domvpavlino.ru

Развертка боковой. Развертка конуса. Построение развертки конуса. Общие понятия о развертывании поверхностей

Цилиндром (прямым круговым цилиндром) называется тело, состоящее из двух кругов (оснований цилиндра), совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие при параллельном переносе точки этих кругов. Отрезки, соединяющие соответствующие точки окружностей оснований, называются образующими цилиндра.

Вот другое определение:

Цилиндр - тело, которое ограничено цилиндрической поверхностью с замкнутой направляющей и двумя параллельными плоскостями, пересекающими образующие данной поверхности.

Цилиндрическая поверхность - поверхность, которая образуется движением прямой линии вдоль некоторой кривой. Прямую называют образующей цилиндрической поверхности, а кривую линию - направляющей цилиндрической поверхности.

Боковая поверхность цилиндра - часть цилиндрической поверхности, которая ограничена параллельными плоскостями.

Основания цилиндра - части параллельных плоскостей, отсекаемые боковой поверхностью цилиндра.

Рис.1 мини

Цилиндр называется прямым (См.Рис.1 ), если его образующие перпендикулярны плоскостям оснований. В противном случае цилиндр называется наклонным .

Круговой цилиндр - цилиндр, основания которого являются кругами.

Прямой круговой цилиндр (просто цилиндр) – это тело, полученное при вращении прямоугольника вокруг одной из его сторон. См.Рис.1 .

Радиус цилиндра – радиус его основания.

Образующая цилиндра - образующая цилиндрической поверхности.

Высотой цилиндра называется расстояние между плоскостями оснований. Осью цилиндра называется прямая, проходящая через центры оснований. Сечение цилиндра плоскостью, проходящей через ось цилиндра, называется осевым сечением .

Ось цилиндра параллельна его образующей и является осью симметрии цилиндра.

Плоскость, проходящая через образующую прямого цилиндра и перпендикулярная осевому сечению, проведенному через эту образующую, называется касательной плоскостью цилиндра . См.Рис.2 .

Развёртка боковой поверхности цилиндра - прямоугольник со сторонами, равными высоте цилиндра и длине окружности основания.

Площадь боковой поверхности цилиндра - площадь развёртки боковой поверхности. $$S_{бок}=2\pi\cdot rh$$ , где h – высота цилиндра, а r – радиус основания.

Площадь полной поверхности цилиндра - площадь, которая равна сумме площадей двух оснований цилиндра и его боковой поверхности, т.е. выражается формулой: $$S_{полн}=2\pi\cdot r^2 + 2\pi\cdot rh = 2\pi\cdot r(r+h)$$ , где h – высота цилиндра, а r – радиус основания.

Объем всякого цилиндра равен произведению площади основания на высоту: $$V = S\cdot h$$ Объем круглого цилиндра : $$V=\pi r^2 \cdot h$$ , где (r - радиус основания).

Призма есть частный вид цилиндра (образующие параллельны боковым ребрам; направляющая - многоугольник, лежащий в основании). С другой стороны, произвольный цилиндр можно рассматривать как выродившуюся («сглаженную») призму с очень большим числом очень узких граней. Практически цилиндр неотличим от такой призмы. Все свойства призмы сохраняются и в цилиндре.

Развертка поверхности конуса - это плоская фигура, полученная путем совмещения боковой поверхности и основания конуса с некоторой плоскостью.

Варианты построения развертки:

Развертка прямого кругового конуса

Развертка боковой поверхности прямого кругового конуса представляет собой круговой сектор, радиус которого равен длине образующей конической поверхности l, а центральный угол φ определяется по формуле φ=360*R/l, где R – радиус окружности основания конуса.

В ряде задач начертательной геометрии предпочтительным решением является аппроксимация (замена) конуса вписанной в него пирамидой и построение приближенной развертки, на которую удобно наносить линии, лежащие на конической поверхности.

