domvpavlino.ru

Локальный максимум. Метка: локальный максимум

>> Экстремумы

Экстремум функции

Определение экстремума

Функция y = f (x ) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство (f (x 1) < f (x 2) (f (x 1) > f (x 2)).

Если дифференцируемая функция y = f (x ) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x ) > 0

(f " (x ) < 0).

Точка x о называется точкой локального максимума (минимума ) функции f (x ), если существует окрестность точки x о , для всех точек которой верно неравенство f (x ) ≤ f (x о ) (f (x ) f (x о )).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Точки экстремума

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f (x ), то либо f " (x о ) = 0, либо f (x о ) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f " (x ) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f (x ) имеет
f "
(x ) в окрестности точки x о и вторую производную в самой точке x о . Если f " (x о ) = 0, >0 ( <0), то точка x о является точкой локального минимума (максимума) функции f (x ). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие .

На отрезке функция y = f (x ) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Пример 3.22.

Решение. Так как f " (

Задачи на нахождения экстремума функции

Пример 3.23. a

Решение. x и y y
0
x
> 0, а при x >a /4 S " < 0, значит, в точке x=a /4 функция S имеет максимум. Значение функции кв . ед ).

Пример 3.24. p ≈

Решение. p p
S "

R = 2, Н = 16/4 = 4.

Пример 3.22. Найти экстремумы функции f (x ) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x ) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках
x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f (2) = 14 и минимум f (3) = 13.

Пример 3.23. Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение. Обозначим стороны площадки через x и y . Площадь площадки равна S = xy . Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x + y = a . Поэтому y = a - 2x и S = x (a - 2x), где
0
x a /2 (длина и ширина площадки не могут быть отрицательными). S " = a - 4x, a - 4x = 0 при x = a/4, откуда
y = a - 2 × a/4 =a/2. Поскольку x = a /4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При x a /4 S " > 0, а при x >a /4 S " < 0, значит, в точке x=a /4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв . ед ). Поскольку S непрерывна на и ее значения на концах S(0) и S(a /2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16 p ≈ 50 м 3 . Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение. Площадь полной поверхности цилиндра равна S = 2 p R(R+Н). Мы знаем объем цилиндра V = p R 2 Н Þ Н = V/ p R 2 =16 p / p R 2 = 16/ R 2 . Значит, S(R) = 2 p (R 2 +16/R). Находим производную этой функции:
S "
(R) = 2 p (2R- 16/R 2) = 4 p (R- 8/R 2). S " (R) = 0 при R 3 = 8, следовательно,
R = 2, Н = 16/4 = 4.

Для функции f(x) многих переменных точка x представляет собой вектор, f’(x) − вектор первых производных(градиент) функции f(x), f ′ ′(x) − симметричную матрицу вторых частных производных(матрицу Гессе − гессиан) функции f(x).
Для функции многих переменных условия оптимальности формулируются следующим образом.
Необходимое условие локальной оптимальности. Пусть f(x) дифференцируема в точке x * R n . Если x * − точка локального экстремума, то f’(x *) = 0.
Как и ранее, точки, являющиеся решениями системы уравнений, называются стационарными. Характер стационарной точки x * связан со знакоопределенностью матрицы Гессе f′ ′(x).
Знакоопределенность матрицы А зависит от знаков квадратичной формы Q(α)=< α A, α > при всех ненулевых α∈R n .
Здесь и далее через обозначается скалярное произведение векторов x и y. По определению,

Матрица A является положительно(неотрицательно) определенной, если Q(α)>0 (Q(α)≥0) при всех ненулевых α∈R n ; отрицательно (неположительно) определенной, если Q(α)<0 (Q(α)≤0) при всех ненулевых α∈R n ; неопределенной, если Q(α)>0 для некоторых ненулевых α∈R n и Q(α)<0 для остальных ненулевых α∈R n .
Достаточное условие локальной оптимальности. Пусть f(x) дважды дифференцируема в точке x * R n , причем f’(x *)=0 , т.е. x * − стационарная точка. Тогда, если матрица f′′(x *) является положительно (отрицательно) определенной, то x * − точка локального минимума (максимума); если матрица f′′(x *) является неопределенной, то x * − седловая точка.
Если матрица f′′(x *) является неотрицательно (неположительно) определенной, то для определения характера стационарной точки x * требуется исследование производных более высокого порядка.
Для проверки знакоопределенности матрицы, как правило, используется критерий Сильвестра. Согласно этому критерию, симметричная матрица А является положительно определенной в том и только том случае, если все ее угловые миноры положительны. При этом угловым минором матрицы А называется определитель матрицы, построенной из элементов матрицы А, стоящих на пересечении строк и столбцов с одинаковыми (причем первыми) номерами. Чтобы проверить симметричную матрицу А на отрицательную определенность, надо проверить матрицу (−А) на положительную определенность.
Итак, алгоритм определения точек локальных экстремумов функции многих переменных заключается в следующем.
1. Находится f′(x).
2. Решается система

