domvpavlino.ru

Силикаты. Общие сведения о силикатных материалах Автоклавные силикатные материалы на основе извести

Производство силикатных строительных материалов базируется на гидротермальном синтезе гидросиликатов кальция, который осуществляется в среде насыщенного водяного пара давлением 0,8-1,3 МПа и температурой 175-200°С. Используют для этих целей автоклавы.

Силикатные изделия – это бесцементные материалы приготовленные с сырьевой смеси содержащие известь, кварцевый песок и воду, который в процессе автоклавной обработки образует силикат. Ca(OH)2+nSiO2*(m-1)H2O = CaO*nSiO2*mH20. В условиях автоклавной обработки можно получить различные разноосновные силикаты в зависимости от состава сырьевой смеси.

Автоклав представляет собой горизонтально расположенный полый цилиндр с герметически закрывающимися с торцов крышками(L=21-30cm, d=2,6-3,6cm).Они оборудованы предохранительным клапаном позволяющим регулировать давление. В нижней части уложены рельсы и передвигаются вагонетки с изделиями. Для снижения теплопотерь корпус покрывают теплоизоляцией. После загрузки изделий крышки закрываются и под давлением поддаётся пар. Высокая температура и наличие в изделиях воды создаёт благоприятные условия для протикания химических реакций между Ca(OH)2 и кремнезёмистой составляющей SiO2. Прочность автоклавных мат. формируется в процессах структурообразования при формировании гидросиликатов кальция и деструкция связанная с высокими напряжениями в результате автоклавной обработки. Для того чтобы снизить деструктивные процессы автоклавную обработку производят при след. режимах: -постепенный подъём температуры 1,5-2ч. –изотермическая выдержка 4-8ч. –снижение температуры и давления 2-4ч.

Силикатный кирпич. Состав, св-ва, применение.

Силикатный кирпич изготавливают из жёсткой смеси кварцевого песка 92-94%, извести 6-8%(в пересчёте на активный СаО) и воды до 9%. Путём прессования под давлением 15-20Мпа и последующего твердения в автоклаве. Цвет: светло-серый, варьируется. Выпускают кирпич одинарный 250х120х65, модульный модульный 250х120х88 изготавливают с пустотами. Марки 100, 150, 200, 250. Теплопроводность 0,7-0,75 Вт/(м°С). Водопоглощение лицевой стороны не должно быть больше 14%. Применяется для строительства несущих и ненесущих стен, реконструкции зданий и т.д. Не рекомендуется применять для цокольных зданий и при больших температурах.

Силикатный бетон. Виды, св-ва, области применения.

Виды: -тяжёлые (в качестве заполнителя: песок, щебень и песчано-гравийная смесь), -лёгкие(заполнитель керамзит), -ячеистые

В качестве вяжущего применяют известково-кремнезёмистый компонент в состав которого входит воздушная известь и тонко помолотый песок. Прочность зависит от активности извести в соотношении CaO/SiO2 , тонкости измельчения песка и параметром автоклавной обработки. Оптималиными считаются такие параметры и характеристики бетонной смеси при которых весь СаО связывается с низкоосновным силикат кальцием. Тяжёлый силикатный бетон плотность 1700 кг/м3, прочность 15-80Мпа применяют для изготовления сборных бетонных и железобетонных конструкций, в том числе предварительно напряжённых.

Асбестоцемент. Сырьё и св-ва. Виды асбестоцементных изделий.

Асбестоцемент – искусственный композиционный строительный материал получаемый в результате затвердевания смеси: цемента, асбеста(10-20% от массы цемента), воды. Такой мат. обладает высокой прочностью, огнестойкостью, долговечностью и др. Сырьевые мат.: п.ц. в качестве вяжущего, марок 400/500, песчанистый п.ц. в случае автоклавного твердения, белый и цветной в случае изготовления декоративных изделий. По минералогическому составу п.ц. должен быть олитовый C3S>52%, C3A<8% , тонкость помола 2900-3200см2/г.

Асбест – природный тонковолокнистый материал состоящий из водных или безводных силикатов. 95%-хризотил асбест 3MgO*2SiO2*2H2O применяются для производства. Диаметр волокна порядка 1 микрона, но при распушке волокна расщепляются до d=0,02мм. Хризотил асбест имеет высокую прочность при растяжении до 3000МПа, при распушке часть волокон разрушается и прочность 600-800МПа. Введение гибких волокон асбеста в качестве армирующего компонента позволяют в 3-5раз увеличить прочность при растяжении такой системы. Кроме того он обладает адсорбционной способностью, он связывает Са(ОН)2 и другие продукты гидротации. Товарный асбест выпускают 8 сортов ло 0 до 7 и 42 марок. Чем меньше длина волокна, тем выше сорт асбеста.

Кровельные . К ним относятся волнистые листы различного профиля, крупноразмерные плоские, экструзионные листы, плоские черепичные листы. Волнистые листы 90% от производства кровельных изделий. Листовые изделия в общем балансе листовых изделий 30-40%. Волнистые листы выпускают: -обыкновенные, -унифициарованные, -средние, -высокого профиля. Разменры и св-ва листов в зависимости от типов 1200-2300мм, шаг волны 115-350мм, предел прочности при изгибе 16-24МПа, масса от 9-98кг. В настоящее время в основном производят волнистые листы длиной 1750мм, высота волны 45мм, длина волны 150мм, толщина листа 6 мм. Крупноразмерные плоские листы выпускаются размерами 2000-3000мм, толщина 4-12мм. Панели экструзионные применяются для устройства бесчердачных перекрытий под рулонную кровлю, для подвесных потолков. Плитки кровельные асбестоцементные плоские предназначены для малоэтажных сельских зданий. Наиболее распространённые 400х400 со срезанными углами. Срезанные углы позволяют получить плотное покрытие при минимальном расходе плиток. При изгибе 24МПа, морозостойкость 50 циклов.

Стеновые изделия . Волнистые листы так называемого среднеевропейского профиля длиной 2,5м и соотношением 51/177, используются в качестве заполнения между ограждающими конструкциями в неотапливаемых зданиях. Плоские листы длина 2-3м, толщина 4-12мм, ширина 1,5м. В качестве трёхслойных стеновых панелей и изготовлении конструкций перегородок.

Декоративные изделия. Могут быть офактуренными, либо окрашенными в процессе формирования и в затвердевшем виде. К 1 группе относятся листовые изделия с рельефной поверхностью, окрашенной по всей толщине, либо окрашенным поверхностным слоем. 2 группа – листы окрашенные составом минеральных вяжущих. 3 группа – с плёночным покрытием. 4 группа – химическая краска.

Погонажные. Швеллеры, подоконные плиты, сливы, элементы парапетов. Их изготавливают методом экструзии.