Алгоритм построения

  1. Вписываем в коническую поверхность многоугольную пирамиду. Чем больше боковых граней у вписанной пирамиды, тем точнее соответствие между действительной и приближенной разверткой.
  2. Строим развертку боковой поверхности пирамиды способом треугольников . Точки, принадлежащие основанию конуса, соединяем плавной кривой.

Пример

На рисунке ниже в прямой круговой конус вписана правильная шестиугольная пирамида SABCDEF, и приближенная развертка его боковой поверхности состоит из шести равнобедренных треугольников – граней пирамиды.

Рассмотрим треугольник S 0 A 0 B 0 . Длины его сторон S 0 A 0 и S 0 B 0 равны образующей l конической поверхности. Величина A 0 B 0 соответствует длине A’B’. Для построения треугольника S 0 A 0 B 0 в произвольном месте чертежа откладываем отрезок S 0 A 0 =l, после чего из точек S 0 и A 0 проводим окружности радиусом S 0 B 0 =l и A 0 B 0 = A’B’ соответственно. Соединяем точку пересечения окружностей B 0 с точками A 0 и S 0 .

Грани S 0 B 0 C 0 , S 0 C 0 D 0 , S 0 D 0 E 0 , S 0 E 0 F 0 , S 0 F 0 A 0 пирамиды SABCDEF строим аналогично треугольнику S 0 A 0 B 0 .

Точки A, B, C, D, E и F, лежащие в основании конуса, соединяем плавной кривой – дугой окружности, радиус которой равен l.

Развертка наклонного конуса

Рассмотрим порядок построения развертки боковой поверхности наклонного конуса методом аппроксимации (приближения).

Алгоритм

  1. Вписываем в окружность основания конуса шестиугольник 123456. Соединяем точки 1, 2, 3, 4, 5 и 6 с вершиной S. Пирамида S123456, построенная таким образом, с некоторой степенью приближения является заменой конической поверхности и используется в этом качестве в дальнейших построениях.
  2. Определяем натуральные величины ребер пирамиды, используя способ вращения вокруг проецирующей прямой: в примере используется ось i, перпендикулярная горизонтальной плоскости проекций и проходящая через вершину S.
    Так, в результате вращения ребра S5 его новая горизонтальная проекция S’5’ 1 занимает положение, при котором она параллельна фронтальной плоскости π 2 . Соответственно, S’’5’’ 1 – натуральная величина S5.
  3. Строим развертку боковой поверхности пирамиды S123456, состоящую из шести треугольников: S 0 1 0 6 0 , S 0 6 0 5 0 , S 0 5 0 4 0 , S 0 4 0 3 0 , S 0 3 0 2 0 , S 0 2 0 1 0 . Построение каждого треугольника выполняется по трем сторонам. Например, у △S 0 1 0 6 0 длина S 0 1 0 =S’’1’’ 0 , S 0 6 0 =S’’6’’ 1 , 1 0 6 0 =1’6’.

Степень соответствия приближенной развертки действительной зависит от количества граней вписанной пирамиды. Число граней выбирают, исходя из удобства чтения чертежа, требований к его точности, наличия характерных точек и линий, которые нужно перенести на развертку.

Перенос линии с поверхности конуса на развертку

Линия n, лежащая на поверхности конуса, образована в результате его пересечения с некоторой плоскостью (рисунок ниже). Рассмотрим алгоритм построения линии n на развертке.

Алгоритм

  1. Находим проекции точек A, B и C, в которых линия n пересекает ребра вписанной в конус пирамиды S123456.
  2. Определяем натуральную величину отрезков SA, SB, SC способом вращения вокруг проецирующей прямой. В рассматриваемом примере SA=S’’A’’, SB=S’’B’’ 1 , SC=S’’C’’ 1 .
  3. Находим положение точек A 0 , B 0 , C 0 на соответствующих им ребрах пирамиды, откладывая на развертке отрезки S 0 A 0 =S’’A’’, S 0 B 0 =S’’B’’ 1 , S 0 C 0 =S’’C’’ 1 .
  4. Соединяем точки A 0 , B 0 , C 0 плавной линией.

