неоднократно отмечалось различное влияние газов на свойства сталей, указывалось на их не-желательное присутствие, так как при этом свойства сталей ухудшаются. Так, например, возникает один из дефектов легированных сталей — флокены (трещины, ко-торые можно выявить при макротравлении). На изло-мах флокены имеют вид блестящих круглых или оваль-ных пятен, являющихся поверхностью трещин. В настоя-щее время установлено, что флокены образуются при быстром охлаждении металла от 200° С после ковки или прокатки. Их образование происходит вследствие при-сутствия в металле водорода, растворившегося в жид-ком металле при плавке. Выделяясь в деформированной стали из твердого раствора, он вызывает сильные внут-ренние напряжения, приводящие к образованию флокенов. Флокены чаще образуются в хромовых и хромоникелевых конструкционных сталях. Для предупреждения их образования после горячей пластической деформации металл охлаждают медленно в области 250—200° С или подвергают выдержке при этих температурах. Это дает возможность водороду удалиться из стали.

ЦЕМЕНТУЕМЫЕ СТАЛИ

Некоторые детали работают в условиях поверхност-ного износа, испытывая при этом и динамические на-грузки. Для изготовления таких деталей используют малоуглеродистые стали, содержащие 0,10—0,30% С, подвергая их цементации.

Для изделий небольших размеров, деталей неответ-ственного назначения применяют малоуглеродистые ста-ли марок 10, 15, 20. Для деталей более сложной формы, деталей сильно нагруженных, крупных применяют низколегированные стали с небольшим содержанием угле-рода. В качестве легирующих элементов в цементуемые стали добавляют хром, никель и т. д. Чем выше требо-вания к свойствам, тем более сложные стали по составу применяют.

Изделия небольшого сечения и несложной формы, работающие при повышенных удельных нагрузках (втулки, валики, оси, кулачковые муфты, поршневые пальцы и т. д.), делают из хромистых сталей 15Х, 20Х, содержащих около 1%Сг. При содержании хрома до 1,5% в цементованном слое повышается концентрация углерода, образуется легированный цементит (Fe, Сr) 3 С, увеличивается глубина эвтектоидного слоя, а после тер-мической обработки увеличивается и глубина закален-ного слоя. Дополнительное легирование этих сталей ва-надием (0,1—0,2%) — сталь 15ХФ — способствует получению более мелкого зерна, что улучшает пластич-ность и вязкость.

Для изготовления цементуемых деталей средних раз-меров, испытывающих при работе высокие удельные на-грузки, используют стали, в состав которых входит ни-кель (20ХН, 12ХНЗА). Несколько уменьшая глубину цементованного слоя, Ni в то же время увеличивает глу-бину закаленного слоя, препятствует росту зерна и обра-зованию грубой цементитной сетки. Никель положитель-но влияет и на свойства стали в сердцевине изделия. Ввиду дефицитности никеля эти стали стремятся заме-нить другими легированными сталями. К таким сталям относятся хромомарганцевые стали с небольшим количе-ством титана (0,006—0,12%): 18ХГТ, 30ХГТ. В цемен-туемые стали титан вводят только для измельчения зер-на. При большем его содержании он уменьшает глубину цементованного закаленного слоя и прокаливаемость.

Наиболее высоколегированные цементуемые стали (12Х2Н4, 18Х2Н4В и др.) используют для изготовления деталей больших сечений. Эти стали являются наиболее высокопрочными из всех цементуемых сталей.

В последние годы с целью повышения прочности для цементуемых деталей применяют стали, легированные бором (0,002-0,005%): 15ХР, 20ХГР и др. Сталь 20ХГНР в целях экономии никеля применяют вместо ста-ли 12ХНЗА. При ХТО следует учитывать, что бор, уве-личивая прокаливаемость, способствует росту зерна при нагреве. Для уменьшения чувствительности сталей к пе-регреву их дополнительно легируют Ti или Zr.

Обычно изделия, изготовленные из высоколегирован-ных цементуемых сталей, подвергают цементации на не-большую глубину.

УЛУЧШАЕМЫЕ СТАЛИ

Улучшаемыми сталями называют среднеуглеродистые конструкционные стали (0,3—0,5% С), подвергае-мые закалке и последующему высокотемпературному от-пуску. После такой термической обработки стали при-обретают структуру сорбита, хорошо воспринимающую ударные нагрузки. Углеродистые улучшаемые стали (стали 35, 40, 45 и 50) обладают небольшой прокаливаемостью (до 10 мм), поэтому механические свойства с увеличением сечения изделия понижаются. Для мелких деталей после термической обработки получают σ Β =60-70 кгс/мм 2 и α Η =4-5 кгс-м/см 2 . Если от деталей требуется более высокая поверхностная твердость (шпин-дели, валы, оси и т. д.), то после закалки их подвергают отпуску на твердость HRC 40—50. Для получения высо-кой поверхностной твердости используют закалку ТВЧ (шестерни, коленчатые валы, поршневые пальцы и т. д.).

Для повышения механических свойств сталей при изготовлении деталей сечением более 25—30 мм в со-став сталей добавляют легирующие элементы. Легиро-ванные стали обладают большей прокаливаемостью, более мелким зерном, их критическая скорость закалки меньше, следовательно, меньше закалочные напряже-ния, выше устойчивость против отпуска. Отсюда их ос-новное преимущество перед углеродистыми конструк-ционными сталями — лучший комплекс механических свойств: выше прочность при сохранении достаточной вязкости и пластичности, ниже порог хладноломкости и т. п.

Большинство легированных конструкционных сталей относятся к перлитному классу.

При создании марок легированных сталей всегда учитывают стоимость легирующего элемента и его де-фицитность.

Основным легирующим элементом в конструкцион-ных сталях является хром, содержание которого обыч-но составляет 0,8—1,1%; марганца в сталях до 1,5%; кремния 0,9—1,2%; молибдена 0,15—0,45%; никеля 1— 4,5%. Общая сумма легирующих элементов не превы-шает 3—5%.

Все перечисленные элементы, кроме никеля, увели-чивая прочность стали, понижают ее пластичность и вязкость, Никель является исключением — он оказывает особенно положительное влияние на свойства стали, увеличивая ее прочность, не понижая пластичность и вязкость. Кроме того, никель понижает порог хладно-ломкости. Поэтому стали, содержащие никель, особен-но ценны как конструкционный материал.

Кроме названных элементов, в конструкционные стали для деталей машин вводят около 0,1% V, Ti, Nb

Zr для измельчения зерна Введение 0,002—0,003% В увеличивает прокаливаемость.

Улучшаемые стали можно условно разделить на несколь-ко групп. Широко применяют стали, легированные хромом, особенно стали марок 40Х, 45Х. Для увеличения прокаливаемости в них иногда добавляют бор (сталь 40ХР). Увеличение прокаливаемости (в сечении до 40 мм) достигается и добавлением в хромистые стали около 1% Μn: 30ХГ, 40ХГ, 40ХГР и др. Для уменьшения склонности хромистых сталей к отпускной хрупкости II рода вводят 0,15—0,25% Мо.

Хромомарганцевые стали 20ХГС, 25ХГС, 30ХГС, называемые хромансиль , легированы хромом, кремнием и марганцем, т. е. не содержат дефицитных легирующих элементов. Эти стали обладают хорошей свариваемо-стью и прочностью, например сталь 30ХГС после тер-мической обработки имеет σ Ε = 165 кгс/мм 2 при а н = 4 кгс-м/см 2 . Недостаток этих сталей — склонность к отпускной хрупкости II рода и к обезуглероживанию поверхности при нагреве.

Чем больше размер детали, сложнее ее конфигура-ция, выше напряжения, возникающие в пей в процессе работы, тем с большим количеством никеля применяют сталь для ее изготовления: 40ХНМ, 30ХН2МФ, 38ХНЗМФ и т.д.

Рис. 3. Диаграмма для выбо-ра марок конструкционной ста-ли в зависимости от заданной прочности и размеров сечения а детали: 1 - 30ХНЗМ; 2 — 30ХНЗ; 3 - 34ХМА; 4 — ЗЗХСА; 5 — ЗОНЗ; 6 — 35ХА; 7 — 35СГ; 8 — сталь 30

Молибден и вольфрам вводят в состав сталей также для уменьшения склонности к отпускной хрупкости. На рис.3 приведена диаграмма, позволяющая выбрать нужную марку стали, в зависимости от заданных проч-ности и размеров сечения.

ВЫСОКОПРОЧНЫЕ СТАЛИ

С каждым годом растет потребность в материалах, обладающих высокой прочностью и вместе с этим не-обходимыми пластичностью и вязкостью. В обычных конструкционных сталях предел прочности σ Β , как пра-вило, получают не более 110—120 кгс/мм 2 , так как при большей прочности сталь практически становится хруп-кой.

Стали, в которых подбором химического состава и оптимальной термической обработки получают σ Β = = 180—200 кгс/мм 2 , называют высокопрочными.