Трубы . Бывают 1.Напорнве для водопроводов с рабочим давлением 0,6-0,8МПа, L=3-6м, d условного прохода 100-500мм. 2.Безнапорные, для нефти-газопроводов, дренажа, мусоропроводов, прокладки кабелей, для устройства дымовых шахт.

Специальные . Вентиляционные короба, для устройства вентиляции и кондиционирования воздуха в зданиях. Полуцилиндры для покрытия теплоизоляционных слоёв на трубопроводах, крупногабаритные листы двоякой кривизны для летних домиков.

Гипсовые и гипсобетонные изделия.

Изделия, получаемые на основе гипсового вяжущего вещества, разделяют на гипсовые и гипсобетонные. Гипсовые изделия изготовляют из гипсового теста, иногда с минеральными или органическими добавками для улучшения технических свойств готовой продукции, гипсобетонные - из смеси с применением мелкозернистых и крупных пористых заполнителей: минеральных - шлака, ракушечника, туфового и пемзового заполнителя и других и органических - древесных опилок, древесной шерсти, камыша и т. п.

Гипсовые и гипсобетонные изделия могут быть сплошные и пустотелые (объем пустот более 15%), армированные и неармированные. По назначению их делят на панели и плиты перегородочные; листы обшивочные (гипсовая сухая штукатурка); камни стеновые; изделия перекрытий; теплоизоляционные материалы; архитектурно-декоративные детали.

Основными положительными свойствами гипсовых изделий являются:

Быстрое твердение, что сокращает технологический процесс и снижает стоимость;

Достаточно высокая прочность;

Низкая теплопроводность и высокая звукоизоляция;

Изделия легко поддаются механической обработке (распиливанию, сверлению) и легко окрашиваются в различные цвета и оттенки;

Стоимость их низка.

Недостаток: незначительную водостойкость, поэтому их можно при менять только в сухих помещениях.

Производство силикатных строительных материалов базируется на гидротермальном синтезе гидросиликатов кальция, который осу­ществляется в реакторе-автоклаве в среде насыщенного водяного пара давлением 0,8-1,3 МПа и температурой 175-200 °С. Для гидро­термального синтеза можно использовать при надлежащем обосно­вании иные параметры автоклавизации, применять обработку не только паром, но и паровоздушной или парогазовой смесью, водой.

Силикатные автоклавные материалы - это бесцементные мате­риалы и изделия (силикатные бетоны, силикатный кирпич, камни, блоки), приготовленные из сырьевой смеси, содержащей известь (гашеную или молотую негашеную), кварцевый песок и воду, кото­рые образуют в процессе автоклавной обработки гидросиликаты кальция:

Са(ОН)2 + Si02 + mH20 = Ca0Si02/iH20.

В условиях автоклавной обработки можно получить различные гидросиликаты кальция в зависимости от состава исходной смеси: тоберморит 5Ca0 6Si02 5H20, слабо закристаллизованные гидроси­ликаты: (0,8-1,5) Ca0 Si02 H20 - и (1,5-2) Ca0 Si02 H20. В высо­коизвестковых смесях синтезируется гиллебрандит 2Ca0Si02H20.

Автоклав представля­ет собой горизонтально расположенный стальной цилиндр с герметически закрывающимися с торцов крышками (рис. 9.3).

Диаметр автоклава - 2,6-3,6 м, длина - 21- 30 м. Автоклав снабжен манометром, показываю­щим давление пара, и Рис. 9.3. Загрузка в автоклав предохранительным кла-
паном, автоматически открывающимся при повышении давления выше предельного. В нижней части автоклава уложены рельсы, по которым передвигаются загруженные в автоклав вагонетки с изде­лиями. Автоклав оборудован устройствами для автоматического контроля и управления режимом автоклавной обработки. Для уменьшения теплопотерь автоклав покрыт слоем теплоизоляции.

После загрузки автоклав закрывают и в него постепенно впус­кают насыщенный пар. Высокая температура при наличии в бетоне воды в капельно-жидком состоянии создает благоприятные условия для химического взаимодействия между гидроксидом кальция и кремнеземом.

Прочность автоклавных материалов формируется в результате взаимодействия двух процессов: структурообразования, обусловлен­ного синтезом гидросиликатов кальция, и деструкции, обусловлен­ной внутренними напряжениями.

Для снижения внутренних напряжений автоклавную обработку проводят по определенному режиму, включающему постепенный подъем давления пара в течение 1,5-2 ч, изотермическую выдержку изделий в автоклаве при температуре 175-200 °С и давлении 0,8- 1,3 МПа в течение 4-8 ч и снижение давления пара в течение 2-4 ч. После автоклавной обработки продолжительностью 8-14 ч получают силикатные изделия.

Силикатные бетоны

Силикатные бетоны, как и цементные, могут быть тяжелыми (заполнитель - песок и щебень или песок и песчано-гравийная смесь), легкими (заполнители пористые - керамзит, вспученный перлит, аглопорит и др.) и ячеистыми.

В силикатном бетоне применяют известково-кремнеземистое вяжущее, в состав которого входят воздушная известь и тонкомоло­тый кварцевый песок (взамен песка применяют золу, молотый до­менный шлак). Прочность известково-кремнеземистого вяжущего зависит от активности извести, соотношения CaO/SiC>2, тонкости из­мельчения песка и параметров автоклавной обработки (температуры и давления насыщенного пара, длительности автоклавного тверде­ния). Оптимальным будет такое соотношение CaO/Si02 и такая тон­кость помола песка, при которых вся СаО будет связана в низкоос­новные гидросиликаты кальция (рис. 9.4).

Изготовление бетонных и железо бетонных изделий вклю­чает приготовление известково­кремнеземистого вяжущего, при­готовление и гомогенизацию си­ликатнобетонной смеси, формо­вание изделий, автоклавную об­работку. В процессе автоклави - зации между всеми компонента­ми бетона имеют место химиче­ские взаимодействия.

Заполнитель (в особенности кварцевый песок) участвует в синтезе новообразований, подвер­гаясь изменениям на глубину до 15 мкм.

Тяжелый силикатный бетон плотностью 1800-2500 кг/м3, с прочностью 15-80 МПа приме­няют для изготовления сборных бетонных и железобетонных конструкций, в том числе предваритель­но напряженных.

Силикатный кирпич

Силикатный кирпич изготовляется из жесткой смеси кварцевого песка (92-94%), извести (6-8%, считая на активную СаО) и воды (7- 9%) путем прессования под давлением (15-20 МПа) и последующего твердения в автоклаве.

Цвет силикатного кирпича светло-серый, но он может быть любо­го цвета путем введения в состав смеси щелочестойких пигментов. Выпускают кирпич двух видов: одинарный 250x120x65 мм и модуль­ный 250x120x88 мм. Модульный кирпич изготовляют с пустотами, чтобы масса одного кирпича не превышала 4,3 кг.