Развертка усеченного конуса

Описываемый ниже способ построения развертки прямого кругового усеченного конуса основан на принципе подобия.

Цель лекции: изучение свойств развертки и способов построения разверток многогранников и поверхностей вращения

· Развертка поверхностей. Общие понятия.

· Способы построения разверток: методы триангуляции, нормального сечения и раскатки.

· Построение разверток гранных поверхностей и поверхностей вращения.

Развертка поверхностей. Общие понятия

Развертка плоская фигура, полученная при совмещении поверхности геометрического тела с плоскостью (без наложения граней или иных элементов поверхности друг на друга). Развертку можно рассматривать как гибкую, нерастяжимую пленку. Некоторые из представленных таким образом поверхностей можно путем изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещен с плоскостью без разрывов и склеивания, то такую поверхность называют развертывающейся , а полученную плоскую фигуру – ее разверткой.
Основные свойства развертки 1 Длины двух соответствующих линий поверхности и ее развертки равны между собой; 2 Угол между линиями на поверхности равен углу между соответствующими им линиями на развертке; 3 Прямой на поверхности соответствует также прямая на развертке; 4 Параллельным прямым на поверхности соответствуют также параллельные прямые на развертке; 5 Если линии, принадлежащей поверхности и соединяющей две точки поверхности, соответствует прямая на развертке, то эта линия является геодезической.

Методы триангуляции, нормального сечения и раскатки

Построение разверток гранных поверхностей и поверхностей вращения

а) Развертка поверхности многогранника.

Разверткой многогранной поверхности называется плоская фигура, получаемая последовательным совмещением всех граней поверхности с плоскостью.

Так как все грани многогранной поверхности изображаются на развертке в натуральную величину, построение ее сводится к определению величины отдельных граней поверхности – плоских многоугольников.

Метод триангуляции

Пример 1. Развертка пирамиды (рисунок 13.1).

При построении развертки пирамиды применяется способ треугольника. Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников – граней пирамиды и многоугольника - основания. Поэтому построение развертки пирамиды сводится к определению натуральной величины основания и граней пирамиды. Грани пирамиды можно построить по трем сторонам треугольников, их образующих.

Рисунок 13.1. Пирамида и её развертка

Для этого необходимо знать натуральную величину ребер и сторон основания. Алгоритм построения можно сформулировать следующим образом (рисунок 13.2):

Рисунок 13.2. Определение истинной величины

основания и ребер пирамиды

Точки, расположенные внутри контура развертки, находят во взаимно однозначном соответствии с точками поверхности многогранника. Но каждой точке тех ребер, по которым многогранник разрезан, на развертке соответствуют две точки, принадлежащие контуру развертки. Примером первой точки на рисунках служит точка К 0 и К ÎSАD , а иллюстрацией второго случая являются точки М 0 и М 0 * . Для определения точки К 0 на развертке пришлось по ее ортогональным проекциям найти длины отрезков АМ (метод замены плоскостей проекций) и (метод вращения). Эти отрезки были использованы затем при построении на развертке сначала прямой S 0 М 0 и, наконец, точки К 0 .

Рисунок 13.3. Построение развертки пирамиды

Способ нормального сечения

В общем случае развертка призмы выполняется следующим образом. Преобразуют эпюр так, чтобы ребра призмы стали параллельны новой плоскости проекций. Тогда на эту плоскость ребра проецируются в натуральную величину.

Пример 2. Развертка призмы (рисунок 13.4).

Пересекая призму вспомогательной плоскостью α , перпендикулярной ее боковым ребрам (способ нормального сечения), строят проекции фигуры нормального сечения – треугольника 1 , 2 , 3 , а затем определяют истинную величину этого сечения. На примере она найдена методом вращения.

