domvpavlino.ru

Площадь радиатора для транзистора калькулятор. Как рассчитать радиатор. Схема, описание. Погружение в теорию

= ([Температура в горячей точке, грЦ ] - [Температура в холодной точке, грЦ ]) / [Рассеиваемая мощность, Вт ]

Это означает, что если от горячей точки к холодной поступает тепловая мощность X Вт, а тепловое сопротивление составляет Y грЦ / Вт, то разница температур составить X * Y грЦ.

Формула для расчета охлаждения силового элемента

Для случая расчета теплоотвода электронного силового элемента то же самое можно сформулировать так:

[Температура кристалла силового элемента, грЦ ] = [Температура окружающей среду, грЦ ] + [Рассеиваемая мощность, Вт ] *

где [Полное тепловое сопротивление, грЦ / Вт ] = + [Тепловое сопротивление между корпусом и радиатором, грЦ / Вт ] + (для случая с радиатором),

или [Полное тепловое сопротивление, грЦ / Вт ] = [Тепловое сопротивление между кристаллом и корпусом, грЦ / Вт ] + [Тепловое сопротивление между корпусом и окружающей средой, грЦ / Вт ] (для случая без радиатора).

В результате расчета мы должны получить такую температуру кристалла, чтобы она была меньше максимально допустимой, указанной в справочнике.

Где взять данные для расчета?

Тепловое сопротивление между кристаллом и корпусом для силовых элементов обычно приводится в справочнике. И обозначается так:

Пусть Вас не смущает, что в справочнике написаны единицы измерения K/W или К/Вт. Это означает, что данная величина приведена в Кельвинах на Ватт, в грЦ на Вт она будет точно такой же, то есть X К/Вт = X грЦ/Вт.

Обычно в справочниках приведено максимально возможное значение этой величины с учетом технологического разброса. Она нам и нужно, так как мы должны проводить расчет для худшего случая. Для примера максимально возможное тепловое сопротивление между кристаллом и корпусом силового полевого транзистора SPW11N80C3 равно 0.8 грЦ/Вт,

Тепловое сопротивление между корпусом и радиатором зависит от типа корпуса. Типичные максимальные значения приведены в таблице:

TO-3 1.56
TO-3P 1.00
TO-218 1.00
TO-218FP 3.20
TO-220 4.10
TO-225 10.00
TO-247 1.00
DPACK 8.33

Изоляционная прокладка. По нашему опыту правильно выбранная и установленная изолирующая прокладка увеличивает тепловое сопротивление в два раза.

Тепловое сопротивление между корпусом / радиатором и окружающей средой . Это тепловое сопротивление с точностью, приемлемой для большинства устройств, рассчитать довольно просто.

[Тепловое сопротивление, грЦ / Вт ] = [120, (грЦ * кв. см) / Вт ] / [Площадь радиатора или металлической части корпуса элемента, кв. см ].

Такой расчет подходит для условий, когда элементы и радиаторы установлены без создания специальных условий для естественного (конвекционного) или искусственного обдува. Сам коэффициент выбран из нашего практического опыта.

Спецификация большинства радиаторов содержит тепловое сопротивление между радиатором и окружающей средой. Так что в расчете надо пользоваться именно этой величиной. Рассчитывать эту величину следует только в случае, если табличных данных по радиатору найти не удается. Мы часто для сборки отладочных образцов используем б/у радиаторы, так что эта формула нам очень помогает.

Для случая, когда отвод тепла осуществляется через контакты печатной платы, площадь контакта также можно использовать в расчете.

Для случая, когда отвод тепла через выводы электронного элемента (типично диодов и стабилитронов относительно малой мощности), площадь выводов вычисляется, исходя из диаметра и длины вывода.

[Площадь выводов, кв. см. ] = Пи * ([Длина правого вывода, см. ] * [Диаметр правого вывода, см. ] + [Длина левого вывода, см. ] * [Диаметр левого вывода, см. ])

Пример расчета отвода тепла от стабилитрона без радиатора

Пусть стабилитрон имеет два вывода диаметром 1 мм и длиной 1 см. Пусть он рассеивает 0.5 Вт. Тогда:

Площадь выводов составит около 0.6 кв. см.