Высокопрочное состояние может быть получено не-сколькими способами. Один из таких способов — леги-рование среднеуглеродистых сталей (0,4—0,5% С) хро-мом, вольфрамом, молибденом, кремнием и ванадием. Эти элементы затрудняют разупрочняющие процессы при нагреве до 200—300° С. При этом получают мелкое зерно, что в свою очередь понижает порог хладнолом-кости, увеличивает сопротивление хрупкому разруше-нию. Например, сталь, содержащая 0,4% С; 5% Сr; 1 % Мо и 0,5% V, после закалки в масле и низкого от-пуска при 200°С имеет σ Β =200 кгс/мм 2 при 6 = 10%, ψ=40% и а н =3 кгс-м/см 2 .

Стали 30ХГСНА, 40ХГСНЗВА, 30Х2ГСНЗВМ и т.п. после термической обработки на структуру нижнего бейнита (закалка и низкий отпуск или изотермичес-кая закалка) приобретают высокую прочность — та-кая обработка сообщает сталям меньшую чувствитель-ность к надрезам. Прочность σ Β =160—185 кгс/мм 2 при δ=15—12% и а н =4—2 кгс-м/см 2 .

Высокая прочность легированных конструкционных сталей может быть получена и за счет применения тер-момеханической обработки (ТМО). Так, стали ЗОХГСА, 40ХН, 40ХНМА, 38ХНЗМА после НТМО имеют предел прочности до 280 кгс/мм 2 , относительное удлинение и ударная вязкость увеличиваются в 1,5—2 раза по срав-нению с обычной термической обработкой. Объясняет-ся это тем, что частичное выделение углерода из аусте-нита при деформации облегчает подвижность дислока-ций внутри кристаллов мартенсита, что и способствует повышению пластичности (охрупчивание при закалке сталей объясняется именно малой подвижностью дис-локаций в мартенсите при значительном содержании в нем углерода).

Мартенситностареющие ст али .

Эти стали сочетают высокие прочностные свойства с хорошей пластично-стью и вязкостью. Достигается это легированием и специальной термической обработкой. Их достоинст-ва— высокая технологическая пластичность при обра-ботке давлением в широком интервале температур; от-сутствие трещинообразования при охлаждении с лю-быми скоростями после обработки давлением; хорошая свариваемость. Недостатком этих сталей является их склонность к ликвации.

Легирующие элементы с железом образуют твердые растворы замещения. Поэтому при закалке мартенситное превращение про-текает по второму механизму, т. е. образуется реечный (массивный) мартенсит, для которого характерна высокая плотность дислокаций (до 10 10 —10 12 см). Для их закрепления требу-ется более 0,2% С, а в этих сталях его содержание 0,03%. Кроме того, никель и кобальт уменьшают степень закрепления дислокаций атомами углерода и азота, понижают сопротивление решетки мар-тенсита скольжению дислокаций, поэтому дислокации в этих сталях после закалки обладают высокой подвижностью, сталь очень пластична. После закалки σ Β = 90—110 кгс/мм 2 , а δ =14—20%, ψ =70—80% и α = 20—30 кгс-м/см 2 .

Изделия из этих сталей получают пластической деформацией после закалки заготовок. Дислокационная структура, полученная после закалки, очень устойчива, сохраняется при нагреве до 500° С.

Упрочнение стали происходит в процессе отпуска — старения, который проводят при 480—500° С, за счет перераспределения леги-рующих элементов. Это приводит к образованию зон концентраци-онной неоднородности и выделению интерметаллидных фаз NiTi, Νi 2 (Ti, Al), FeMo a в высокодисперсном состоянии. Наибольшее упрочнение наблюдается, когда интерметаллидные фазы находятся на стадии предвыделения, т. е. когда они еще когерентно связаны с твердым раствором и их размер не превышает 20—50 А.

Известно, что в твердом состоянии зарождение новой фазы предпочтительно происходит на дефектах решетки, в частности на дислокациях. Дисперсные частицы, выделяясь на дислокациях, за-крепляют их. Дислокации теряют подвижность, прочность увеличи-вается. Чем мельче частицы интерметаллидов, тем больше упрочне-ние стали. Отсюда такой узкий интервал нагрева при старении.

Установлено, что чем выше содержание никеля, тем значитель-нее упрочнение стали при одинаковом содержании алюминия и титана. Наилучшее сочетание свойств получается при введении в сталь 20—25 Ni. После термической обработки мартенситностареющих сталей получают σ В =240—280 кгс/мм 2 при б=12%, ψ=40% и а н = 10 кгс-м/см 2 (см. табл. 3).

Высокая стоимость легирующих элементов, а также дефицит-ность никеля и кобальта ограничивают широкое применение таких сталей. Поэтому появились марки так называемых «экономнолегированных» мартенситностареющих сталей: Н8Х6МТЮ, 10Н4Г4Х2МЮ, Н12М2Д2ТЮ, Н8ГЗМ4 и др.

Таблица 3

Состав и механические свойства мартенситностареющих сталей

кгсм/см а

кгс-м/см 2

Примечание. Во всех сталях содержится: <0,03% С; 0,01% S; 0,01% Р; 0,05-0,20% Аl.

Мартенситностареющие стали относятся к высоко-легированным сталям. Основным легирующим элемен-том является никель (10—26%), Кроме того, различа-ясь по составу, разные марки этих сталей содержат 7— 9% Со; 4,5—5% Мо; 5-11% Сr; 0,1—0,35 Аl; -0,15— 1,6% Ti; иногда -0,3—0,5% Nb; <0,2% Si, Μn; <0,01% S, Ρ каждого. Титан и алюминий вводят для образования интерметаллидов.

В мартенситностареющих сталях стремятся полу-чить минимальное количество углерода (^0,03%), так как углерод, образуя с легирующими элементами кар-биды, способствует охрупчиванию сталей. Кроме того, при этом понижается содержание легирующих элемен-тов в твердом растворе. Термическая обработка таких сталей заключается в закалке с 800—860° С, охлажде-нии на воздухе и затем отпуске — старении.

Мартенситностареющие стали используют для изго-товления шасси самолетов, оболочек космических лета-тельных аппаратов, прецизионных хирургических инструментов и штампов и т.д. Используют эти стали и для криогенной техники, так как и при отрицательных температурах они обладают высокой прочностью в со-четании с достаточной пластичностью.

ПРУЖИННО-РЕССОРНЫЕ СТАЛИ

Основное требование к материалам, используемым для изготовления пружин, рессор, торсионных валиков и т.д., — сохранение в течение длительного времени уп-ругих свойств. Пружинные стали должны иметь высокий предел упругости (σ γπ), высокое сопро-тивление разрушению (S k) и усталости при пониженной плас-тичности.

Термически упрочняемые пру-жинно-рессорные стали обычно содержат 0,5—0,7% С. Для менее ответственных пружин и пружин с мелким сечением витков приме-няют углеродистые стали по ГОСТ 1050—74. Для пружин бо-лее ответственного назначения и при большем сечении витков при-меняют легированные пружин-ные стали.

Для повышения выносливости пружин и рессор ши-роко применяют дробеструйную обработку.

Рис. 4 . Схема изменения прочности пружинных ста-лей в зависимости от темпе-ратуры отпуска

Чаще всего пружинные стали легируют кремнием. Задерживая распад мартенсита при отпуске и упрочняя феррит, кремний создает высокое значение предела уп-ругости. Кремнемарганцовистые и хромомарганцовистые стали (55СГ, 50ХГ и др.) имеют хорошую прокаливаемость и их применяют для изготовления пружин из прутков диаметром до 25 мм. Для крупных наиболее ответственных пружин применяют стали 65С2ВА, 60С2ХФА.

Режим термической обработки назначают в зависи-мости от состава стали и условий работы пружин. Наи-более высокая упругая прочность достигается в резуль-тате среднего отпуска на троостит.

ШАРИКОПОДШИПНИКОВЫЕ СТАЛИ

Детали шарикоподшипников (кольца, шарики, ро-лики) в процессе работы испытывают высокие удель-ные переменные нагрузки. Поэтому стали, используе-мые для их изготовления, должны иметь высокую проч-ность, износостойкость и высокий предел выносливости. Кроме того, к шарикоподшипниковым сталям предъяв-ляют высокие требования по содержанию неметалличе ских включений (сульфидных, оксидных), макро- и микрополостей, ликвации, размеру и расположению карбидных включений. Это обусловлено характером работы шарикоподшипников. Указанные дефекты явля-ются концентраторами напряжений, особенно если они находятся в поверхностных слоях деталей. Кроме того, при работе подшипников возможно выкрашивание не-металлических включений, что резко снижает долговеч-ность подшипника.

Таблица 4

Химический состав (%) шарикоподшипниковой стали.

Сталь

С r

Μ n

Примечание. Во всех сталях содержится <0,02% S; <0,027% Р.

Для изготовления шариковых и роликовых под-шипников применяют высокоуглеродистую сталь, леги-рованную хромом (табл. 4).

Маркировку ШХ следует расшифровывать как ша-рикоподшипниковую хромистую. Цифра показывает среднее содержание хрома в десятых долях процента.