В зависимости от предела прочности при сжатии и изгибе сили­катный кирпич имеет марки: 100, 125, 150, 200 и 250.

Плотность силикатного кирпича (без пустот) - около 1800-
1900 кг/м3, т. е. он немного тяжелее обыкновенного глиняного кир­пича, теплопроводность - 0,70-0,75 Вт/(м °С), водопоглощение лицевого силикатного кирпича не превышает 14%, а рядового - 16%. Марки по морозостойкости для лицевого кирпича: 25, 35, 50; для рядового - 15.

Силикатный кирпич, как и глиняный, применяют для несущих стен зданий. Не рекомендуется его применять для цоколей зданий из-за недостаточной водостойкости. Для кладки труб и печей сили­катный кирпич не используют, так как при высокой температуре де­гидратируется Са(ОН)2, разлагаются СаС03 и гидросиликаты каль­ция, а зерна кварцевого песка при 600 °С расширяются и вызывают растрескивание кирпича.

На производство силикатного кирпича расходуется меньше теп­ла, поскольку не требуются сушка и высокотемпературный обжиг, поэтому он на 30-40% дешевле глиняного кирпича.

Схема производства силикатного кирпича показана на рис. 9.5.

Комовую известь-кипелку, поступающую из известеобжига­тельной печи, сортируют, чтобы удалить недожог и пережог, затем дробят и размалывают в тонкий порошок. При этом воздушным се­паратором отделяются наиболее тонкие частицы. Повышение тонко­сти помола извести также сокращает ее расход.

Гасить известь в смеси с песком можно в силосах в течение 8- 9 ч (первый способ) или, что гораздо быстрее и интенсивнее, в гасильных барабанах (второй способ). Последний представляет собой металлический цилиндр, по концам имеющий форму усе­ченных конусов, который вращается вокруг горизонтальной оси. При помощи дозирующего аппарата песок дозируют по объему, а известь - по весу, а затем засыпают через герметически закры­вающийся люк в гасильный барабан. После загрузки барабан вра­щают, впускают пар и гасят известь под давлением 0,3-0,5 МПа. Перед прессованием известково-песчаную смесь перемешивают в лопастной мешалке или на бегунах и дополнительно увлажняют (до 7%).

Прессуют кирпич на прессах под давлением до 150-200 кг/см2. Применяемые на заводах прессы имеют периодически вращающийся стол с устроенными в нем формами. Прессование производится снизу

вверх при помощи рычажного механизма. Спрессованный кирпич - сырец получает высокую плотность, что способствует более полно­му прохождению реакции между известью и кварцевым песком. Производительность различных типов прессов, зависящая от их кон­струкции, колеблется в пределах 2200-3000 кирпичей в 1 ч.

Отформованные кирпичи снимают со стола пресса, осторожно укладывают на вагонетки и отправляют в автоклавы для твердения.

Прочность силикатного кирпича продолжает повышаться и по­сле запаривания его в автоклаве. Это объясняется тем, что часть из­вести, не вступившей в химическое взаимодействие с кремнеземом, реагирует с углекислотой воздуха, т. е. происходит карбонизация: Са(ОН)2 + С02 = СаС03+ Н20.

Прочность, водостойкость и морозостойкость силикатного кир­пича увеличиваются также при его высыхании.

Известково-шлаковый и известково-зольный кирпич

Известково-шлаковый кирпич изготовляют из смеси извести и гранулированного доменного шлака. Извести берут 3-12% по объ­ему, шлака - 88-97%.

При замене шлака золой получается известково-зольный кир­пич. Состав смеси: 20-25% извести и 80-75% золы. Так же как и шлак, зола является дешевым сырьем, образующимся в больших ко­личествах после сжигания топлива (каменного угля, бурого угля и др.) в котельных ТЭЦ, ГРЭС и др.

В процессе сгорания пылевидного топлива часть очаговых ос­татков оседает в топке (зола-шлак), а самые мелкие частицы золы уносятся в дымоходы, где задерживаются золоуловителями, а затем их транспортируют за пределы котельной - в золоотвалы. Наиболее тонкодисперсные золы называют золами-уносами.

При смешивании с водой золы не твердеют, однако при добав­ках извести или портландцемента они активизируются, а запарива­ние смеси в автоклавах дает возможность получать из них изделия достаточной прочности.

При сжигании некоторых горючих сланцев (например, средне волжских) образуются золы, содержащие окиси кальция 15% и более, которые имеют способность твердеть без добавок извести. Кирпич из этих зол называют сланце-золъным.

Использование шлаков и зол очень выгодно, так как при этом снижается стоимость строительных материалов.

Известково-шлаковый и известково-зольный кирпичи формуют на тех же прессах, которые применяют при производстве силикатно­го кирпича, и запаривают в автоклавах.

Плотность шлакового и зольного кирпичей - 1400-1600 кг/м3, теплопроводность - 0,5-0,6 Вт/(м °С). По пределу прочности при сжатии шлаковый и зольный кирпичи разделяют на три марки: 75, 50 и 25. Морозостойкость известково-шлакового кирпича такая же, как и силикатного, а известково-зольного - ниже.

Известково-шлаковый и известково-зольный кирпичи применя­ют для возведения стен зданий высотой не более трех этажей и для кладки верхних этажей многоэтажных зданий.

Изделия из пеносиликата и других ячеистых материалов

Пеносиликат - это искусственный каменный материал ячеи­стой структуры, который получается в результате затвердевания пластичной известково-песчаной смеси, смешанной с технической пеной.

Материал, полученный смешиванием того же раствора с газооб - разователем (алюминиевой пудрой, пергидролем и др.), называют газосиликатом.

Для производства пеносиликата рекомендуется применять моло­тую известь-кипелку, содержащую активный СаО не менее 70%. Чем выше активность извести и тоньше помол, тем меньше ее требуется для приготовления пеносиликата. Обычно извести берут 15-20% от веса сухой смеси. Кроме кварцевого песка, в качестве заполнителей можно использовать доменный гранулированный шлак, золу элек­тростанций, маршалит, трепел, диатомит и другие заполнители, со­держащие большое количество кремнезема.

В процессе производства пеносиликата известь и заполнитель подвергают совместному или раздельному помолу. При раздельном помоле компонентов известь и заполнитель измельчают в трубных, шаровых мельницах, а при совместном помоле - в дезинтеграторах. Песок сначала измельчают в них с гашеной известью, которой берут 25-30% от общего количества вводимой извести, а остальную часть извести добавляют в виде молотой извести-кипелки.

Дальнейший этап производства пеносиликатных изделий заклю­чается в приготовлении ячеистой смеси. Ячеистую смесь приготов­ляют путем смешивания известково-песчаного раствора с устойчи­вой пеной в пенобетономешалках.