Тепловое сопротивление между корпусом (выводами) и окружающей средой составит 120 / 0.6 = 200.

Тепловым сопротивлением между кристаллом и корпусом (выводами) в данном случае можно пренебречь, так как оно много меньше 200.

Примем, что максимальная температура, при которой будет эксплуатироваться устройство, составит 40 грЦ. Тогда температура кристалла = 40 + 200 * 0.5 = 140 грЦ, что допустимо для большинства стабилитронов.

Онлайн расчет теплоотвода - радиатора

Обратите внимание, что у пластинчатых радиаторов нужно считать площадь обеих сторон пластины. Для дорожек печатной платы, используемых для отвода тепла, нужно брать только одну сторону, так как другая не контактирует с окружающей средой. Для игольчатых радиаторов необходимо приблизительно оценить площадь одной иголки и умножить эту площадь на количество иголок.

Онлайн расчет отвода тепла без радиатора

Несколько элементов на одном радиаторе.

Если на одном теплоотводе установлено несколько элементов, то расчет выглядит так. Сначала рассчитываем температуру радиатора по формуле:

[Температура радиатора, грЦ ] = [Температура окружающей среды, грЦ ] + [Тепловое сопротивление между радиатором и окружающей средой, грЦ / Вт ] * [Суммарная мощность, Вт ]

[Температура кристалла, грЦ ] = [Температура радиатора, грЦ ] + ([Тепловое сопротивление между кристаллом и корпусом элемента, грЦ / Вт ] + [Тепловое сопротивление между корпусом элемента и радиатором, грЦ / Вт ]) * [Мощность, рассеиваемая элементом, Вт ]

Заявленный срок службы светодиодов исчисляется десятками тысяч часов. Чтобы достичь столь высокого показателя, не ухудшив при этом оптические характеристики, мощные светодиоды необходимо использовать в паре с радиатором. Данная статья позволит читателю найти ответы на вопросы, связанные с расчётом и выбором радиатора, их модификациями и факторами, влияющими на отвод тепла.

А зачем он нужен?

Наравне с другими полупроводниковыми приборами светодиод не является идеальным элементом со 100% коэффициентом полезного действия (КПД). Большая часть потребляемой им энергии рассеивается в тепло. Точное значение КПД зависит от типа излучающего диода и технологии его изготовления. Эффективность слаботочных светодиодов составляет 10-15%, а у современных белых мощностью более 1 Вт её значение достигает 30%, а значит, остальные 70% расходуются в тепло.

Каким бы ни был светодиод, для стабильной и продолжительной работы ему необходим постоянный отвод тепловой энергии от кристалла, то есть радиатор. В слаботочных led функцию радиатора выполняют выводы (анод и катод). Например, в SMD 2835 вывод анода занимает почти половину нижней части элемента. В мощных светодиодах абсолютная величина рассеиваемой мощности на несколько порядков больше. Поэтому нормально функционировать без дополнительного теплоотвода они не могут. Постоянный перегрев светоизлучающего кристалла в разы снижает срок службы полупроводникового прибора, способствует плавной потере яркости со смещением рабочей длины волны.

Виды

Конструктивно все радиаторы можно разделить на три большие группы: пластинчатые, стержневые и ребристые. Во всех случаях основание может иметь форму круга, квадрата или прямоугольника. Толщина основания имеет принципиальное значение при выборе, так как именно этот участок несёт ответственность за приём и равномерное распределение тепла по всей поверхности радиатора.

На форм-фактор радиатора оказывает влияние будущий режим работы:

  • с естественной вентиляцией;
  • с принудительной вентиляцией.

Радиатор охлаждения для светодиодов, который будет использоваться без вентилятора, должен иметь расстояние между рёбрами не менее 4 мм. В противном случае естественной конвекции не хватит для успешного отвода тепла. Ярким примером служат системы охлаждения компьютерных процессоров, где за счёт мощного вентилятора расстояние между рёбрами уменьшено до 1 мм.

При проектировании светодиодных светильников большое значение уделяется их внешнему виду, что оказывает огромное влияние на форму теплоотвода. Например, система отвода тепловой энергии светодиодной лампы не должна выходить за рамки стандартной грушевидной формы. Этот факт вынуждает разработчиков прибегать к различным ухищрениям: использовать печатные платы с алюминиевой основой, соединяя их с корпусом-радиатором при помощьи термоклея.