В дальнейшем строям отрезок 1 0 -1 0 * , равный периметру нормального сечения. Через точки 1 0 , 2 0 , 3 0 и 1 0 * проводят прямые, перпендикулярные 1 0 -1 0 * , на которых откладывают соответствующие отрезки боковых ребер призмы, беря их с новой фронтальной проекции. Так, на перпендикуляре, проходящем через точку 1 0 , отложены отрезки 1 0 D 0 =1 4 D 4 и 1 0 А 0 =1 4 А 4 .. Соединив концы отложенных отрезков, получают развертку боковой поверхности призмы. Затем достраивают основание.

Способ раскатки

Пример 3. Развертка призмы, частный случай, когда основание призмы на одну из плоскостей проекций проецируется в натуральную величину (рисунок 13.5).

Развертка боковой поверхности такой призмы осуществляется способом раскатки. Этот способ заключается в следующем. Сначала, как и в предыдущем примере, преобразуют эпюр так, чтобы боковые ребра призмы стали параллельны одной из плоскостей проекций.

Рисунок 13.4. Развертка призмы способом нормального сечения

Рисунок 13.5. Развертка призмы способом раскатки

Затем новую проекцию призмы вращают вокруг ребра С 4 F 4 до тех пор пока грань ACDF не станет параллельной плоскости П 4 .

При этом положение ребра С 4 F 4 остается неизменным, а точки принадлежащие ребру AD перемещаются по окружностям, радиус которых определяется натуральной величиной отрезков AC и DF (так как основания призмы параллельны П 1 то на эту плоскость проекций они проецируются без искажения, т.е. R =A 1 C 1 =D 1 F 1 ), расположенных в плоскостях, перпендикулярных ребру С 4 F 4 .

Таким образом, траектории движения точек A и D на плоскость П 4 проецируются в прямые, перпендикулярные ребру С 4 F 4 .

Когда грань ACDF станет параллельна плоскости П 4 , она проецируется на неё без искажения т.е. вершины A и D окажутся удаленными от неподвижных вершин C и F на расстояние, равное натуральной величине отрезков AC и DF . Таким образом, засекая перпендикуляры, по которым перемещаются точки A 4 и D 4 дугой радиуса R =A 1 C 1 =D 1 F 1 , можно получить искомое положение точек развертки A 0 и D 0 .

Следующую грань АBDE вращают вокруг ребра AD . На перпендикулярах, по которым перемещаются точки B 4 и E 4 делают засечки из точек A 0 и D 0 дугой радиуса R =A 1 B 1 =D 1 E 1 . Аналогично строится развертка последней боковой грани призмы.

Процесс последовательного нахождения граней призмы вращением вокруг ребер можно представить как раскатку призмы на плоскость параллельную П 4 и проходящую через ребро С 4 F 4 .

Построение на развертке точки К , принадлежащей боковой грани АBDE, ясно из рисунка. Предварительно через эту точку по грани провели прямую , параллельную боковым ребрам, которая затем построена на развертке.

б) Развертка цилиндрической поверхности.

Развертка цилиндрической поверхности выполняется аналогично развертке призмы. Предварительно в заданный цилиндр вписывают n-угольную призму (рисунок 13.6). Чем больше углов в призме, тем точнее развертка (при n → призма преобразуется в цилиндр).

в) Развертка конической поверхности

Развертка конической поверхности выполняется аналогично развертке пирамиды, предварительно вписав в конус n-угольную пирамиду (рисунок 13.6).

Если задана поверхность прямого конуса, то развертка его боковой поверхности представляет круговой сектор, радиус которого равен длине образующей конической поверхности l , а центральный угол φ =360 о r / l , где r – радиус окружности основания конуса.

Рисунок 13.6. Развертка цилиндрической поверхности

Рисунок 13.7. Развертка конической поверхности

Контрольные вопросы

1 Что называют разверткой поверхности?

2 Какие поверхности называют развертывающимися и какие – неразвертывающимися?

3 Укажите основные свойства разверток

4 Укажите последовательность графических построений разверток поверхностей конуса и цилиндра.

5 Какие способы построения разверток многогранников вы знаете?