Готовую ячеистую смесь выливают из смесительного барабана пенобетономешалки в бункер, а затем разливают в формы, соответ­ствующие профилю и размерам будущего изделия. После 6-8 часо­вой выдержки (частичного отвердения) формы с полузатвердевшей смесью транспортируют в автоклавы для запаривания.

Пеносиликатные изделия изготовляют плотностью от 300 до 1200 кг/м3 и прочностью в пределах 0,4-20 МПа.

Из теплоизоляционного пеносиликата изготовляют термовкла­дыши, которые используют для утепления стен; плиты, скорлупы и короба - для ограждения теплопроводов и другие теплоизоляцион­ные изделия. Для кладки несущих стен одно-, двухэтажных зданий применяют мелкие офактуренные неармированные блоки плотно­стью 600-700 кг/м3.

Для защиты блоков от атмосферных воздействий в процессе экс­плуатации наружная поверхность изделий покрывается облицовоч­ным слоем из цементно-песчаного раствора толщиной 2-3 см, кото­рый укладывается на дно формы перед заливкой ячеистой смеси.

Конструктивно-теплоизоляционный пено - и газосиликат приме­няют теперь также для изготовления крупноразмерных изделий для наружных и внутренних стен, покрытий промышленных сооруже­ний, междуэтажных и чердачных перекрытий жилых зданий, перего­родок и др.

Для покрытий промышленных зданий изготовляют армопеноси - ликатные и армогазосиликатные прямоугольные плиты.

Армопеносиликатные плиты по сравнению с обычными железо­бетонными не требуется теплоизолировать и в то же время они дос­таточно прочны и долговечны. Укладывают их по железобетонным или металлическим прогонам, а сверху покрывают гидроизоляцион­ными рулонными материалами.

Плотность пеносиликата 900-1100 кг/м3, предел прочности его при сжатии 6-10 МПа (гл. X, § 8).

В дорожном хозяйстве применяются различные искусственные каменные строительные материалы, используемые для возведения зданий и сооружений промышленно-гражданского назначения.

Такие материалы можно разделить на три группы: необжиговые, обжиговые и изделия из силикатных расплавов.

Необжиговые строительные материалы и изделия

К необжиговым строительным материалам относятся:

  • ? автоклавные силикатные материалы на основе извести;
  • ? гипсовые и гипсобетонные изделия;
  • ? асбестоцементные материалы и изделия;
  • ? строительные растворы.

Автоклавные силикатные материалы на основе извести

Автоклавные силикатные материалы - искусственные каменные материалы на основе известково-кремнеземистого вяжущего, твердеющего при повышенном давлении и температуре.

Основным компонентом сырьевой смеси, из которой получают силикатные материалы, является известь (СаО), легко вступающая в реакцию с кремнеземом (Si0 2) при усиленной термовлажностной обработке. Для производства силикатных материалов рекомендуется применять быстрогасящуюся известь с суммарным содержанием активных оксидов кальция и магния (активностью) более 70 %, при этом содержание MgO не должно превышать 5 %.

Наряду с известью, в автоклавной технологии возможно применение портландцемента, цементов с добавкой молотого песка, малоактивных белитовых цементов, которые повышают морозостойкость силикатных изделий.

Вторым компонентом сырьевой смеси является кварцевый песок (иногда доменные шлаки, топливные золы, содержащие кремнезем). Кварцевый песок и другие кремнеземистые компоненты тонко измельчают (до удельной поверхности

1500...3000 см 2 /г).

Кроме известково-кремнеземистого вяжущего, в состав силикатных материалов могут быть введены заполнители в виде немолотого кварцевого песка, шлака, керамзита, вспученного перлита.

К автоклавным силикатным материалам относят:

  • ? силикатные бетоны;
  • ? силикатный кирпич;
  • ? известково-шлаковый и известково-зольный кирпич;
  • ? стеновые изделия из ячеистого и пеносиликатного бетонов.

Изделия из силикатных материалов приобретают требуемые свойства после автоклавной обработки: постепенного подъема давления пара и температуры в течение 1,5...2 ч, изотермической выдержки изделия в автоклаве при температуре 175...200 °С и давлении 0,8...1,6 МПа в течение 4...8 ч и снижении давления в течение 2...4 ч. Общая длительность обработки 8... 14 ч. В результате формируется новый известково-кремнеземистый цемент, состоящий из гидросиликатов кальция различного состава.

При автоклавной обработке происходит реакция между гидроксидом кальция и кремнеземистым компонентом:

В результате такой реакции синтезируется цементирующее вещество - гидросиликат кальция, связывающий зерна песка или другого заполнителя в прочный водостойкий каменный материал.

Автоклав для гидротермального синтеза представляет собой цилиндрический горизонтальный сварной сосуд, гер-

Рис. 6.1.

метически закрываемый сферическими крышками (диаметр

2...3,6 м, длина 19...30 м) (рис. 6.1).

Силикатные бетоны, (как и цементные) могут быть:

  • ? тяжелыми (заполнитель - песок и щебень);
  • ? легкими (заполнители пористые - керамзит, вспученный перлит, аглопорит);
  • ? ячеистыми.

В силикатном бетоне используют известково-кремнеземистое вяжущее, состоящее из воздушной извести и тонкого измельченного кварцевого песка (золы, молотого доменного шлака и др.).

Прочность известково-кремнеземистого вяжущего зависит:

  • ? от активности извести;
  • ? соотношения CaO/Si0 2 ;
  • ? тонкости измельчения песка;
  • ? параметров автоклавной обработки.

Технология изготовления бетонных и железобетонных изделий включает:

  • 1) приготовление известково-кремнеземистого вяжущего;
  • 2) подготовку и перемешивание силикатобетонной смеси;
  • 3) формование изделий;
  • 4) автоклавную обработку.

Тяжелый силикатный бетон плотностью 1800...2500 км 3 и прочностью 15... 18 МПа применяют для изготовления сборных бетонных и железобетонных конструкций, в том числе предварительно напряженных. Высокопрочные силикатные бетоны могут иметь прочность до 80 МПа. Морозостойкость силикатного бетона при вибрационном уплотнении достигает 200 циклов и более.

Наибольшее распространение получили следующие марки плотного силикатного бетона: М150; М200; М250; М300; М400 и М500.

Из плотных силикатных бетонов изготовляют крупные стеновые блоки внутренних несущих стен, панели перекрытий и несущих перегородок, плиты и другие детали для сборного, промышленного, гражданского и сельскохозяйственного строительства.

Ячеистые силикатные бетоны изготовляют путем введения в известково-кремнеземистое вяжущее газообразующей добавки (газобетон) или пены (пенобетон). В качестве газооб- разователя используют водную суспензию алюминиевой пудры, пенообразователя - клееканифольные, смолосапониновые и другие вещества.