В результате вычисляются стационарные точки x i .
3. Находится f′′(x), полагается i=1.
4. Находится f′′(x i)
5. Вычисляются угловые миноры матрицы f′′(x i). Если не все угловые миноры ненулевые, то для определения характера стационарной точки x i требуется исследование производных более высокого порядка. При этом осуществляется переход к п.8.
В противном случае осуществляется переход к п.6.
6. Анализируются знаки угловых миноров f′′(x i). Если f′′(x i) является положительно определенной, то x i является точкой локального минимума. При этом осуществляется переход к п.8.
В противном случае осуществляется переход к п.7.
7. Вычисляются угловые миноры матрицы -f′′(x i) и анализируются их знаки.
Если -f′′(x i) − является положительно определенной, то f′′(x i) является отрицательно определенной и x i является точкой локального максимума.
В противном случае f′′(x i) является неопределенной и x i является седловой точкой.
8. Проверяется условие определения характера всех стационарных точек i=N.
Если оно выполняется, то вычисления завершаются.
Если условие не выполняется, то полагается i=i+1 и осуществляется переход к п.4.

Пример №1 . Определить точки локальных экстремумов функции f(x) = x 1 3 – 2x 1 x 2 + x 2 2 – 3x 1 – 2x 2









Поскольку все угловые миноры ненулевые, то характер x 2 определяется с помощью f′′(x).
Поскольку матрица f′′(x 2) является положительно определенной, то x 2 является точкой локального минимума.
Ответ: функция f(x) = x 1 3 – 2x 1 x 2 + x 2 2 – 3x 1 – 2x 2 имеет в точке x = (5/3; 8/3) локальный минимум.

Говорят, что функция имеет вовнутреннейточке
областиD локальный максимум (минимум ), если существует такая окрестностьточки
, для каждой точки
которой выполняется неравенство

Если функция имеет в точке
локальный максимум или локальный минимум, то говорят, что она имеет в этой точкелокальный экстремум (или просто экстремум ).

Теорема (необходимое условие существования экстремума ). Если дифференцируемая функциядостигает экстремума в точке
, то каждая частная производная первого порядка от функциив этой точке обращается в нуль.

Точки, в которых все частные производные первого порядка обращаются в нуль, называются стационарными точками функции
. Координаты этих точек можно найти, решив систему изуравнений

.

Необходимое условие существования экстремума в случае дифференцируемой функции коротко можно сформулировать и так:

Встречаются случаи, когда в отдельных точках некоторые частные производные имеют бесконечные значения или не существуют (в то время как остальные равны нулю). Такие точки называются критическими точками функции. Эти точки тоже нужно рассматривать в качестве «подозрительных» на экстремум, как и стационарные.

В случае функции двух переменных необходимое условие экстремума, а именно равенство нулю частных производных (дифференциала) в точке экстремума, имеет геометрическую интерпретацию: касательная плоскость к поверхности
в точке экстремума должна быть параллельна плоскости
.

20. Достаточные условия существования экстремума

Выполнение в некоторой точке необходимого условия существования экстремума вовсе не гарантирует наличия там экстремума. В качестве примера можно взять дифференцируемую всюду функцию
. Обе ее частные производные и сама функция обращаются в нуль в точке
. Однако в любой окрестности этой точки есть как положительные (большие
), так и отрицательные (меньшие
) значения этой функции. Следовательно, в этой точке, по определению, экстремума не наблюдается. Поэтому необходимо знать достаточные условия, при которых точка, подозрительная на экстремум, является точкой экстремума исследуемой функции.

Рассмотрим случай функции двух переменных. Предположим, что функция
определена, непрерывна и имеет непрерывные частные производные до второго порядка включительно в окрестности некоторой точки
, которая является стационарной точкой функции
, то есть удовлетворяет условиям

,
.

Введем обозначения:

Теорема (достаточные условия существования экстремума ). Пусть функция
удовлетворяет вышеприведенным условиям, а именно: дифференцируема в некоторой окрестности стационарной точки
и дважды дифференцируема в самой точке
. Тогда, если


В случае если
то функция
в точке
достигает

локального максимума при
и

локального минимума при
.

В общем случае, для функции
достаточным условием существования в точке
локального минимума (максимума ) являетсяположительная (отрицательная ) определённость второго дифференциала.

Иными словами, справедливо следующее утверждение.

Теорема . Если в точке
для функции

для любых не равных одновременно нулю
, то в этой точке функция имеетминимум (аналогичномаксимум , если
).

Пример 18. Найти точки локального экстремума функции

Решение . Найдем частные производные функции и приравниваем их к нулю:

Решая эту систему, находим две точки возможного экстремума:

Найдем частные производные второго порядка для данной функции:

В первой стационарной точке , следовательно, и
Поэтому для этой точки требуется дополнительное исследование. Значение функции
в этой точке равно нулю:
Далее,

при

а

при

Следовательно, в любой окрестности точки
функция
принимает значения как большие
, так и меньшие
, и, значит, в точке
функция
, по определению, не имеет локального экстремума.

Во второй стационарной точке



следовательно,Поэтому, так как
то в точке
функция имеет локальный максимум.

Загрузка...