Материалы изготовления радиаторов

В настоящее время охлаждение мощных светодиодов производят преимущественно на радиаторах из алюминия. Такой выбор обусловлен лёгкостью, низкой стоимостью, податливостью в обработке и хорошими теплопроводящими свойствами этого металла. Монтаж медного радиатора для светодиода оправдан в светильнике, где первостепенное значение имеют размеры, так как медь в два раза лучше рассеивает тепло, чем алюминий. Свойства материалов, которые наиболее часто используются для охлаждения мощных светодиодов, рассмотрим более детально.

Алюминиевые

Коэффициент теплопроводности алюминия находится в пределах 202–236 Вт/м*К и зависит от чистоты сплава. По этому показателю он в 2,5 раза превосходит железо и латунь. Кроме этого, алюминий поддаётся разным видам механической обработки. Для увеличения теплоотводящих свойств алюминиевый радиатор анодируют (покрывают в чёрный цвет).

Медные

Теплопроводность меди составляет 401 Вт/м*К, уступая среди других металлов лишь серебру. Тем не менее медные радиаторы встречаются намного реже алюминиевых, что обусловлено наличием ряда недостатков:

  • высокая стоимость меди;
  • сложная механическая обработка;
  • большая масса.

Применение медной охлаждающей конструкции ведёт к увеличению себестоимости светильника, что недопустимо в условиях жёсткой конкуренции.

Керамические

Новым решением в создании высокоэффективных теплоотводов стала алюмонитридная керамика, теплопроводность которой составляет 170–230 Вт/м*К. Этот материал отличается низкой шероховатостью и высокими диэлектрическими свойствами.

С применением термопластика

Несмотря на то что свойства теплопроводных пластмасс (3–40 Вт/м*К) хуже, чем у алюминия, их главными преимуществами являются низкая себестоимость и лёгкость. Многие производители светодиодных ламп используют термопластик для изготовления корпуса. Однако термопластик проигрывает конкуренцию металлическим радиаторам в проектировании светодиодных светильников мощностью более 10 Вт.

Особенности охлаждения мощных светодиодов

Как указывалось ранее, обеспечить эффективный отвод тепла от светодиода можно при помощи организации пассивного или активного охлаждения. Светодиоды мощностью потребления до 10 вт целесообразно устанавливать на алюминиевые (медные) радиаторы, так как их массогабаритные показатели будут иметь приемлемые значения.

Применение пассивного охлаждения для светодиодных матриц мощностью 50 Вт и более становится затруднительным; размеры радиатора составят десятки сантиметров, а масса возрастёт до 200-500 грамм. В этом случае стоит задуматься о применении компактного радиатора вместе с небольшим вентилятором. Этот тандем позволит снизить массу и размеры системы охлаждения, но создаст дополнительные трудности. Вентилятор необходимо обеспечить соответствующим напряжением питания, а также позаботиться о защитном отключении светодиодного светильника в случае поломки кулера.

Существует ещё один способ охлаждения мощных светодиодных матриц. Он состоит в применении готового модуля SynJet, который внешне напоминает кулер для видеокарты средней производительности. Модуль SynJet отличается высокой производительностью, тепловым сопротивлением не больше 2 °C/Вт и массой до 150 г. Его точные размеры и вес зависят от конкретной модели. К недостаткам стоит отнести необходимость в источнике питания и высокую стоимость. В результате получается, что светодиодную матрицу в 50 Вт нужно крепить либо на громоздкий, но дешёвый радиатор, либо на маленький радиатор с вентилятором, блоком питания и системой защиты.

Каким бы ни был радиатор, он способен обеспечить хороший, но не самый лучший тепловой контакт с подложкой светодиода. Для снижения теплового сопротивления на контактируемую поверхность наносят теплопроводящую пасту. Эффективность её воздействия доказана повсеместным применением в системах охлаждения компьютерных процессоров. Качественная термопаста устойчива к затвердеванию и обладает низкой вязкостью. При нанесении на радиатор (подложку) достаточно одного тонкого ровного слоя на всей площади соприкосновения. После прижима и фиксации толщина слоя составит около 0,1 мм.