Газобетонную смесь готовят в гидродинамическом или вибрационном смесителе, пенобетонную - в двухбарабанном смесителе. В одном барабане приготавливают пену, в другом - раствор из вяжущего и воды. После этого пена выгружается в барабан с раствором и перемешивается, затем силикатобетонная смесь выливается в раздаточный бункер, а затем - в формы изделия.

В зависимости от назначения ячеистые бетоны подразделяют:

  • ? на конструкционные
  • (р 0 = 900... 1200 кг/м 3 , # сж = 7,5... 15 МПа);
  • ? теплоизоляционно-конструкционные
  • (р 0 = 500...900 кг/м 3 , Д сж = 2,5...7,5 МПа);
  • ? теплоизоляционные (р 0

Силикатный кирпич представляет собой искусственный

безобжиговый стеновой строительный материал, получаемый из жесткой увлажненной сырьевой смеси, состоящей из извести и кварцевого песка, путем ее прессования и твердения в автоклаве.

  • 6. Искусственные каменные материалы

Рис. 6.2.

  • 1 - печь для обжига извести; 2 - дробилка; 3 - вертикальный ковшовый конвейер; 4 - ленточный конвейер; 5,12 - тарельчатые питатели (дозаторы); 6 - мельница для помола извести с песком; 7 - винтовой питатель; 8 - двухкамерный пневмонасос; 9 - смеситель; 10 - ленточный реверсивный конвейер; 11 - силосы (реакторы); 13 - стержневой смеситель; 14 - пресс; 15 - автомат-укладчик 16 - вагонетка; 17 - автоклав; 18 - электропередаточная тележка;
  • 19 - установка по очистке платформы автоклавных вагонеток

В состав сырьевой смеси входят:

  • ? известь (6...8 %, считая на активный СаО);
  • ? кварцевый песок (92...94 %);
  • ? вода (7...9 %).

Технологический процесс производства силикатного кирпича включает следующие операции (рис. 6.2):

  • 1) добыча и подача песка;
  • 2) дробление и помол негашеной извести;
  • 3) смешивание песка с молотой известью;
  • 4) гашение смеси извести с песком;
  • 5) дополнительное перемешивание и увлажнение смеси (до 7...9 % воды);
  • 6) прессование кирпича-сырца;
  • 7) запаривание кирпича-сырца в автоклаве.

В зависимости от способа гашения извести в смеси с песком различают силосный и барабанный виды производства силикатного кирпича. При более распространенном силосном способе перемешанная увлажненная смесь извести и песка выдерживается 8...9 ч в бункерах-силосах. Гасить известь в смеси с песком можно также в гасильном барабане , который представляет собой металлический цилиндр, по концам имеющий форму усеченных конусов, вращающихся вокруг горизонтальной оси. Песок дозируют по объему, а известь - по весу. После загрузки барабан вращают, впуская пар, и гасят известь под давлением 0,3...0,5 МПа. Перед прессованием известково-песчаную смесь перемешивают в лопастной мешалке или на бегунах и дополнительно увлажняют (до 7 %).

Прессование кирпича производят на механических прессах под давлением 15... 20 МПа, после чего прочность кирпича-сырца должна быть не ниже 0,3 МПа.

Отформованный кирпич-сырец укладывают в вагонетки, которые подают в автоклав (см. рис. 6.1).

Выгруженный из автоклава кирпич выдерживают

10.. . 15 сут. на воздухе для карбонизации извести, не вступившей в химическое взаимодействие с кремнеземом, по следующей схеме:

Силикатный кирпич обычно светло-серый, но может быть любого цвета вследствие введения в состав смеси щелочестойких пигментов.

Выпускают кирпич двух видов: одинарный (250x120x65) мм и модульный (250 х 120 х 88 мм) с пустотами, благодаря которым масса одного кирпича не превышает 4,3 кг.

В зависимости от предела прочности на сжатие и изгиб силикатный кирпич имеет марки: 100, 125, 150, 200, 250.

Плотность силикатного кирпича (без пустот) около

1800.. . 1900 кг/м 3 , т.е. он тяжелее обыкновенного глиняного кирпича, теплопроводность 0,70...0,75 Вт/(м °С), водопогло- щение лицевого кирпича не превышает 14 %, рядового - 16 %.

Марки по морозостойкости для лицевого кирпича: М рз 25, 35, 50; для рядового - М рз 15.

Силикатный кирпич, как и глиняный, применяют для возведения несущих стен зданий. Не рекомендуется его использовать для устройства цоколей из-за недостаточной водостойкости, а также для укладки труб и печей, так как при высокой температуре Са(ОН) 2 дегидратируется, СаС0 3 и гидросиликаты кальция разлагаются, а зерна кварцевого песка при 573 °С расширяются в результате полиморфного превращения кварца в другую разновидность, что вызывает растрескивание кирпича.

На производство силикатного кирпича расходуется меньше тепла, чем на производство глиняного, поскольку не требуются сушка и высокотемпературный обжиг, поэтому он дешевле на 30...40 %.

Известково-шлаковый кирпич изготовляют из смеси извести (3...12 % по объему) и гранулированного доменного шлака (88...97 %). При замене шлака золой получается известково- зольный кирпич. Состав смеси: 20...25 % извести и 75...80 % золы.

Так же как и шлак, зола является дешевым сырьем, образующимся в больших количествах после сжигания топлива (каменного или бурого угля и др.) в котельных ТЭЦ, ГРЭС И др.

При сгорании пылевидного топлива часть очаговых остатков оседает в топке (зола-шлак), а самые мелкие частицы золы уносятся в дымоходы, где задерживаются золоуловителями, а затем их транспортируют в золоотвалы. Наиболее тонкодисперсные золы называют зола-унос. При смешивании с водой золы не твердеют, однако при добавках извести или портландцемента они активизируются, а запаривание смеси в автоклавах дает возможность получать изделия достаточной прочности.

Известково-шлаковый и известково-зольный кирпичи формуют на тех же прессах, что и при производстве силикатного кирпича, и запаривают в автоклавах.

Плотность шлакового и зольного кирпичей 1400... 1600 кг/м 3 , коэффициент теплопроводности 0,5...0,6 Вт/(м К). По пределу прочности на сжатие шлаковый и зольный кирпичи разделяют на три марки: 75, 50 и 25. Морозостойкость известково-шлакового кирпича такая же, как и силикатного, а известково-зольного - ниже.

Известково-шлаковый и известково-зольный кирпичи применяют для возведения стен зданий высотой не более трех этажей и для кладки верхних этажей многоэтажных зданий.

Изделия из пеносиликата и силикатных ячеистых бетонов. Пеносиликат - искусственный каменный материал ячеистой структуры. Он получается в результате затвердевания пластичной известково-песчаной смеси, смешанной с технической пеной. Если такая смесь смешивается с газообра- зователем (алюминиевой пудрой, пергидролем и др.), то образуемый каменный материал ячеистой структуры называют газосиликатом.