Шарики и ролики небольших диаметров изготавли-вают из стали ШХ9. Из стали ШХ15 изготавливают ша-рики диаметром больше 22,5 мм, ролики диаметром 15—30 мм, а также кольца всех размеров; ролики диа-метром более 30 мм и кольца с толщиной стенки более 15 мм — из стали ШХ15СГ,

Для изготовления деталей крупногабаритных под-шипников, работающих при больших ударных нагруз-ках (например, подшипников прокатных станов), при-меняют цементуемую сталь марки 20Х2Н4А. При этом проводят глубокую цементацию, получая цементован-ный слой глубиной 5—10 мм.

ИЗНОСОСТОЙКИЕ СТАЛИ

Износ деталей машин и аппаратов является слож-ным процессом. Типовыми случаями являются обычное трение скольжения и абразивный износ. В первом слу-чае металл наклёпывается с поверхности, поэтому из-носостойкость существенно зависит от способности ме-талла наклёпываться. Во втором случае, когда частицы металла вырываются с поверхности, износостойкость определяется твердостью и сопротивлением отрыву. Износостойкость может быть повышена химико-термической обработкой.

Графитизированные стали. Графитизированные ста-ли (ЭИ293, ЭИ336, ЭИ366) содержат повышенное ко-личество углерода (до 1,75%) и кремния (до 1,6%)· Кремний вводят как графитизирующий элемент. Часть углерода в этих сталях после графитизирующего отжи-га (напоминающего отжиг для получения ковкого чу-гуна) выделяется в виде графита. После термической обработки структура стали состоит из зернистого пер-лита с некоторым количеством мелких округлых вклю-чений графита. При неабразивном износе графит игра-ет роль смазки, предотвращая сухое трение и схваты-вание. Кроме того, эти стали обладают антивибрацион-ными свойствами.

Графитизировапную сталь применяют для изготов-ления штампов, матриц, коленчатых валов, шаров, ло-пастей дробеструйных аппаратов и т.д.

Высокомарганцовистые стали. Высокомарганцови-стые стали, содержащие около 1% С и 12—13% Μn, обозначают так: сталь Г13 (1,2% С; 13% Мn; <0,5% Si) и сталь Г13Л (1,2% С; 12% Мn и -1% Si). Буква Л означает, что сталь литая. Такая сталь имеет структуру аустенита с избыточными карбидами (Fe, Мn) 3 С. Выделяясь по границам, карбиды снижают вяз-кость и прочность стали. Поэтому обычно изделия под-вергают закалке с 1050—1100° С в воде, получая струк-туру однородного марганцовистого аустенита (σ Β = 80-Η 4-100 кгс/мм 2 ; δ = 40-τ-50%; НВ 2004-250). Характер-ной особенностью марганцовистого аустенита является его повышенная склонность к наклепу. При деформа-ции на 60—70% твердость стали ПЗ увеличивается до НВ500 (рис. 5), что объяс-няется большими искажения-ми кристаллической решетки, дроблением блоков мозаики и даже образованием структуры мартенсита в поверхностных слоях.

Сталь Гадфильда широко используют для изготовления деталей, испытывающих в процессе эксплуатации удар-ные нагрузки и износ одновре-менно. Вследствие большой вязкости аустенита эта сталь плохо обрабатывается режу-щим инструментом, изделия из нее изготавливаются литьем.

Из стали Г13 делают крестовины железнодорожных и трамвайных путей, зубья ковшей землечерпательных машин, траки гусеничных машин, щеки дробилок и т.д.

СТРОИТЕЛЬНЫЕ СТАЛИ

Так как детали строительных конструкций соединя-ют сваркой, то основным требованием к строительным сталям является хорошая свариваемость. Поэтому стро-ительные стали содержат углерода до 0,25%. При бо-лее высоком содержании углерода в зонах, нагретых при сварке до температур выше критических, возможно образование структуры мартенсита. В этом случае на-блюдается объемный эффект, что способствует образо-ванию холодных трещин в зонах около сварных швов. Кроме того, углерод, расширяя интервал кристаллиза-ции металла шва, способствует образованию горячих трещин в металле шва.

Рис. 5 . Влияние степени де-формации на твердость стали ПЗ (1) и углеродистой стали 40 (2)

В качестве строительных сталей используют глав-ным образом углеродистые стали обыкновенного каче-ства марок СтЗ, Ст4, имеющие предел текучести 20—27 кгс/мм 2 .

Прочность строительных сталей повышается в ре-зультате легирования. Поскольку строительную сталь используют в больших количествах, то целесообразно вводить в ее состав дешевые легирующие элементы. Такими элементами являются марганец и кремний. Низколегированная строительная сталь содержит до 1,75% Μn и до 0,7% Si. Предел текучести увеличивает-ся до 36—38 кгс/мм 2 .

Низколегированные строительные стали, кроме улучшения механических свойств, имеют еще одно пре-имущество— пониженную критическую температуру пе-рехода в хрупкое состояние. Эти стали могут работать до —40° С, а стали 10ХСНД и 15ХСНД, легированные дополнительно никелем и медью, и до —60° С.

АВТОМАТНЫЕ СТАЛИ

Для изготовления неответственных деталей, произ-водимых в большом количестве на станках-автоматах (болты, гайки, винты, втулки и т.д.), используют так называемые автоматные стали (ГОСТ 1414—75). В та-ких сталях допускается повышенное содержание серы и фосфора, поэтому они обладают меньшей вязкостью, благодаря чему стружка образуется короткая и лом-кая, а поверхность обработанных деталей получает-ся чистой и ровной. При изготовлении деталей из автоматных сталей возможны большие скорости ре-зания.

Таблица 5

Химический состав (%) автоматных сталей

Марка стали

Примечание. Во всех сталях содержится 0,15—0,35% Si.

Добавки свинца (~0,25%) улучшают обрабатывае-мость резанием (АС11, АС40). Автоматные стали мар-кируют буквой А (автоматная), затем следуют цифры, указывающие среднее содержание углерода в сотых до-лях процента (табл. 5).

Автоматные стали подвергают диффузионному от-жигу при температуре 1100—1150° С для устранения ликвации серы, тем самым устраняется возможность красноломкости. Для повышения прочности автоматные стали иногда нагартовывают холодной протяжкой. В последнее время автоматные стали, кроме свинца, легируют и другими элементами: марганцем, хромом, никелем (А40Г, АС20ХГНМ и др.).

ЧУГУНЫ

Чугуном называют железоуглеродистые сплавы, со-держащие более 2% С. Наиболее значительную часть выплавляемого чугуна перерабатывают в сталь, однако не менее 20% его используют для изготовления литых деталей машин и других изделий. В практике машино-строения в большинстве случаев используют чугун с со-держанием 2,5—4% С. В промышленном чугуне, кроме углерода, обязательно содержатся кремний, марганец, сера и фосфор (в большем количестве, чем в стали).

Чугун отличается высокими литейными свойствами, изделия из него изготавливают различными методами литья. Из-за низкой пластичности чугун не подвергает-ся обработке давлением. В зависимости от формы вы-деления углерода чугун подразделяют на белый, поло-винчатый и серый.

Белым называют такой чугун, в котором при нор-мальной температуре весь углерод находится в связан-ном состоянии, в основном в форме цементита. Такой чугун в изломе имеет белый цвет и металлический блеск.

Серым называют такой чугун, в котором весь угле-род или большая его часть находятся в виде графита, а в связанном состоянии (в форме цементита) углерода содержится не более 0,8%. Ввиду большого количества графита, входящего в состав такого чугуна, его излом имеет серый цвет.

В половинчатом чугуне часть углерода находится в форме графита, но при этом не менее 2% С присутству-ет в форме цементита.

В ряде случаев находят применение детали, изготов-ленные из чугуна с отбеленной поверхностью. Основная масса металла в таких деталях имеет структуру серого чугуна и только в поверхностном слое почти весь угле-род находится в форме цементита. Типичным примером являются прокатные валки для холодной прокатки листов. Наличие большого количества цементита придает валкам высокую поверхностную твердость и высокое сопротивление износу, что способствует получению лис-тов с чистой поверхностью.

Структура чугунов существенно зависит от их хими-ческого состава и скорости охлаждения.

Рис. 6 . Структурная диаграмма для чугуна, показывающая, какая должна получаться структура в от-ливке (с толщиной стенки 50 мм) в зависимости от содержания в чу-гуне кремния и углерода:

1 — белые чугуны; 2 — серые пер-литные чугуны; 3 — серые ферритные чугуны

Рис. 7 . Структурная диаграмма для чугуна, показывающая, какая должна получаться структура в отливке в зависимости от суммы содержания углерода и кремния, а также толщины отливки:

1— белые чугуны; 2 — серые пер-литные чугуны; 3 — серые ферритные чугуны

Химический состав. Кремний способствует графитизации чугуна. Кремний растворяется в Fe a , образуя раствор замещения. Содержание кремния в чугунах колеблется от 0,5 до 4,5%. На рис. 6 приведена диа-грамма, которая дает возможность определить заранее будущую структуру отливки по содержанию углерода и кремния.

Марганец препятствует графитизации, способст-вует получению в структуре чугуна цементита. Содер-жание марганца в чугунах — от 0,4 до 1,3%.