Расчет площади радиатора

Существуют два метода расчёта радиатора для светодиода:

  • проектный, суть которого состоит в определении геометрических размеров конструкции при заданном температурном режиме;
  • поверочный, который предполагает действовать в обратной последовательности, то есть при известных параметрах радиатора можно рассчитать максимальное количество теплоты, которую он способен эффективно рассеивать.

Применение того или иного варианта зависит от имеющихся исходных данных. В любом случае точный расчёт – это сложная математическая задача с множеством параметров. Кроме умения пользоваться справочной литературой, брать необходимые данные из графиков и подставлять их в соответствующие формулы, следует учитывать конфигурацию стержней или рёбер радиатора, их направленность, а также влияние внешних факторов. Также стоит учитывать и качество самих светодиодов. Зачастую в светодиодах китайского производства реальные характеристики расходятся с заявленными.

Точный расчёт

Прежде чем перейти к формулам и расчётам, необходимо ознакомиться с основными терминами в области распространения тепловой энергии. Теплопроводность представляет собой процесс передачи тепловой энергии от более нагретого физического тела к менее нагретому. Количественно теплопроводность выражается в виде коэффициента, который показывает, сколько теплоты способен передать материал через единицу площади при изменении температуры на 1°K. В светодиодных светильниках все части, задействованные в обмене энергии, должны обладать высокой теплопроводностью. В частности это касается передачи энергии от кристалла к корпусу, а затем к радиатору и воздуху.

Конвекция – тоже процесс передачи тепла, который происходит за счёт движения молекул жидкостей и газов. Применительно к светодиодным светильникам принято рассматривать обмен энергией между радиатором и воздухом. Это может быть естественная конвекция, происходящая за счет естественного перемещения воздушного потока, или принудительная, организованная за счёт установки вентилятора.

В начале статьи указывалось, что около 70% потребляемой светодиодом мощности расходуется в тепло. Чтобы рассчитать радиатор для светодиодов, необходимо знать точное количество рассеиваемой энергии. Для этого воспользуемся формулой:

P Т =k*U ПР *I ПР, где:

P Т – мощность, выделяемая в виде тепла, Вт;
k – коэффициент, учитывающий процент энергии, переходящей в тепло. Это величина для мощных светодиодов принимается равной 0,7-0,8;
U ПР – прямое падение напряжения на светодиоде при протекании номинального тока, В;
I ПР – номинальный ток, А.

Пришло время посчитать количество препятствий, расположенных на пути прохождения теплового потока от кристалла к воздуху. Каждое препятствие представляет собой тепловое сопротивление (termal resistance), обозначаемое символом (Rθ, градус/Вт). Для наглядности всю систему охлаждения представляют в виде схемы замещения из последовательно-параллельного включения тепловых сопротивлений

Rθ ja = Rθ jc + Rθ cs + Rθ sa , где:

Rθ jc – тепловое сопротивление p-n-переход-корпус (junction-case);
Rθ cs – тепловое сопротивление корпус-радиатор (case-surfase radiator);
Rθ sa – тепловое сопротивление радиатор-воздух (surfase radiator-air).

Если предполагается устанавливать светодиод на печатную плату или использовать термопасту, то также нужно учесть их тепловые сопротивления. На практике значение Rθsa можно определить двумя способами.

Rθ ja – сопротивление p-n-переход-воздух;
T j – максимальная температура p-n-перехода (справочный параметр), °C;
T a – температура воздуха вблизи радиатора, °C.

Rθ sa = Rθ ja -Rθ jc -Rθ cs , где Rθ jc и Rθ cs – справочные параметры.

Найти из графика «зависимость максимального теплового сопротивления от прямого тока».

По известному Rθ sa выбирают стандартный радиатор. При этом паспортное значение теплового сопротивления должно быть немного меньше расчетного.

Приблизительная формула

Многие радиолюбители привыкли использовать в своих самоделках радиаторы, оставшиеся от старой электронной аппаратуры. При этом они не желают углубляться в сложные вычисления и покупать дорогие новинки импортного производства. Как правило, их интересует один только вопрос: «Какую мощность может рассеять имеющийся в наличии алюминиевый радиатор для светодиодов?»