Для производства пеносиликата применяют молотую из- весть-кипелку (активный СаО не менее 70 %) в количестве

15...20 % от веса сухой смеси. Кроме кварцевого песка, в качестве заполнителей можно использовать доменный гранулированный шлак, золу-унос и другие заполнители, содержащие большое количество Si0 2 .

Тонкость помола известково-песчаной смеси находится в пределах 2900...3200 см 2 /г.

Технологический процесс производства ячеистых силикатных изделий состоит из следующих операций (рис. 6.3):

  • 1) приготовление известково-песчаного вяжущего (количество песка 20...50 % от веса извести);
  • 2) измельчение песка;
  • 3) приготовление пено- или газобетонной массы;
  • 4) формование изделия в металлических формах;
  • 5) обработка изделий в автоклаве.

Ячеистые силикатные изделия изготовляют как армированными, так и неармированными. В армированных силикатных бетонах стальная арматура и закладные детали больше подвержены коррозии, чем в цементных бетонах, поэтому их покрывают защитными составами (цементно-казеиновыми, полимерцементными).


Рис. 6.3.

I - склад песка; 2 - сушильный барабан; 3 - бункер для сухого песка; 4 - бункер для извести; 5 - шаровая мельница для помола песка;

  • 6 - шаровая мельница для совместного помола извести и песка;
  • 7 - система шнеков; 8 - бункер для известково-песчаной смеси; 9 - бункер для молотого песка; 10 - элеватор подачи цемента;

II - элеватор подачи молотой извести; 12 - бункер для цемента; 13 - бункер для молотой извести; 14 - весовые дозаторы; 15 - дозатор воды; 16 - дозатор пенообразователя; 17 - пенобетономешал- ка; 18 - подъемник для разлива массы в формы; 19 - вагонетки

с формами; 20 - автоклав

Силикатные изделия из ячеистого бетона подразделяются:

  • ? на теплоизоляционные - средней плотностью до 500 кг/м 3 и прочностью на сжатие до 2,5 МПа;
  • ? конструктивно-теплоизоляционные - средней плотностью 500...800 кг/м 3 и прочностью на сжатие 2,5...7,5 МПа;
  • ? конструктивные - средней плотностью 850 кг/м 3 и прочностью на сжатие 7,5... 15,0 МПа.
  • 6.1.2. Гипсовые и гипсобетонные изделия

К таким изделиям относят изделия, изготовленные на основе гипсовых и гипсоцементных вяжущих.

Быстрое твердение гипса и его хорошие формовочные свойства позволяют изготавливать сборные крупноразмерные элементы различного назначения: плиты и панели стен для устройства внутренних перегородок зданий, основания под полы и др. Поскольку плиты и панели на основе гипсовых вяжущих достаточно огнестойки, их часто применяют для огнезащитной облицовки металлических и деревянных конструкций.

Для производства гипсовых и гипсобетонных изделий используют строительный и высокопрочный гипсы, а также гипсошлаковый цемент, который не вызывает коррозии стальной арматуры.

Изделия из гипса подразделяют на гипсовые и гипсобетонные.

Гипсовые изделия изготавливают из гипсового теста, иногда с добавкой молотых органических или минеральных заполнителей.

Гипсобетонные изделия получают из гипсового раствора с легкими и пористыми заполнителями. В качестве органических заполнителей используют молотую бумажную макулатуру, древесные опилки и др., в качестве минеральных - топливные и доменные шлаки, ракушечник, пемзовый и туфовый щебень и др.

Заполнители снижают прочность гипсовых изделий. Поэтому для повышения их прочности уменьшают расход воды, однако при этом требуется применять вибропрессование или трамбование.

Изделия на основе гипса имеют небольшую плотность: гипсовые - 800... 1100 кг/м 3 , гипсобетонные - 1200... 1500 кг/м 3 . Прочность изделий - 2,5... 10 МПа. Эти материалы обладают хорошими звуко- и теплоизоляционными свойствами, хорошо обрабатываются и легко окрашиваются.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовая работа

по дисциплине: «Технологии предприятий стройиндустрии»

на тему: «Силикатные стеновые материалы»

1. Эволюция силикатного кирпича 3

2. Основные свойства 6

3. Технические характеристики кирпича 8

3.1 Прочность при сжатии и изгибе 8

3.2 Водопоглощение 8

3.3 Влагопроводность 9

3.4 Морозостойкость 9

3.5 Атмосферостойкость 11

3.6 Стойкость в воде и агрессивных средах 13

3.7 Жаростойкость 15

3.8 Теплопроводность 15

4. Изготовление силикатного кирпича на основе зол и шлаков ТЭС 17

5. Технология производства 21

5.1 Подготовка силикатной массы 21

5.1.1 Дозировка компонентов 21

5.1.2 Приготовление силикатной массы 24

5.2 Прессование сырца 26

5.3 Процесс автоклавной обработки 29

Список литературы 33

1. Эволюция силикатного кирпича

В настоящее время в строительстве применяется два вида кирпича - керамический и силикатный. Принципиальная разница между этими материалами заключается в сырье, используемом для их изготовления, и, соответственно, в технологии производства. Керамический кирпич состоит из глины (отсюда и его название, от греч. «keramos» - глина) и изготавливается путем прессования и последующего обжига в печах при высоких температурах. Силикатный, в свою очередь, представляет собой смесь кварцевого песка и воздушной извести (от лат. «silex» - кремень) и производится посредством формования и автоклавной обработки.

В позапрошлом году запатентованному производству силикатного кирпича исполнилось 125 лет. Доподлинно известно, что еще в 1880 г. в Германии был выдан первый патент на способ получения стеновых блоков из извести и песка. По данным российской экономической статистики, в самом начале прошлого века у нас в стране уже функционировало 9 своих заводов с общим объемом выпуска 150 млн. шт. силикатного кирпича в год. В настоящий момент на территории Санкт-Петербурга и Ленобласти расположено 6 крупных кирпичных предприятий. При этом единственным на весь регион производителем силикатного кирпича является Павловский завод строительных материалов.