С е ρ а в чугунах является нежелательным элемен-том. Она снижает жидкотекучесть, способствует отбели-ванию чугуна, как и марганец. Содержание серы допу-скается не более 0,08—0,12%,

Фосфор в чугунах — полезная примесь, так как улучшает жидкотекучесть. Участки фосфидной эвтек-тики увеличивают твердость и износостойкость чу-гуна. Содержание фосфора в чугунах колеблется от 0,3 до 0,8%.

Иногда в чугуны вводят легирующие элементы (ни-кель, хром, алюминий, молибден и т.д.), тем самым улучшая их свойства.

Скорость охлаждения.

Кроме регулирования содер-жания углерода и кремния, необходимо также учиты-вать скорость охлаждения отливок. Известно, что бы-строе охлаждение способствует получению белого чугуна, замедленное — серого чугуна. На рис.7 при-ведена диаграмма, пользуясь которой можно получить в отливке нужную структуру, регулируя химический со-став и скорость охлаждения.

СЕРЫЕ ЛИТЕЙНЫЕ ЧУГУНЫ

В серых литейных чугунах обычно содержится до 3,8% С. В форме цементита находится не более 0,8% С, остальной углерод содержится в графитовых чешуйках, размер и форма которых зависят от состава чугуна и технологии отливки. Металлической основой серого чу-гуна является доэвтектоидная или эвтектоидная сталь, т.е. Φ, Ф+П и Π (рис. 8,а, б). Структура металли-ческой основы практически не влияет на пластичность серого чугуна (она во всех случаях остается чрезвычай-но низкой), но оказывает влияние на его твердость.

Графит имеет низкую механическую прочность. Ме-ста его залегания можно рассматривать как внутренние надрезы, нарушения сплошности. Удельный объем гра-фита примерно в 3,5 раза больше удельного объема же-леза, поэтому при содержании в чугуне 3% графита он занимает примерно 10% объема.

Механическая прочность серого чугуна в основном определяется количеством, формой и размерами вклю-чений графита. Мелкие, завихренной формы чешуйки графита меньше снижают прочность.

Такая форма достигается путем модифицирования. Для серых чугунов в качестве модификаторов исполь-зуют силикокальций, алюминий и ферросилиций. Моди-фикаторы вводят в таком небольшом количестве, что они заметно не изменяют химического состава, но ока-зывают сильное влияние на процесс графитизации. Кроме того, они играют роль зародышевых центров вы-деления графита.

Серый чугун широко применяют в машиностроении. Это металл дешевый, недефицитный, с хорошей жидкотекучестью, малой усадкой. Он легко обрабатывается режущим инструментом, обладает хорошими антифрик-ционными и демпфирующими свойствами (графит выполняет роль смазки). По ГОСТ 1412-70 серые чугуны маркируются буквами СЧ и далее следуют числа пре-дела прочности при растяжении и предела прочности при изгибе. Например, СЧ 12-28, СЧ 24-44, СЧ 32-52, СЧ 44-64.

Рис. 8 . Структура серых чугунов с феррито-перлитной (а) и перлитной (б) металлической основой. Х200

Чугуны до СЧ 18-36 используют для неответствен-ных деталей: корпуса редукторов, подшипников, насо-сов, фундаментные плиты, строительные колонны и т.п. Чугуны начиная с СЧ 21-40 используют для изготовле-ния станин мощных станков, деталей металлургическо-го оборудования, зубчатых колес и т.д.

ВЫСОКОПРОЧНЫЕ ЧУГУНЫ

В высокопрочных чугунах содержание углерода около 3—3,6%. Если использовать в качестве модифи-катора магний (до 0,5% от массы отливки), который вводят перед разливкой в жидкий чугун, то выделяю-щийся графит приобретает шаровидную форму (рис. 9 а, б). Механические свойства чугуна в результате этого улучшаются: сильно повышается его пластич-ность и заметно увеличивается прочность.

Рис.9. Высокопрочный чугун на ферритной (я) и феррито-перлитной (б) основе; ковкий чугун на ферритной (в) и перлитной (г) основе.

Большая доля магния в газообразном состоянии удаляется из жидкого металла и лишь небольшая часть (около 0,05%) усваивается чугуном.

Чугун с шаровидной формой включений графита на-зывают высокопрочным чугуном и маркируют буквами ВЧ. Далее следуют числа —предел прочности при рас-тяжении и относительное удлинение, например, ВЧ 38-17, ВЧ 60-2, ВЧ 120-4 Металлическая основа высокопрочного чугуна так-же может быть различной: феррит, феррит с перлитом и перлит (см. рис. 9, а, б).

Основной причиной высоких механических свойств магниевого чугуна является шаровидная форма графита. В сером чугуне пластинчатые выделения представляют собой внутренние «надрезы» с очень острыми краями. При нагружении материала у оснований этих надрезов возникает сильная концентрация напряжений, которые мо-гут вызвать развитие острых трещин, являющихся продолжением графитовых включений. Полости шарообразной формы не создают такой неравномерности в распределении напряжений.

Благодаря хорошим механическим свойствам из вы-сокопрочного чугуна изготавливают ответственные де-тали, например коленчатые валы, зубчатые колеса, кор-пуса автомобильных моторов, крупные прокатные вал-ки, корпуса паровых турбин и т.д.

КОВКИЕ ЧУГУНЫ

Термин «ковкий чугун» является условным, посколь-ку изделия из него, так же как и из любого другого чу-гуна, изготовляют не ковкой, а путем литья. В ковком чугуне графит находится в форме хлопьев (см. рис,9,в, г). Такая форма графита и является основной причиной высоких прочностных и пластических харак-теристик ковкого чугуна. Производство ковкого чугуна, несмотря на значительную сложность технологии, бы-ло освоено намного раньше, чем высокопрочного чу-гуна.

Состав ковкого чугуна выдерживается в довольно узких пределах: 2,2—3,0% С; 0,7—1,5% Si; 0,2— 0,6% Μn; <0,2% Ρ и <0,1% S.

Чугун такого состава после заполнения литейных форм быстро охлаждают и получают белый чугун со структурой перлит+ледебурит.

Наиболее трудоемкой и дорогостоящей операцией при производстве изделий из ковкого чугуна является отжиг, который продолжается иногда до пяти суток. Типичный график отжига ковкого чугуна приведен на рис,10. Изделия для отжига укладывают на под печи или упаковывают в ящики с песком для предохранения от окислительного действия печных газов (при этом продолжительность отжига увеличивается ввиду мень-шей скорости нагрева).

Рис. 10. График отжига ковкого чугуна:

(A + Fe 3 C ) — ледебурит; А — аустенит; П — пер-лит; Φ — феррит; Г — графит

Отжиг в печи в обычной, а также в нейтральной ат-мосферах, т.е. при упаковке изделий в коробки с пес-ком, проводят при нагреве примерно до 950° С, причем

в результате выдержки изделий при данной температу-ре должен произойти полный распад всего избыточного цементита, находящегося в равновесии с аустенитом: Fe 3 C->-3Fe + C. Кроме того, распаду цементита в ков-ком чугуне способствует находящийся в нем кремний. Процесс графитизации был описан ранее. Для того что-бы графитизация прошла полностью, необходимо осо-бенно замедлить охлаждение чугуна в температурной области от 760 до 720° С, т. е. в районе эвтектоидного превращения. В процессе этой выдержки происходит распад аустенита эвтектоидного состава на феррит и графит. Графит, получающийся в результате данного превращения, выделяется около тех хлопьев графита, которые образовались при распаде цементита.

В результате всех превращений структура ковкого чугуна будет состоять из зерен феррита и равномерно распределенных в объеме металла хлопьев графита. Поскольку в таком чугуне находится довольно много графита, излом получается темным и его называют черносердечным.

Если в районе эвтектоидного превращения отливки охлаждать несколько быстрее, то наряду с ферритом в его структуре будут присутствовать зерна перлита в большем или меньшем количестве. Регулируя скорость охлаждения, можно получить ковкий чугун, структура которого будет состоять из перлита+хлопья графита. Такой чугун называют перлитным ковким чугуном или светлосердечным.

Рис. 11. Влияние металлической основы и формы включений графита на свойства чугунов

В последние годы появились различные варианты термической обработки при получении ковкого чугуна, преследующие одну цель— сокращение продолжительности отжига. Отжиг небольших деталей проводят в солевых ваннах. В этом случае отливки быстрее и рав-номернее нагреваются, кроме того, можно увеличить температуру отжига, поскольку при таком нагреве среда не оказывает химичес-кого действия на поверхность отливок (обезуглероживания, окисле-ния). Структуру перлитного ковкого чугуна получают за несколько часов.

Продолжительность отжига сокращается на 25—30% и в том случае, если произвести модифицирование чугуна добавлением в ковш - 0,015% А1. В результате получается мелкозернистый аустенит, имеющий большую межзерновую поверхность, на которой зарождаются и растут частицы графита. Одновременно с модифици-рованием осуществляют иногда и искусственное старение, заключающееся в предварительном нагреве отливок до 350—450°С с вы-держкой до 6—7 ч. Такая обработка также способствует увеличению числа центров кристаллизации.