Предлагаем воспользоваться простой эмпирической формулой, позволяющей получить приемлемый результат расчёта: Rθ sa =50/√S, где S – площадь поверхности радиатора в см 2 .

Подставляя в данную формулу известное значение суммарной площади теплоотвода с учетом поверхности рёбер (стержней) и боковых граней, получаем его тепловое сопротивление.

Допустимую мощность рассеивания находим из формулы: P т =(T j -T a)/Rθ ja .

Приведенный расчёт не учитывает много нюансов, влияющих на качество работы всей охлаждающей системы (направленность радиатора, температурные характеристики светодиода и пр.). Поэтому полученный результат рекомендуется умножать на коэффициент запаса – 0,7.

Радиатор для светодиода своими руками

Сделать алюминиевый радиатор для светодиодов 1, 3 или 10 Вт своими руками несложно. Сначала рассмотрим простую конструкцию, на изготовление которой потребуется около полчаса времени и круглая пластина толщиною 1-3 мм. По окружности через каждые 5 мм делают надрезы к центру, а получившиеся сектора слегка загибают, чтобы готовая конструкция напоминала крыльчатку. Для крепления радиатора к корпусу в нескольких секторах делают отверстия. Немного сложнее сделать самодельный радиатор для 10 ваттного светодиода. Для этого понадобиться 1 метр алюминиевой полосы шириной 20 мм и толщиной 2 мм. Сначала полосу распиливают ножовкой на 8 равных частей, которые затем складывают стопкой, просверливают насквозь и стягивают болтом с гайкой. Одну из боковых граней шлифуют под крепление светодиодной матрицы. С помощью стамески полосы разгибают в разные стороны. В местах крепления светодиодного модуля сверлят отверстия. На отшлифованную поверхность наносят термоклей, сверху прикладывают матрицу, фиксируя её саморезами.

Дешевые теплоотводчики для любительских самооделок

Специально для радиолюбителей, которые любят экспериментировать с разными материалами для отвода тепла и при этом не хотят тратить деньги на дорогостоящие готовые изделия, дадим несколько рекомендаций по поиску и изготовлению радиаторов своими руками. Для охлаждения светодиодных лент и линеек прекрасно подойдёт мебельный профиль из алюминия. Это могут быть направляющие для шкафов-купе или кухонная фурнитура, остатки которой можно купить по себестоимости в мебельном магазине.

Для охлаждения светодиодных матриц 3-10 Вт подойдут радиаторы из советских магнитофонов и усилителей, которых более чем достаточно на радиорынках каждого города. Также можно использовать запчасти от старой оргтехники.

Самодельное охлаждение для 50 Вт светодиода можно сделать из радиатора от неисправной бензопилы, газонокосилки, распилив его на несколько частей. Купить такие запчасти можно в ремонтных мастерских по цене лома. Конечно, про эстетические качества светодиодного светильника в этом случае можно забыть.

Читайте так же

Сначала простой случай, расчет радиатора по данным тепловыделения при постоянном токе.

Для примера рассмотрим расчет радиатора для MOSFET-а IRLR024N

В этом примере предполагается, что MOSFET включается и долгое время находится в полностью открытом состоянии. Например, переключение производится не чаще чем с частотой 1 Гц.

В даташите нас интересуют параметры теплового сопротивления Junction-to-Case (сопротивление переход-корпус), Junctione-to-Ambient (PCB mount) (переход-окружающая среда при монтаже на 1кв.дюйм медной заливки на плате), Junction-to-Ambient (корпус-окружающая среда).

RθJC = 3.3 К/Вт
RθJApcb= 50 К/Вт
RθJA = 110 К/Вт

(Кельвины и Цельсии не играет роли, так как речь о разницах).

Цифра 110 К/Вт означает, то при выделяемой мощности 1Вт разница температур между внешней средой и переходом будет 110 градусов. Например, если границе корпус-воздух будет 40 градусов, то это значит, что переход внутри транзистора имеет температуру 40+110=150 градусов. Если выделяется 2Вт, то внутри будет 40+110*2=260 градусов.