Разверткой поверхности называется плоская фигура, образованная последовательным совмещением поверхности с плоскостью без разрывов и складок. При развертывании поверхность рассматривается как плоская, но нерастяжимая. Цель развертывания поверхностей – создание моделей поверхностей из листового материала путем последующего изгибания и «свертывания» их разверток.

Основные свойства разверток:

Прямая на поверхности переходит в прямую на развертке;

Параллельные прямые на поверхности переходят в параллельные прямые на развертке;

Длины отрезка линии на поверхности и той же линии на развертке равны;

Углы между линиями на поверхности и между соответствующими линиями на развертке равны;

Площадь развертки равна площади поверхности;

Все размеры на развертке имеют натуральную величину.

Все поверхности подразделяются на развертываемые и неразвертываемые.

К развертываемым поверхностям относятся:

Гранные поверхности (пирамиды, призмы и т.д.), т.к. плоские элементы многогранника точно совмещаются с плоскостью развертки. В этом случае развертка называется точной.

Линейчатые поверхности (цилиндрические, конические и поверхности с ребром возврата), т.е. это поверхности, у которых смежные образующие-прямые параллельны или пересекаются.

К неразвертывающимся поверхностям относятся все остальные линейчатые, а также нелинейчатые поверхности (цилиндроиды, коноиды, сфера). Развертки этих поверхностей в этом случае называются приближенными или условными.

1.5.1 Развертка поверхностей многогранников

При построении разверток многогранников определяют натуральную величину всех его граней (плоских многоугольников). При этом используют различные способы преобразования чертежа. Выбор тех или иных способов зависит от вида многогранника и его расположения относительно плоскостей проекций.

1.5.1.1 Развертка поверхности призмы

Существует два способа развертки призмы: способ «нормального сечения» и способ «раскатки».

Способ «нормального сечения» используют для развертки поверхности призм общего положения. В этом случае строится нормальное сечение призмы (т.е. вводится плоскость, расположенная перпендикулярно боковым ребрам призмы) и определяются натуральные величины сторон многоугольника этого нормального сечения.

Пример выполнения развертки трехгранной призмы общего положения способом «нормального сечения» рассмотрим в задаче согласно рисунка 1.5.1

Обратим внимание на то, что в нашем случае боковые ребра призмы являются фронталями, т.е. на плоскость П 2 они проецируются в натуральную величину.

1) Во фронтальной плоскости проекций построим фронтально проецирующую плоскость γ(γ 1 ) , которая одновременно перпендикулярна боковым ребрам призмы AD , CF , BE . Полученное нормальное сечение выразится в виде треугольника 123 . Методом плоско-параллельного перемещения определим его натуральную величину в соответствии с рисунком 1.5.2.

2) Все стороны нормального сечения последовательно отложим на прямой: 1 0 2 0 =1 1 1 2 1 1 ; 2 0 3 0 =2 1 1 3 1 1 ; 3 0 1 0 =3 1 1 1 1 1 .

3) Через точки 1 0 ,2 0 ,3 0 проведем прямые, перпендикулярные прямой 1 0 -1 0 и отложим на них натуральную величину боковых ребер: 1 0 D 0 =1 2 D 2 и 1 0 A 0 = 1 2 A 2 ; 2 0 F 0 = 2 2 F 2 и 2 0 C 0 = 2 2 C 2 ; 3 0 E 0 = 3 2 E 2 и 3 0 B 0 = 3 2 B 2 .

4) Полученные точки верхнего и нижнего оснований призмы соединим прямыми A 0 B 0 C 0 и D 0 F 0 E 0 . Плоская фигура A 0 B 0 C 0 D 0 F 0 E 0 является искомой разверткой боковой поверхности данной призмы. Для построения полной развертки необходимо к развертке боковой поверхности пристроить натуральные величины оснований. Для этого воспользуемся полученными на развертке натуральными величинами их сторон A 0 C 0 , C 0 B 0 , B 0 A 0 и D 0 F 0 , F 0 E 0 , E 0 D 0 в соответствии с рисунком 1.5.3

Рисунок 1.5.1

Рисунок 1.5.2

Рисунок 1.5.3 – Развертка призмы способом «нормального сечения»

Способ «раскатки». Этот способ удобен для построения разверток призм с основанием, лежащим в плоскости уровня. Суть способа заключается в последовательном совмещением боковых граней с плоскостью чертежа путем поворота их вокруг соответствующих ребер призмы (рисунок 1.5.4).