Предложен метод предварительной закал-ки отливок с 850—950° С. В результате закалки также увеличивает-ся число центров выделения графита, что способствует ускорению превращения белого чугуна в ковкий. Продолжительность отжига отливок в этом случае сокращается до 20—25 ч, графит выделяет-ся в виде мелких чешуек.

На рис. 11 приведена схема, показывающая влия-ние металлической основы и формы выделений графита на свойства различных видов чугунов.

Конструкционные материалы

материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами К. м. являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества К. м. относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др. Длительный период в своём развитии человеческое общество использовало для своих нужд (орудия труда и охоты, утварь, украшения и др.) ограниченный круг материалов: дерево, камень, волокна растительного и животного происхождения, обожжённую глину, стекло, бронзу, железо. Промышленный переворот 18 в. и дальнейшее развитие техники, особенно создание паровых машин и появление в конце 19 в. двигателей внутреннего сгорания, электрических машин и автомобилей, усложнили и дифференцировали требования к материалам их деталей, которые стали работать при сложных знакопеременных нагрузках, повышенных температурах и др. Основой К. м. стали металлические сплавы на основе железа (Чугун ы и стали (См. Сталь)), меди (бронзы (См. Бронза) и латуни (См. Латунь)), свинца и олова.

При конструировании самолётов, когда главным требованием, предъявляемым к К. м., стала высокая удельная прочность, широкое распространение получили древесные пластики (фанера), малолегированные стали, алюминиевые и магниевые сплавы. Дальнейшее развитие авиационной техники потребовало создания новых жаропрочных сплавов (См. Жаропрочные сплавы) на никелевой и кобальтовой основах, сталей, титановых, алюминиевых, магниевых сплавов, пригодных для длительной работы при высоких температурах. Совершенствование техники на каждом этапе развития предъявляло новые, непрерывно усложнявшиеся требования к К. м. (температурная стойкость, износостойкость, электрическая проводимость и др.). Например, судостроению необходимы стали и сплавы с хорошей свариваемостью и высокой коррозионной стойкостью, а химическому машиностроению - с высокой и длительной стойкостью в агрессивных средах. Развитие атомной энергетики связано с применением К. м., обладающих не только достаточной прочностью и высокой коррозионной стойкостью в различных теплоносителях, но и удовлетворяющих новому требованию - малому поперечному сечению захвата нейтронов.

К. м. подразделяются: по природе материалов - на металлические, неметаллические и Композиционные материалы , сочетающие положительные свойства тех и др. материалов; по технологическому исполнению - на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т.п.); по условиям работы - на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т.д.; по критериям прочности - на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности.

Отдельные классы К. м., в свою очередь, делятся на многочисленные группы. Например, металлические сплавы различают: по системам сплавов - алюминиевые, магниевые, титановые, медные, никелевые, молибденовые, ниобиевые, бериллиевые, вольфрамовые, на железной основе и др.; по типам упрочнения - закаливаемые, улучшаемые, стареющие, цементируемые, цианируемые, азотируемые и др.; по структурному составу - стали аустенитные и ферритные, латуни и т.д.

Неметаллические К. м. подразделяют по изомерному составу, технологическому исполнению (прессованные, тканые, намотанные, формованные и пр.), по типам наполнителей (армирующих элементов) и по характеру их размещения и ориентации. Некоторые К. м., например сталь и алюминиевые сплавы, используются как строительные материалы и, наоборот, в ряде случаев строительные материалы, например Железобетон , применяются в конструкциях машиностроения.

Технико-экономические параметры К. м. включают: технологические параметры - обрабатываемость металлов давлением, резанием, литейные свойства (жидкотекучесть, склонность к образованию горячих трещин при литье), свариваемость, паяемость, скорость отверждения и текучесть полимерных материалов при нормальных и повышенных температурах и др.; показатели экономической эффективности (стоимость, трудоёмкость, дефицитность, коэффициент использования металла и т.п.).

К металлическим К. м. относится большинство выпускаемых промышленностью марок стали. Исключение составляют стали, не используемые в силовых элементах конструкций: инструментальные стали (См. Инструментальная сталь), для нагревательных элементов, для присадочной проволоки (при сварке) и некоторые другие с особыми физическими и технологическими свойствами. Стали составляют основной объём К. м., используемых техникой. Они отличаются широким диапазоном прочности - от 200 до 3000 Мн/м 2 (20-300 кгс/мм 2 ), пластичность сталей достигает 80%, вязкость - 3 МДж/м 2 . Конструкционные (в т. ч. нержавеющие) стали выплавляются в конверторах, мартеновских и электрических печах. Для дополнительной рафинировки применяются продувка аргоном и обработка синтетическим шлаком в ковше. Стали ответственного назначения, от которых требуется высокая надёжность, изготовляются вакуумно-дуговым, вакуумно-индукционным и электрошлаковым переплавом, вакуумированием, а в особых случаях - улучшением кристаллизации (на установках непрерывной или полунепрерывной разливки) вытягиванием из расплава.

Чугуны широко применяются в машиностроении для изготовления станин, коленчатых валов, зубчатых колёс, цилиндров двигателей внутреннего сгорания, деталей, работающих при температуре до 1200 °С в окислительных средах, и др. Прочность чугунов в зависимости от легирования колеблется от 110 Мн/м 2 (чугаль) до 1350 Мн/м 2 (легированный магниевый чугун).

Никелевые сплавы и Кобальтовые сплавы сохраняют прочность до 1000-1100 °С. Выплавляются в вакуумно-индукционных и вакуумно-дуговых, а также в плазменных и электроннолучевых печах (См. Электроннолучевая печь). Применяются в авиационных и ракетных двигателях, паровых турбинах, аппаратах, работающих в агрессивных средах, и др. Прочность алюминиевых сплавов (См. Алюминиевые сплавы) составляет: деформируемых до 750 Мн/м 2 , литейных до 550 Мн/м 2 , по удельной жёсткости они значительно превосходят стали. Служат для изготовления корпусов самолётов, вертолётов, ракет, судов различного назначения и др. Магниевые сплавы отличаются высоким удельным объёмом (в 4 раза выше, чем у стали), имеют прочность до 400 Мн/м 2 и выше; применяются преимущественно в виде литья в конструкциях летательных аппаратов, в автомобилестроении, в текстильной и полиграфической промышленности и др. Титановые сплавы начинают успешно конкурировать в ряде отраслей техники со сталями и алюминиевыми сплавами, превосходя их по удельной прочности, коррозионной стойкости и по жёсткости. Сплавы имеют прочность до 1600 Мн/м 2 и более. Применяются для изготовления компрессоров авиационных двигателей, аппаратов химической и нефтеперерабатывающей промышленности, медицинских инструментов и др.

Неметаллические К. м. включают пластики, термопластичные полимерные материалы (см. Полимеры), керамику (См. Керамика), Огнеупоры , стекла (См. Стекло), резины (См. Резина), древесину (См. Древесина). Пластики на основе термореактивных, эпоксидных, фенольных, кремнийорганических термопластичных смол и фторопластов (См. Фторопласты), армированные (упрочнённые) стеклянными, кварцевыми, асбестовыми и др. волокнами, тканями и лентами, применяются в конструкциях самолётов, ракет, в энергетическом, транспортном машиностроении и др. Термопластичные полимерные материалы - Полистирол , полиметилметакрилат, полиамиды, фторопласты, а также реактопласты используют в деталях электро- и радиооборудования, узлах трения, работающих в различных средах, в том числе химически активных: топливах, маслах и т.п.

Стекла (силикатные, кварцевые, органические), Триплекс ы на их основе служат для остекления судов, самолётов, ракет; из керамических материалов изготовляют детали, работающие при высоких температурах. Резины на основе различных каучуков, упрочнённые кордными тканями, применяются для производства покрышек или монолитных колёс самолётов и автомобилей, а также различных подвижных и неподвижных уплотнений.

Развитие техники предъявляет новые, более высокие требования к существующим К. м., стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе лёгкость, жёсткость и прочность. Внешнее армирование металлических замкнутых объёмов (шары, баллоны, цилиндры) стеклопластиком (См. Стеклопластики) позволяет значительно снизить их массу в сравнении с металлическими конструкциями. Для многих областей техники необходимы К. м., сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами.

Т. к. в составе К. м. нашли своё применение почти все элементы таблицы Менделеева, а эффективность ставших уже классическими для металлических сплавов методов упрочнения путём сочетания специально подобранного легирования, высококачественной плавки и надлежащей термической обработки снижается, перспективы повышения свойств К. м. связаны с синтезированием материалов из элементов, имеющих предельные значения свойств, например предельно прочных, предельно тугоплавких, термостабильных и т.п. Такие материалы составляют новый класс композиционных К. м. В них используются высокопрочные элементы (волокна, нити, проволока, нитевидные кристаллы, гранулы, дисперсные высокотвёрдые и тугоплавкие соединения, составляющие армировку или наполнитель), связуемые матрицей из пластичного и прочного материала (металлических сплавов или неметаллических, преимущественно полимерных, материалов). Композиционные К. м. по удельной прочности и удельному модулю упругости могут на 50-100% превосходить стали или алюминиевые сплавы и обеспечивают экономию массы конструкций на 20-50%.