Предположим, что напряжение на затворе будет 3.3В. А ток будет 3А. Из графика «Typical Transfer Characteristics» находим, что при напряжении 3.5В ток составляет 8А. Т.е. сопротивление составляет 0,4375 Ом. При этом смотрим на график «Normalized On-Resistance Vs. Temperature» и видим, что при 90 градусах сопротивление растет в 1.5 раза.

Допускаем по дизайну нагрев до 90 градусов, а сопротивление считаем 0.4375*1.5= 0,6563 Ом.

Получаем, что рассеиваться на транзисторе будет P=I^2*R=3*3*0,6563=5,9067 = 6 Вт.

Предполагается, что транзистор будет работать в окружении, где температура воздуха будет до 30 градусов (что очень оптимистично, так как он греет воздух вокруг себя).

Итак, запас по температуре составляет 90-30=60 градусов. Получается что максимальное общее теплового сопротивления равно (90-30)/6Вт=10 К/Вт

При этом сопротивление переход-корпус уже съело 3.3 К/Вт. У нас остается 8.3 К/Вт.

Монтаж радиатора будет производится на силиконовый клей. Предположим, что наш клей - HC910. Проводимость его 1.7 Вт/м*К.

У нас площадь приклеивания будет 0.25д*0.24д=0.01м*0.009м=0,0000054 кв.м.

Толщина слоя нанесения 0.0001м (0.1 мм). Эта оценка подтверждена документацией на подобные клеи.

Тепловое сопротивление слоя клея равно = толщина/(площадь*проводимость)=0,53 К/Вт

Остается 7.77 К/Вт на сам радиатор. Выбираем в магазине каком-нибудь.

И это будет довольно крупный радиатор. Примерно 10х10х5 см за нормальные деньги.

Теперь решим вопрос, а какой допустимый ток, при котором можно обойтись без радиатора вообще.

Возьмем вариант, когда транзистор припаян к площадке на плате площадью 1кв. дюйм. RθJApcb= 50 К/Вт. Предположим, что все устройство работает в коробочке и воздух в ней, за счет других компонентов и этого MOSFET-а, может нагреваться до 50 градусов. Предел нагрева для выбранного транзистора 175 градусов. Но мы возьмем максимум 125. Тогда максимальная допустимая мощность будет (125К-50К) / 50К/Вт= 1,5 Вт.

Если же он не припаян к площадке, то RθJA = 110 К/Вт, и получаем максимальную мощность (125К-50К) / 110К/Вт= 0,6 Вт.

Расчет по корпусу приведенный здесь более реалистичный, чем с радиатором. Однако, если устройство должно работать в различных условиях, то требуется внесение понижающего коэффициента для высот. Например, для высоты 2000м коэффициент 0.8 (т.е. не 0.6Вт, а 0,5Вт) для высоты 3500м – 0.75.

При 125 градусах Rds(on) будет составлять 1.75 * Rds(on) при 20 градусах, т.е. 0,4375 * 1,75=0,765625 Ом. P=I^2*R => I=SQRT(P/R)

Получаем, что при припайке на площадку на плате максимальный ток будет Imax=корень(1.5/0.765625)=1.4A Без площадки Imax=корень(0,6/0,765625)=0,9A

Часть 2: Расчет тепловыделения MOSFET при ШИМ

Теперь рассчитаем рассеиваемую мощность в случае использования ШИМ. Пусть сигнал ШИМ на затвор поступаем напрямую с микроконтроллера. Максимальный ток 25мА. Во время ШИМ есть 4 фазы: открытие затвора, высокий уровень, закрытие затвора, низкий уровень. Выделение тепла идет во всех фазах, кроме низкого уровня. Во время высокого уровня мощность равна U*I, как обычно. Мощность в фазе открытия затвора зависит от времени открытия, которое зависит от емкости затвора и тока драйвера. Пусть в нашем примере частота пусть будет 240Гц. Коэф. заполнения: 0.5. Ток 3А. Пусть это будет управление светодиодами, транзистор включен со стороны общего провода. Напряжение питания 5В.