Поскольку требования к качеству и эстетике строительных материалов постоянно растут, со временем были разработаны новые виды рассматриваемого материала - сначала цветной, а затем и пустотелый силикатный кирпич. Факт, что его можно окрашивать в массе, был известен давно и получил достаточно подробные обоснования как в научной литературе, так и в учебных пособиях для будущих специалистов строительной отрасли. Однако в советские времена, когда массовое домостроение опиралось главным образом на унитарно-типовые архитектурные решения в массовом домостроении, что сопровождалось огромными валовыми объемами выпуска силикатного кирпича, такое его свойство мало кого интересовало. Сегодня, когда эстетической составляющей авторы проектов и их заказчики начали уделять существенно больше внимания, выпуск цветного силикатного кирпича стал актуальным как никогда. Для придания кирпичу определенного колера в силикатную смесь добавляются атмосферо- и щелочестойкие пигменты. Колористическая гамма изделий, выпускаемых на Павловском заводе, включает 7 основных цветов: белый, розовый, терракотовый, желтый, изумрудный, голубой и габбро, а также их многочисленные оттенки. Метод введения сухого пигмента в силикатную массу, дающий возможность получать силикатный объемно окрашенный полнотелый кирпич, был выбран руководством завода совместно с технологическими службами на основании опыта российских и зарубежных партнеров. «После того, как мы выпустили цветной полнотелый силикатный кирпич, - рассказывает генеральный директор Павловского завода строительных материалов Сергей Иванович Тулько, - возник вопрос, чем еще мы можем расширить ассортимент выпускаемой продукции. Следом появилась идея придания кирпичу фактурной поверхности. На первом этапе фактурная поверхность выполнялась на отечественном оборудовании. Сейчас же мы ее делаем и на машинах немецкого производства.

На сегодняшний день мы выпускаем фактурный кирпич двух видов: с сильно выступающей фактурной поверхностью и более плоской - на выбор потребителя, кому какая нравится. Насколько такой кирпич интересен? По опыту Германии могу сказать, что рустированный кирпич используется очень широко». Кроме полнотелого цветного и фактурного силикатного кирпича Павловский завод выпускает пустотелый цветной. Этот вид продукции пока даже среди профессионалов известен немногим, поэтому стоит остановиться на нем более подробно. Предпосылкой производства этой группы изделий послужила необходимость улучшить весовые и теплотехнические свойства кирпича. Сначала, естественно, он появился в белом варианте, а затем и в цветном. По геометрическим характеристикам этот кирпич стал практически идеальным. Производить качественные материалы с максимально точной геометрией на Павловском заводе строительных материалов позволяет оборудование немецкой фирмы W&K («Вирлинг и Кларе»), которое используется для изготовления всех новых видов продукции. Пустотелый силикатный кирпич Павловского завода сохраняет все качественные характеристики полнотелого кирпича, а по некоторым параметрам превосходит и своего керамического собрата. Выпускается он с 11-ю несквозными отверстиями, составляющими 33%-ную пустотность. Несквозные (в отличие от керамики) отверстия делают кирпичную кладку на 30-50% экономичнее по расходу раствора. Пустотелый кирпич значительно легче, и за счет этого снижается нагрузка на фундамент. К тому же он обладает меньшей теплопроводностью, поэтому стены из такого кирпича можно делать тоньше без ущерба теплоизоляционным характеристикам ограждающих конструкций.

«Несомненный плюс силикатного кирпича перед керамическим состоит в его повышенных звукоизоляционных свойствах, а это немаловажный фактор при возведении межквартирных или межкомнатных стен. Поскольку силикатный кирпич используется при кладке несущих стен и различных перегородок, на Павловском заводе выпускался и продолжает выпускаться кирпич с керамзитом. Его выпуск был обусловлен борьбой именно за теплопроводность и звукоизоляцию кирпича и кирпичной кладки», - поясняет С.И. Тулько.

За период своего использования силикатный кирпич зарекомендовал себя с лучшей стороны и доказал свои качественные характеристики. До сих пор дома, построенные в послевоенные годы, прочно стоят на улицах российских городов. Ни трещины, ни сколы им не страшны, так как силикатный кирпич обладает высокой морозостойкостью, что является одним из основных показателей долговечности кладочного материала.

2. Основные свойства

силикатный кирпич сырец производство

Силикатный кирпич относится к группе автоклавных вяжущих материалов. Силикатный кирпич применяют для кладки стен и столбов в гражданском и промышленном строительстве, но его нельзя применять для кладки фундаментов, печей, труб и других частей конструкций, подвергающихся воздействию высоких температур, сточных и грунтовых вод, содержащих активную углекислоту.

Силикатный кирпич является экологически чистым продуктом. По технико-экономическим показателям он значительно превосходит глиняный кирпич. На его производство затрачивается 15…18 часов, в то время как на производство глиняного кирпича - 5…6 дней и больше. В два раза снижаются трудоемкость и расход топлива, а стоимость - на 15…40%. Однако у силикатного кирпича меньше огнестойкость, химическая стойкость, морозостойкость, водостойкость, несколько больше плотность и теплопроводность. В условиях постоянного увлажнения прочность силикатного кирпича снижается. Силикатный кирпич производится нескольких размеров:

ГОСТ 379-95 «Кирпич и камни силикатные. Технические условия» предусматривает ограничение массы утолщенного кирпича в сухом состоянии до 4,3 кг.

Для улучшения качества и потребительских свойств рекомендуется производить, наряду со стандартным известково-песчаным кирпичом, известково-зольный кирпич, а также различные красители.

Известково-зольный кирпич содержит 20…25% извести и 75…80% золы. Технология изготовления такая же, как и известково-песчаного кирпича. Плотность - 1400…1600 кг/м3, теплопроводность - 0,6…0,7 Вт/(м С). Кирпич используют для строительства малоэтажных зданий, а также для надстройки верхних этажей.

3. Технические характеристики кирпича

Требования к техническим свойствам силикатного кирпича меняются в зависимости от области его применения, обычно определяемой строительными нормами, неодинаковыми в разных странах.

3.1 Прочность при сжатии и изгибе

В зависимости от предела прочности на сжатие силикатный кирпич подразделяют на марки 75, 100, 125, 150 и 200.

Марка кирпича определяется его средним пределом прочности при сжатии, который составляет обычно 7,5 - 35 МПа. В стандартах ряда стран (Россия, Канада, США), наряду с этим, также регламентируют предел прочности кирпича при изгибе. Пустотелые камни средней плотностью 1000 и 1200 кг/м 3 могут иметь марки 50 и 25. В большинстве стандартов предусмотрено определение прочности кирпича в воздушно-сухом состоянии и лишь в английском стандарте - в водонасыщенном.

В стандартах приведены средняя прочность кирпича данной марки и минимальные значения предела прочности отдельных кирпичей пробы, составляющие 75 - 80% среднего значения.

3.2 Водопоглощение

Это один из важных показателей качества силикатного кирпича и является функцией его пористости, которая зависит от зернового состава смеси, ее формовочной влажности, удельного давления при уплотнении. По ГОСТ 379 - 79 водопоглощение силикатного кирпича должно быть не менее 6%.

При насыщении водой прочность силикатного кирпича снижается по сравнению с его прочностью в воздушно-сухом состоянии так же, как и

у других строительных материалов, и это, снижение обусловлено теми же причинами. Коэффициент размягчения силикатного кирпича при этом зависит от его макроструктуры, от микроструктуры цементирующего вещества и составляет обычно не менее 0,8.