Этим способом построена развертка поверхности призмы ABCDEF , боковые ребра которой являются фронталями, а нижнее основание лежит в горизонтальной плоскости (рисунок 1.5.5).

1) Боковые грани призмы совместим с фронтальной плоскостью, проходящей через ребро AD . Это удобно в этом случае, т.к. фронтальные проекции боковых ребер призмы равны их истинной длине. Тогда ребро A 0 D 0 развертки будет совпадать с фронтальной проекцией ребра AD (A 2 D 2 ) .

2) Для определения на развертке истиной величины боковой грани ADEB вращаем ее вокруг ребра AD до положения, параллельного фронтальной плоскости проекций. Чтобы определить на развертке положение точки B 0 , из точки B 2 восстанавливаем перпендикуляр к A 2 D 2 . Точка B 0 будет найдена в пересечении этого перпендикуляра с дугой окружности радиуса R 1 , равного истиной величине ребра AB и проведенной из точки A 2 , как из центра.

3) Точка E 0 будет определяться на развертке как результат пересечения прямой B 0 E 0 параллельной фронтальной проекцией ребра BE (B 2 E 2 ), и перпендикуляра, восстановленного из точки E 2 к A 2 D 2 .

4) Точки C 0 и A 0 построены аналогично точке B 0 в пересечении перпендикуляров из точек C 2 и A 2 к фронтальным проекциям ребер, с дугами окружностей, проведенных из точек B 0 и C 0 как из центров радиусами R 2 и R 3 , равными соответственно ребрам BC и CA . Точки F 0 и D 0 определяются аналогично точке E 0 .

5) Соединив последовательно совмещенные вершины ломаными линиями, получим развертку боковой поверхности призмы A 0 B 0 C 0 A 0 D 0 F 0 E 0 D 0 . При необходимости можно получить полную развертку призмы, присоединив к ней натуральные величины обоих оснований.

Если боковые ребра призмы занимают общее положение, то предварительным преобразованием чертежа их надо привести в положение линий уровня.

3.86 /5 (77.14%) проголосовало 7


Развертка конуса. Построение развертки конуса.

Расчет развертки конуса.

Возьмем вертикальную и горизонтальную проекции конуса (рис. 1, а). Вертикальная проекция конуса будет иметь вид треугольника, основание которого равно диаметру окружности, а стороны равны образующей конуса. Горизонтальная проекция конуса будет изображаться окружностью. Если задана высота конуса Н, то длина образующей определяется по формуле:

т. е. как гипотенуза прямоугольного треугольника.

Обвернем картоном поверхность конуса. Развернув картон снова в одну плоскость (рис. 1, б), получим сектор, радиус которого равен длине образующей конуса, а длина дуги равна длине окружности основания конуса. Полную развертку боковой поверхности конуса выполняют следующим образом.

Рис . 1. Развертка конуса:

а - проекция; б - развертка.

Угол развертки конуса.

Принимая за радиус образующую конуса (рис. 1, б), на металле вычерчивают дугу, на которой затем откладывают отрезок дуги КМ , равный длине окружности основания конуса 2 π r . Длине дуги в 2 π r соответствует угол α , величина которого определяется по формуле:

г - радиус окружности основания конуса;

l - длина образующей конуса.

Построение развертки сводится к следующему. На длине ранее вычерченной дуги откладывается не часть дуги КМ , что практически является невозможным, а хорда, соединяющая концы этой дуги и соответствующая углу α . Величина хорды для заданного угла находится в справочнике или проставляется на чертеже.

Найденные точки КМ соединяются с центром окружности. Круговой сектор, полученный в результате построения, будет развернутой боковой поверхностью конуса.

Загрузка...