Рассчитать теоретически точно потери по всех фазах довольно сложная задача, так как параметры и результаты расчет зависят друг от друга и есть процессы происходящие в подложке. Но на практике такая точность и верность теории не требуется. Есть приблизительные оценки потерь в фазах открытия и закрытия, которые дают практические цифры, которые можно использоваться при вычислении тепловыделения. Для расчета эффективности (КПД) этот метод не годится.

Потери в фазе высокого уровня (фазе полного открытия) мы считали в первой части и там нет ничего сложного. Для закрытия и открытия оказывается важным вид нагрузки: резистивная или индуктивная.

Потери при переключении возникают из-за того, что в процессе переключения через транзистор проходит большой ток при большом напряжении. Можно взять идеализированную форму этого процесса и рассчитать потери с приемлемой точностью для практического расчета тепловыделения.

Для резистивной нагрузки
Psw=1/2 * Fs *Vds*Id*tsw

Для индуктивной
Psw=1/6 * Fs *Vds*Id*tsw

Где
Fs- частота
Vds – напряжение сток-исток (в закрытом состоянии)
Id- ток проходящий через транзистор (в открытом состоянии)
tsw - время переключения

Время переключения в первом приближении можно рассчитать по графику зависимости зарядка на затворе от напряжения затвор-исток.

При напряжении 3.3В по графику заряд будет не более 4nC
tsw= ЗарядЗатвора/ТокДрайвера =4nC/0.025A=160.4ns
Считаем процессы закрытия и открытия симметричными. Тогда итоговые потери переключения, например, для резистивной нагрузки:

Psw=1/2 * Fs * Vds * Id *tsw= 1/2 * 240* 20*3*160ns=1 мВт

Время во включенном состоянии намного больше времени переключения, поэтому время переключения игнорируем (для больших частот это не так). Тогда потери в проводящей фазе равны D*I^2* Rds(on), где D – коэф. заполнения
Pcond=0.5*3*3* 0,6563 = 2,95 Вт

Видно, что потери на переключение пренебрежительно малы в сравнении с потерями в открытой фазе.

Voff – напряжение сток-исток, когда mosfet выключен
, 5В Fs – частота переключения, 240 Гц
Рассчитаем
Psw2=(130*10-12)*5^2*240=0,78 мкВт

Т.е. на 3 порядка меньше основных потерь при переключении. А потери при переключении на 3 порядка меньше потерь проводимости.

Ради интереса рассчитаем потери при частоте 2МГц, D=0,8 и тоге 20 А.
Psw=10,6Вт
Pcond=210 Вт
Psw2=0.78мкВт

Видно, что даже при таких условиях потери на переключение на порядок меньше потерь проводимости. Т.е. когда вы будете искать радиатор на 210 Вт, дополнительные 10Вт просто попадут в инженерный запас, который вы обязательно должны сделать (около 20%).

Кроме этого рассчитывать надо крайний случай, которым является D=0.99, Pcond=260 Вт при этом Psw сохраняется прежним.

Из приведенных формул можно сделать интересные выводы:

  1. Чтобы сократить потери на переключение, надо сократить время переключения. Для этого надо иметь мощный драйвер, который может отдавать большой ток в затвор.
  2. Малый ток затвора ограничивает скорость переключения. В нашем примере время включения и выключения было в районе 160 нс. Т.е. даже если только открывать и закрывать затвор минимальный период будет равен 320нс, т.е. максимальная частота, с которой можно открывать и закрывать затвор током драйвера в 25мА составит примерно 3МГц.
  3. Вклад частоты в потери линейный, а общий вклад потерь при переключении не существенный.
  4. При частотах до 1МГц и при токах до 20А вклад потерь при переключении составляет 1-2% от общих потерь и может быть смело проигнорирован. В этом случае потери на mosfet-е можно просто считать как Iout^2*Rdn(on)*D
  5. Выходное сопротивление управляющего сигнала и емкость затвора представляющий собой ФНЧ с частотой 1/Rout*Cgs,где Cgs=Ciss-Crss, но из фактических значений для любого разумного случая это сотни мегагерц минимум.

Дополнительное чтение с более сложными расчетами, дающими примерно такой же результат по тепловыделению, но правильные для расчета КПД.