Наряду с созданием композиционных К. м., имеющих ориентированную (ортотропную) структуру, перспективным путём повышения качества К. м. является регламентация структуры традиционных К. м. Так, путём направленной кристаллизации сталей и сплавов получают литые детали, например лопатки газовых турбин, состоящие из кристаллов, ориентированных относительно основных напряжений таким образом, что границы зёрен (слабые места у жаропрочных сплавов) оказываются ненагруженными. Направленная кристаллизация позволяет увеличить в несколько раз пластичность и долговечность. Ещё более прогрессивным методом создания ортотропных К. м. является получение монокристальных деталей с определённой кристаллографической ориентацией относительно действующих напряжений. Весьма эффективно используются методы ориентации в неметаллических К. м. Так, ориентация линейных макромолекул полимерных материалов (ориентация стекол из полиметилметакрилата) значительно повышает их прочность, вязкость и долговечность.

При синтезировании композиционных К. м., создании сплавов и материалов с ориентированной структурой используются достижения материаловедения.

Лит.: Киселев Б. А., Стеклопластики, М., 1961; Конструкционные материалы, т. 1- 3, М., 1963-65; Тугоплавкие материалы в машиностроении. Справочник, под ред. А. Т. Туманова и К. И. Портного, М., 1967; Конструкционные свойства пластмасс, пер. с англ., М., 1967; Резина - конструкционный материал современного машиностроения. Сб. ст., М., 1967; Материалы в машиностроении. Выбор и применение. Справочник, под ред. И. В. Кудрявцева, т. 1-5, М., 1967-69; Химушин Ф. Ф., Жаропрочные стали и сплавы, 2 изд., М., 1969; Современные композиционные материалы, пер. с англ., М., 1970; Алюминиевые сплавы. Сб. ст., т. 1-6, М., 1963-69.

А. Т. Туманов, Н. С. Скляров.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Конструкционные материалы" в других словарях:

    Материалы, из которых изготовляются различные конструкции, детали машин, элементы сооружений, воспринимающих силовую нагрузку. Определяющими параметрами таких материалов являются механические свойства, что отличает их от других технических… … Википедия

    КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ - материалы, применяемые для изготовления узлов и деталей машин и механизмов, зданий, транспортных средств и сооружений, приборов, аппаратов и др. технических объектов. Наряду с конструкционной сталью и др. сплавами в современной технике в качестве …

    конструкционные материалы - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN materials of construction …

    Материалы, применяемые для изготовления конструкций (деталей машин и механизмов, зданий, трансп. средств, сооружений, приборов, аппаратов и т. п.), воспринимающих силовую нагрузку. К. м. подразделяют на металлич. (сплавы на основе железа, никеля … Большой энциклопедический политехнический словарь

    Материалы, используемые для изготовления конструкций, воспринимающих силовую нагрузку (деталей машин и механизмов, зданий, транспортных средств, приборов, аппаратов и т. п.). Подразделяются на металлические (металлы и сплавы), неметаллические… … Энциклопедия техники

    расплав активной зоны ядерного реактора, включающий Corium-А и конструкционные материалы корпуса реактора - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN Corium A+R … Справочник технического переводчика

    МАТЕРИАЛЫ - (1) необработанные вещества (сырьё), из которых изготовляют разного рода смеси, массы, заготовки, изделия и др., а также предметы, вещества и информационные данные, используемые в различных технологических процессах с целью получения необходимых… … Большая политехническая энциклопедия

    Материалы органические - – материалы, полученные из живой природы: растительного или животного мира. В области строительства применяют конструкционные материалы из дерева и пластмассы, вяжущие из битума, дегтя и полимеров, наполнители из отходов древесины и других… … Энциклопедия терминов, определений и пояснений строительных материалов

    Понятие конструкционных и строительных материалов охватывает множество различных материалов, применяемых для изготовления деталей конструкций, зданий, мостов, дорог, транспортных средств, а также бесчисленных других сооружений, машин и… … Энциклопедия Кольера

    МАТЕРИАЛЫ СУДОСТРОИТЕЛЬНЫЕ - технические материалы, показатели свойств которых отвечают требованиям классификационных норм и правил к материалам для строительства судов или требованиям норм и стандартов (ТУ, ОСТ, ГОСТ) к материалам, используемым в технологических процессах… … Морской энциклопедический справочник

Книги

  • Конструкционные материалы: металлы, сплавы, полимеры, керамика, композиты , Болтон Уильям , 320 стр В справочнике представлен весь спектр материалов, применяемых в машиностроении и электротехнике: железо, алюминий, медь, магний, никель, титан, сплавы на их основе, полимерные,… Категория:

Все конструкционные материалы можно условно разделить на однородные икомпозиционные, металлические и неметаллические (Рисунок 6.1).

Металлы – химические элементы, образующие в свободном состоянии простые вещества с металлической связью между атомами.

Сплавы – твердые вещества, образованные сплавлением двух или более компонентов. Сплав образуется в результате как чисто физических процессов (растворение, перемешивание), так и в результате химического взаимодействия между элементами. Разнообразие состава типов межатомной связи и кристаллических структур сплавов обуславливает значительное различие их физико-химических, электрических, магнитных, механических, оптических и других свойств. Сплавы на основе железа называютсячерными , на основе других металловцветными .

Неметаллические материалы – неорганические и органические материалы, композиционные материалы на неметаллической основе, клеи, герметики, лакокрасочные покрытия, графит, стекло, керамика и т.д.

Полимеры – вещества, макромолекулы которых состоят из многочисленных элементарных звеньев (мономеров) одинаковой структуры.

Композиционные материалы – гетерофазные (состоящие из различных по физическим и химическим свойствам фаз) системы, полученные из двух и более компонентов с сохранением индивидуальности каждого отдельного компонента.

При этом:

      материал является однородным в макромасштабе и неоднородным в микромасштабе (компоненты различаются по свойствам, между ними существует явная граница раздела);

      один из компонентов, обладающий непрерывностью по всему объему, является матрицей; компонент прерывистый, разделенный в объеме композиции, считается усиливающим или армирующим.

В приборостроении большое применение находят различные неметаллические материалы, такие как пластмассы, резина, стекло, керамика, лакокрасочные и клеевые материалы, причем с развитием химии и новых технологий доля неметаллических материалов в приборостроении постоянно увеличивается.

Выбор пластмасс определяется назначением детали и характерной особенностью ее получения (прессование, литье и другие способы), причем особенности строения, механические и физические свойства пластмасс существенно влияют на конструкцию детали и способ ее изготовления.

Применение порошковых материалов определяется необходимостью изготовления изделий с особыми свойствами и структурой, которые недостижимы другими методами производства, либо изделий с обычным составом, структурой и свойствами, но при значительно более выгодных экономических показателях производства.

Свойства конструкционных материалов подразделяются на:

      механические;

      технологические;

      эксплуатационные.

К механическим свойствам относятся:

      прочность;

      упругость;

      пластичность;

      твердость;

      ударная вязкость.

Эти свойства определяют прочность и долговечность конструкции.

Прочность – это способность материала сопротивляться деформации и разрушению.

Деформацией называется изменение размеров и формы тела под действием внешних сил. Деформации подразделяются на упругие и пластические. Упругие деформации исчезают после окончания действия сил, а пластические остаются.

Пластичность – способность материала деформироваться. Пластичность обеспечивает конструктивную прочность деталей под нагрузкой и нейтрализует влияние концентраторов напряжений – отверстий, вырезов и т.п. При пластическом деформировании металла одновременно с изменением формы изменяется ряд свойств, в частности при холодном деформировании повышается прочность, но снижается пластичность.

Большинство механических характеристик материалов определяют в результате испытания образцов на растяжение (ГОСТ 1497-84).

При растяжении образцов с площадью поперечного сечения S 0 и рабочей (расчетной) длиной l о строят диаграмму растяжения в координатах: нагрузкаP– удлинение ∆lобразца (рисунок 6.2).

Рисунок 6.2 – Диаграмма растяжения

Диаграмма растяжения характеризует поведение металла при деформировании от момента начала нагружения до разрушения образца. На диаграмме выделяют три участка:

      упругой деформации – до нагрузки Р упр;

      равномерной пластической деформации от Р упр до Р мах;

      и сосредоточенной пластической деформации от Р мах до Р к.

Если образец нагрузить в пределах Р упр, а затем полностью разгрузить и замерить его длину, то никаких последствий нагружения не обнаружится.

Закон Гука для линейного участка диаграммы: σ = Е ε, где Е – называется модулем упругости или модулем Юнга. Е имеет размерность кг/см 2 и является одной из физических констант материала. Модуль упругости при растяжении численно равен тангенсу угла наклона диаграммы напряжений к оси абсцисс.

Между относительной поперечной деформацией и относительной продольной деформацией при простом растяжении и сжатии в пределах применимости закона Гука существует постоянное соотношение, абсолютная величина которого называется коэффициентом Пуассона μ = ε 1 /ε – безразмерная величина и для всех изотропных материалов лежит в пределах 0 – 0,5 (0 для пробки, 0,5 для каучука, для стали 0,3).