Есть такой параметр, как тепловое сопротивление. Он показывает, на сколько градусов нагревается объект, если в нем выделяется мощность 1 Вт. К сожалению, в справочниках по транзисторам такой параметр приводится редко. Например, для транзистора в корпусе ТО-5 тепловое сопротивление равно 220°С на 1 Вт. Это означает, что если в транзисторе выделяется 1 Вт мощности, то он нагреется на 220°С. Если допускать нагрев не более чем до 100°С, например, на 80°С относительно комнатной температуры, то получим, что на транзисторе должно выделяться не более 80/220 = 0,36 Вт. В дальнейшем будем считать допустимым нагрев транзистора или тиристора не более, чем на 80°С.

Существует грубая формула для расчета теплового сопротивления теплоотвода Q = 50/ VS °С/Вт, (1) где S — площадь поверхности теплоотвода, выраженная в квадратных сантиметрах. Отсюда площадь поверхности можно рассчитать по формуле S = 2.
Рассмотрим в качестве примера расчет теплового сопротивления конструкции, показанной на рисунке. Конструкция теплоотвода состоит из 5 алюминиевых пластин, собранных в пакет. Предположим, W=20 см, D=10 см, а высота (на рисунке не показана) 12 см, каждый «выступ» имеет площадь 10х12 = 120 см2, а с учетом обеих сторон 240 см2. Десять «выступов» имеют площадь 2400 см2, а пластина две стороны х 20 х 12 = 480 см2. Итого получаем S=2880 см2. По формуле (1) рассчитываем Q=0,93°С/Вт. При допустимом нагреве на 80°С получаем мощность рассеяния 80/0,93 = 90 Вт.

Теперь проведем обратный расчет.
Предположим, нужен блок питания с выходным напряжением 12 В и током 10 А. После выпрямителя имеем 17 В, следовательно, падение напряжения на транзисторе составляет 5 В, а значит, мощность на нем 50 Вт. При допустимом нагреве на 80°С получим требуемое тепловое сопротивление Q=80/50=1,6°C/Вт. Тогда по формуле (2) определим S= 1000 cм2.

Литература
Конструктор № 4/2000

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 20.09.2014

    Общие сведения об электропроводках Электропроводкой называется совокупность проводов и кабелей с относящимися к ним креплениями, поддерживающими и защитными конструкциями. Скрытая электропроводка имеет ряд преимуществ перед открытой: она более безопасна и долговечна, защищена от механических повреждений, гигиенична, не загромождает стен и потолков. Но она дороже, и ее труднее заменить при необходимости. …

  • 27.09.2014

    На основе К174УН7 можно собрать не сложный генератор с 3 под диапазонами: 20…200, 200…2000 и 2000…20000Гц. ПОС определяет частоту генерируемых колебаний, она построена на элементах R1-R4 и С1-С6. Цепь отрицательной ОС уменьшающая нелинейные искажения сигнала и стабилизирующая его амплитуду образована резистором R6 и лампой накаливания Н1. При указных номиналах схемы …

Нередко, проектируя мощное устройство на силовых транзисторах, или прибегая к использованию в схеме мощного выпрямителя, мы сталкиваемся с ситуацией, когда необходимо рассеивать очень много тепловой мощности, измеряемой единицами, а иногда и десятками ватт.

К примеру IGBT-транзистор FGA25N120ANTD от Fairchild Semiconductor, если его правильно смонтировать, теоретически способен отдать через свой корпус порядка 300 ватт тепловой мощности при температуре корпуса в 25 °C! А если температура его корпуса будет 100 °C, то транзистор сможет отдавать 120 ватт, что тоже совсем немало. Но для того чтобы корпус транзистора в принципе смог отдать это тепло, необходимо обеспечить ему надлежащие рабочие условия, чтобы он раньше времени не сгорел.

Все силовые ключи выпускаются в таких корпусах, которые можно легко установить на внешний теплоотвод - радиатор. При этом в большинстве случаев металлическая поверхность ключа или другого устройства в выводном корпусе, электрически соединена с одним из выводов данного устройства, например с коллектором или со стоком транзистора.

Так вот, задача радиатора как раз и состоит в том, чтобы удержать транзистор, и главным образом его рабочие переходы, при температуре, не превышающей максимально допустимую.

Андрей Повный

Загрузка...