При нагружении образца более Р упр появляетсяостаточная (пластическая) деформация. Пластическое деформирование идет при возрастающей нагрузке, так как металл упрочняется в процессе деформирования. Упрочнение металла при деформировании называетсянаклепом .

При дальнейшем нагружении пластическая деформация, а вместе с ней и наклеп все более увеличиваются, равномерно распределяясь по всему объему образца. После достижения максимального значения нагрузки Р мах в наиболее слабом месте появляется местное утонение образца – шейка, в которой в основном и протекает дальнейшее пластическое деформирование. В связи с развитием шейки, несмотря на продолжающееся упрочнение металла, нагрузка уменьшается отР мах до Р к, и при нагрузке Р к происходит разрушение образца. При этом упругая деформация образца исчезает, а пластическая ∆l ост остается.

При деформировании твердого тела внутри него возникают внутренние силы. Величину сил, приходящуюся на единицу площади поперечного сечения образца, называют напряжением . Размерность напряжения МПа.

Пользуясь указанными характеристиками, и зная площадь сечения образца S 0 , определяют основные характеристики прочности материала:

σ пц = Р пц /S 0 - предел пропорциональности; σ уп = Р уп /S 0 - предел упругости; σ т = Р т /S 0 - предел текучести; σ в = Р мах /S 0 - предел прочности или временной сопротивление; σ к = Р к /S 0 - напряжение в момент разрыва.

Поскольку диаграмма растяжения металлов характеризует не только свойства металлов, но и размеры образца, то ее принято перестраивать в относительных координатах σ – ε, такая диаграмма называется диаграммой напряжений.

Пластичность характеризуется относительным удлинениеми относительным сужением:

где l 0 ,S 0 - начальные длина и площадь поперечного сечения образца;l k ,S k - конечная длина и площадь в месте разрыва.

Допустимые значения напряжений в расчетах выбирают меньше в 1,5 - 2,5 раза.

Твердость – это сопротивление материала проникновению в его поверхность стандартного тела (индентора). О твердости судят либо по глубине проникновения индентора, либо по величине отпечатка от вдавливания. Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.

Наибольшее распространение получили методыопределения твердости Бринелля, Роквелла, Виккерса и микротвердости. Схемы испытаний представлены на Рисунке 3.4.

Рисунок 6.3 – Схема определения твердости материала по Бринеллю (а), по Роквеллу (б), по Виккерсу (в).

Твердость по Бринеллю определяют на твердомере Бринелля. В качестве индентора используется стальной закаленный шарик диаметром Д = 2,5; 5; 10 мм, в зависимости от толщины изделия.

Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля. Твердость определяется как отношение приложенной нагрузки Р к сферической поверхности отпечатка.

Метод Роквелла основан на вдавливании в поверхность под определенной нагрузкой наконечника в виде шарика или алмазного конуса. Для мягких материалов (до НВ 230) используется стальной шарик диаметром 1/16” (1,6 мм), для более твердых материалов – конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка Р 0 (100 н) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка Р 1 , в течение некоторого времени действует общая рабочая нагрузка Р. После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечникаhпод нагрузкойP.

Твердость по Виккерсу определяется по величине отпечатка индентора: алмазная четырехгранная пирамида с углом при вершине 136 o .

Твердость рассчитывается как отношение приложенной нагрузки Р к площади поверхности отпечатка.

Нагрузка Р составляет 50…1000 н. Диагональ отпечатка dизмеряется при помощи микроскопа, установленного на приборе.

Преимущество данного способа в том, что можно измерять твердость любых материалов, тонких изделий, поверхностных слоёв. Метод обеспечивает высокую точность при высокой чувствительности.

Способ микротвердости – используется для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра). Метод аналогичен способу Виккерса. Индентор – пирамида меньших размеров, нагрузки при вдавливанииPсоставляют 5…500 н.

Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению. Испытания на ударную вязкость производят на маятниковых копрах. Испытуемые образцы имеют надрезы определенной формы и размеров. Образец устанавливают на опорах копра надрезом в сторону, противоположную удару ножа маятника, который поднимают на определенную высоту. Ее определяют по ГОСТ как удельную работу разрушения призматического образца с концентратором (надрезом) посередине одним ударом маятникового копра: КС = К/S, где К - работа разрушения;S- площадь поперечного сечения образца в месте концентратора. Измеряется в МДж/м 2 .ОбозначаютKCU,KCV,KCT,U,V,T- вид концентратора (U,V- образный; Т - трещина усталости).

Технологические свойства конструкционных материалов.

Технологические свойства характеризуют способность материала подвергаться различным способам холодной и горячей обработки.

К технологическим свойствам металлов и сплавов относятся:

      литейные свойства;

      деформируемость;

      свариваемость;

      обрабатываемость режущим инструментом.

Эти свойства позволяют производить формоизменяющую обработку и получать заготовки и детали машин.

Литейные свойства характеризуют способность материала к получению из него качественных отливок.

Литейные свойства определяются способностью расплавленного металла или сплава к заполнению литейной формы (жидкотекучесть), степенью химической неоднородности по сечению полученной отливки (ликвация), а также величиной усадки – сокращением линейных размеров при кристаллизации и дальнейшем охлаждении.

Способность материала к обработке давлением – это способность материала изменять размеры и форму под влиянием внешних нагрузок не разрушаясь (обработка без снятия стружки). Она контролируется в результате технологических испытаний, проводимых в условиях, максимально приближенных к производственным. Листовой материал испытывают на перегиб и вытяжку сферической лунки. Проволоку испытывают на перегиб, скручивание, на навивание. Трубы испытывают на раздачу, сплющивание до определенной высоты и изгиб. Критерием годности материала является отсутствие дефектов после испытания.

Свариваемость – это способность материала образовывать неразъемные соединения требуемого качества при сварке. Свойство оценивается по качеству сварного шва.

Обрабатываемость резанием – характеризует способность материала поддаваться обработке режущим инструментом. Оценивается по стойкости инструмента и по качеству обработанной поверхности.

Технологические свойства часто определяют выбор материала для конструкции. Разрабатываемые материалы могут быть внедрены в производство только в том случае, если их технологические свойства удовлетворяют необходимым требованиям.

Современное автоматизированное производство, предъявляет к технологическим свойствам материала особые требования: проведение сварки на больших скоростях, ускоренное охлаждение отливок, обработка резанием на повышенных режимах и т. п. при обеспечении необходимого условия – высокого качества получаемой продукции.

Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях:

      износостойкость – способность материала сопротивляться поверхностному разрушению под действием внешнего трения;

      коррозионная стойкость – способность материала сопротивляться действию агрессивных кислотных и щелочных сред;

      жаростойкость – способность материала сопротивляться окислению в газовой среде при высокой температуре;

      жаропрочность – это способность материала сохранять прочность и твердость при высоких температурах;

      хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах;

      антифрикционность – способность материала прирабатываться к другому материалу.

Эти свойства определяются специальными испытаниями в зависимости от условий работы изделий. При выборе материала для создания конструкции необходимо учитывать конструкционные, технологические и эксплуатационные свойства.

материалы являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества Конструкционные материалы относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др. Длительный период в своём развитии человеческое общество использовало для своих нужд (орудия труда и охоты, утварь, украшения и др.) ограниченный круг материалов: дерево, камень, волокна растительного и животного происхождения, обожжённую глину, стекло, бронзу, железо. Промышленный переворот 18 в. и дальнейшее развитие техники, особенно создание паровых машин и появление в конце 19 в. двигателей внутреннего сгорания, электрических машин и автомобилей, усложнили и дифференцировали требования к материалам их деталей, которые стали работать при сложных знакопеременных нагрузках, повышенных температурах и др. Основой Конструкционные материалы стали металлические сплавы на основе железа (чугуны и стали ), меди (бронзы и латуни ), свинца и олова.

При конструировании самолётов, когда главным требованием, предъявляемым к Конструкционные материалы , стала высокая удельная прочность, широкое распространение получили древесные пластики (фанера), малолегированные стали, алюминиевые и магниевые сплавы. Дальнейшее развитие авиационной техники потребовало создания новых жаропрочных сплавов на никелевой и кобальтовой основах, сталей, титановых, алюминиевых, магниевых сплавов, пригодных для длительной работы при высоких температурах. Совершенствование техники на каждом этапе развития предъявляло новые, непрерывно усложнявшиеся требования к Конструкционные материалы (температурная стойкость, износостойкость, электрическая проводимость и др.). Например, судостроению необходимы стали и сплавы с хорошей свариваемостью и высокой коррозионной стойкостью, а химическому машиностроению - с высокой и длительной стойкостью в агрессивных средах. Развитие атомной энергетики связано с применением Конструкционные материалы , обладающих не только достаточной прочностью и высокой коррозионной стойкостью в различных теплоносителях, но и удовлетворяющих новому требованию - малому поперечному сечению захвата нейтронов.

Конструкционные материалы подразделяются: по природе материалов - на металлические, неметаллические и композиционные материалы , сочетающие положительные свойства тех и др. материалов; по технологическому исполнению - на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т.п.); по условиям работы - на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т.д.; по критериям прочности - на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности.

Отдельные классы Конструкционные материалы , в свою очередь, делятся на многочисленные группы. Например, металлические сплавы различают: по системам сплавов - алюминиевые, магниевые, титановые, медные, никелевые, молибденовые, ниобиевые, бериллиевые, вольфрамовые, на железной основе и др.; по типам упрочнения - закаливаемые, улучшаемые, стареющие, цементируемые, цианируемые, азотируемые и др.; по структурному составу - стали аустенитные и ферритные, латуни и т.д.

Неметаллические Конструкционные материалы подразделяют по изомерному составу, технологическому исполнению (прессованные, тканые, намотанные, формованные и пр.), по типам наполнителей (армирующих элементов) и по характеру их размещения и ориентации. Некоторые Конструкционные материалы , например сталь и алюминиевые сплавы, используются как строительные материалы и, наоборот, в ряде случаев строительные материалы, например железобетон , применяются в конструкциях машиностроения.

Технико-экономические параметры Конструкционные материалы включают: технологические параметры - обрабатываемость металлов давлением, резанием, литейные свойства (жидкотекучесть, склонность к образованию горячих трещин при литье), свариваемость, паяемость, скорость отверждения и текучесть полимерных материалов при нормальных и повышенных температурах и др.; показатели экономической эффективности (стоимость, трудоёмкость, дефицитность, коэффициент использования металла и т.п.).

К металлическим Конструкционные материалы относится большинство выпускаемых промышленностью марок стали. Исключение составляют стали, не используемые в силовых элементах конструкций: инструментальные стали , для нагревательных элементов, для присадочной проволоки (при сварке) и некоторые другие с особыми физическими и технологическими свойствами. Стали составляют основной объём Конструкционные материалы , используемых техникой. Они отличаются широким диапазоном прочности - от 200 до 3000 Мн/м 2 (20-300 кгс/мм 2 ), пластичность сталей достигает 80%, вязкость - 3 МДж/м 2 . Конструкционные (в т. ч. нержавеющие) стали выплавляются в конверторах, мартеновских и электрических печах. Для дополнительной рафинировки применяются продувка аргоном и обработка синтетическим шлаком в ковше. Стали ответственного назначения, от которых требуется высокая надёжность, изготовляются вакуумно-дуговым, вакуумно-индукционным и электрошлаковым переплавом, вакуумированием, а в особых случаях - улучшением кристаллизации (на установках непрерывной или полунепрерывной разливки) вытягиванием из расплава.

Чугуны широко применяются в машиностроении для изготовления станин, коленчатых валов, зубчатых колёс, цилиндров двигателей внутреннего сгорания, деталей, работающих при температуре до 1200 °С в окислительных средах, и др. Прочность чугунов в зависимости от легирования колеблется от 110 Мн/м 2 (чугаль) до 1350 Мн/м 2 (легированный магниевый чугун).

Никелевые сплавы и кобальтовые сплавы сохраняют прочность до 1000-1100 °С. Выплавляются в вакуумно-индукционных и вакуумно-дуговых, а также в плазменных и электроннолучевых печах . Применяются в авиационных и ракетных двигателях, паровых турбинах, аппаратах, работающих в агрессивных средах, и др. Прочность алюминиевых сплавов составляет: деформируемых до 750 Мн/м 2 , литейных до 550 Мн/м 2 , по удельной жёсткости они значительно превосходят стали. Служат для изготовления корпусов самолётов, вертолётов, ракет, судов различного назначения и др. Магниевые сплавы отличаются высоким удельным объёмом (в 4 раза выше, чем у стали), имеют прочность до 400 Мн/м 2 и выше; применяются преимущественно в виде литья в конструкциях летательных аппаратов, в автомобилестроении, в текстильной и полиграфической промышленности и др. Титановые сплавы начинают успешно конкурировать в ряде отраслей техники со сталями и алюминиевыми сплавами, превосходя их по удельной прочности, коррозионной стойкости и по жёсткости. Сплавы имеют прочность до 1600 Мн/м 2 и более. Применяются для изготовления компрессоров авиационных двигателей, аппаратов химической и нефтеперерабатывающей промышленности, медицинских инструментов и др.

К Конструкционные материалы относятся также сплавы на основе меди, цинка, молибдена, циркония, хрома, бериллия, которые нашли применение в различных отраслях техники (см. Бериллиевые сплавы , Медноникелевые сплавы , Молибденовые сплавы ).

Неметаллические Конструкционные материалы включают пластики, термопластичные полимерные материалы (см. Полимеры ), керамику , огнеупоры , стекла , резины , древесину . Пластики на основе термореактивных, эпоксидных, фенольных, кремнийорганических термопластичных смол и фторопластов , армированные (упрочнённые) стеклянными, кварцевыми, асбестовыми и др. волокнами, тканями и лентами, применяются в конструкциях самолётов, ракет, в энергетическом, транспортном машиностроении и др. Термопластичные полимерные материалы - полистирол , полиметилметакрилат, полиамиды, фторопласты, а также реактопласты используют в деталях электро- и радиооборудования, узлах трения, работающих в различных средах, в том числе химически активных: топливах, маслах и т.п.

Стекла (силикатные, кварцевые, органические), триплексы на их основе служат для остекления судов, самолётов, ракет; из керамических материалов изготовляют детали, работающие при высоких температурах. Резины на основе различных каучуков, упрочнённые кордными тканями, применяются для производства покрышек или монолитных колёс самолётов и автомобилей, а также различных подвижных и неподвижных уплотнений.

Развитие техники предъявляет новые, более высокие требования к существующим Конструкционные материалы , стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе лёгкость, жёсткость и прочность. Внешнее армирование металлических замкнутых объёмов (шары, баллоны, цилиндры) стеклопластиком позволяет значительно снизить их массу в сравнении с металлическими конструкциями. Для многих областей техники необходимы Конструкционные материалы , сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами.

Т. к. в составе Конструкционные материалы нашли своё применение почти все элементы таблицы Менделеева, а эффективность ставших уже классическими для металлических сплавов методов упрочнения путём сочетания специально подобранного легирования, высококачественной плавки и надлежащей термической обработки снижается, перспективы повышения свойств Конструкционные материалы связаны с синтезированием материалов из элементов, имеющих предельные значения свойств, например предельно прочных, предельно тугоплавких, термостабильных и т.п. Такие материалы составляют новый класс композиционных Конструкционные материалы В них используются высокопрочные элементы (волокна, нити, проволока, нитевидные кристаллы, гранулы, дисперсные высокотвёрдые и тугоплавкие соединения, составляющие армировку или наполнитель), связуемые матрицей из пластичного и прочного материала (металлических сплавов или неметаллических, преимущественно полимерных, материалов). Композиционные Конструкционные материалы по удельной прочности и удельному модулю упругости могут на 50-100% превосходить стали или алюминиевые сплавы и обеспечивают экономию массы конструкций на 20-50%.

Наряду с созданием композиционных Конструкционные материалы , имеющих ориентированную (ортотропную) структуру, перспективным путём повышения качества Конструкционные материалы является регламентация структуры традиционных Конструкционные материалы Так, путём направленной кристаллизации сталей и сплавов получают литые детали, например лопатки газовых турбин, состоящие из кристаллов, ориентированных относительно основных напряжений таким образом, что границы зёрен (слабые места у жаропрочных сплавов) оказываются ненагруженными. Направленная кристаллизация позволяет увеличить в несколько раз пластичность и долговечность. Ещё более прогрессивным методом создания ортотропных Конструкционные материалы является получение монокристальных деталей с определённой кристаллографической ориентацией относительно действующих напряжений. Весьма эффективно используются методы ориентации в неметаллических Конструкционные материалы Так, ориентация линейных макромолекул полимерных материалов (ориентация стекол из полиметилметакрилата) значительно повышает их прочность, вязкость и долговечность.

При синтезировании композиционных Конструкционные материалы , создании сплавов и материалов с ориентированной структурой используются достижения материаловедения.

Лит.: Киселев Б. А., Стеклопластики, М., 1961; Конструкционные материалы, т. 1- 3, М., 1963-65; Тугоплавкие материалы в машиностроении. Справочник, под ред. А. Т. Туманова и К. И. Портного, М., 1967; Конструкционные свойства пластмасс, пер. с англ., М., 1967; Резина - конструкционный материал современного машиностроения. Сб. ст., М., 1967; Материалы в машиностроении. Выбор и применение. Справочник, под ред. И. В. Кудрявцева, т. 1-5, М., 1967-69; Химушин Ф. Ф., Жаропрочные стали и сплавы, 2 изд., М., 1969; Современные композиционные материалы, пер. с англ., М., 1970; Алюминиевые сплавы. Сб. ст., т. 1-6, М., 1963-69.

А. Т. Туманов, Н. С. Скляров.

Статья про слово "Конструкционные материалы " в Большой Советской Энциклопедии была прочитана 49541 раз

Загрузка...