3.3 Влагопроводность

Она характеризуется коэффициентом влагопроводности, который зависит от средней плотности кирпича. При р ср. , примерно равной 1800 кг/м 3 , и различной влажности имеет следующие значения:

Таблица 1

3.4 Морозостойкость

В нашей стране морозостойкость кирпича, особенно лицевого, является наряду с прочностью важнейшим показателем его долговечности. По ГОСТ" 379 - 79 установлены четыре марки кирпича по морозостойкости. Морозостойкость рядового кирпича должна составлять не менее 15 циклов замораживания при температуре - 15 0 С и оттаивания в воде при температуре 15 - 20 0 С, а лицевого - 25, 35, 50 циклов в зависимости от климатического пояса, частей и категорий зданий, в которых его применяют.

Снижение прочности после испытания на морозостойкость по сравнению с водонасыщенными контрольными образцами не должно превышать 20% для лицевого и 35% для рядового кирпича первой категории и соответственно 15 и 20% для кирпича высшей категории качества.

Требования по морозостойкости к кирпичу марок 150 и выше предъявляются только в том случае, если его применяют для облицовки зданий. При этом кирпич должен пройти 25 циклов испытаний без снижения прочности более чем на 20%. По польскому стандарту силикатный кирпич всех видов должен выдерживать не менее 20 циклов замораживания и оттаивания без признаков разрушения. В стандартах Англии, США и Канады для облицовки наружных частей зданий, подвергающихся увлажнению и замораживанию, предусматривается кирпич повышенной прочности (21 - 35 МПа), но его морозостойкость не нормируется.

Морозостойкость силикатного кирпича зависит в основном от морозостойкости цементирующего вещества, которая в свою очередь определяется его плотностью, микроструктурой и минеральным составом новообразований. По данным П. Г. Комохова, коэффициент морозостойкости цементного камня из прессованного известково-кремнеземистого вяжущего автоклавной обработки колеблется после 100 циклов от 0,86 до 0,94. При этом с увеличением удельной поверхности кварца с 1200 до 2500 см 2 /г коэффициент морозостойкости несколько возрастает, а при дальнейшем увеличении дисперсности кварца он снижается.

В настоящее время в связи с применением механических захватов для съема и укладки сырца в сырьевую широту стали вводить значительно большее количество дисперсных фракций для повышения его плотности и прочности. Вследствие этого в структуре вырабатываемого сейчас силикатного кирпича заметную роль играют уже микрокапилляры, в которых вода не замерзает, что значительно повышает его морозостойкость.

Морозостойкость силикатных образцов зависит от вида гидросиликатов кальция., цементирующих зёрна песка (низкоосновных, высокоосновных или их смеси). После 100 циклов испытаний коэффициент морозостойкости образцов, предварительно прошедших испытания на атмосферостойкость, равнялся для низкоосновной связки 0,81, высокоосновной - 1,26 и их смеси - 1,65.

Изучалась также морозостойкость силикатных образцов, изготовленных на основе песков различного минерального состава. Были использованы наиболее распространенные пески: мелкий кварцевый, чистый и с примесью 10% каолинитовой или монтмориллонитовой глины, полевошпатовый, смесь 50% полевошпатового и 50% мелкого кварцевого, крупный кварцевый, содержащий до 8% полевых шпатов.

Кремнеземистая часть вяжущего состояла из тех же, но размолотых пород. Соотношения между активной окисью кальция и кремнеземом в вяжущем назначали исходя из расчета получения цементирующей связки с преобладанием низко- или высокоосновных гидросиликатов кальция или их смеси. Количество вяжущего во всех случаях было постоянным. Однако, морозостойкость силикатных образцов после 100 циклов замораживания и оттаивания зависит не только от типа цементирующей связки, но и от минерального состава песка. Влияние минерального состава песка особенно сказывается при наличии связки из низкоосновных гидросиликатов кальция, когда в смесь введено 10% каолинитовой или монтмориллонитовой глины. Коэффициент морозостойкости при этом падает до 0,82. При повышении основности связки коэффициент морозостойкости составов, наоборот, повышается до 1,5, что свидетельствует о продолжающейся реакции между компонентами в процессе испытаний.

Из приведенных данных видно, что хорошо изготовленный силикатный кирпич требуемого состава является достаточно морозостойким материалом.

3.5 Атмосферостойкость

Под атмосферостойкостью обычно понимают изменение свойств материала в результате воздействия на него комплекса факторов: переменного увлажнения и высушивания, карбонизации, замораживания и оттаивания.

Н.Н. Смирнов исследовал микроструктуру свежеизготовленных и пролежавших в кладке 10 лет образцов силикатного кирпича Кореневского, Краснопресненского, Люберецкого и Мытищинского заводов. Он установил, что в общем случае чешуйки новообразований за 10 лет частично замещаются вторичным кальцитом в результате карбонизации гидросиликатов кальция.

Гаррисон и Бесси испытывали в течение многих лет силикатный кирпич разных классов прочности, зарытый в грунт полностью или наполовину, а также лежащий в лотках с водой и на бетонных плитах, уложенных на поверхность земли. Они установили, что внешний вид кирпичей, лежавших 30 лет в земле с дренирующим и не дренирующим грунтом, мало изменился, но их поверхность размягчилась, а у кирпичей, частично зарытых в землю, открытая часть осталась без повреждений, хотя в некоторых случаях поверхность покрылась мхом.

Состояние кирпичей, находившихся 30 лет на бетонных плитах, зависело от их класса, Так, оказались без повреждений или имели незначительные повреждения 95% кирпичей класса 4 - 5 (28 - 35 МПа), 65% .кирпичей класса 3 (21 МПа) и 25% кирпичей класса 2 (14 МПа). Все кирпичи класса 1 (7 МПа) имели повреждения уже через 16 лет. Все кирпичи, лежавшие 30 лет на земле в лотках с водой, получили повреждения, и чем ниже класс кирпича, тем раньше они появлялись: у кирпичей класса 1 - через 8 лет, класса 2 - через 19 лет; класса 3 - через 22 года и для классов 4 - 5 - через 30 лет.

Прочность кирпичей, пролежавших в земле 20 лет, уменьшилась примерно, вдвое. При этом наибольшее снижение прочности наблюдалось у кирпичей, находившихся в недренирующем глинистом грунте, а наименьшее - у кирпичей, наполовину зарытых в землю (стоймя). За 20 лет в зависимости от условий пребывания в грунте карбонизировалось 70 - 80% гидросиликатов кальция, причем в основном карбонизация произошла в первые 3 года. Таким образом, даже при таких исключительно жестких испытаниях силикатный кирпич классов 3 и 4 оказался достаточно стойким.

Общеизвестно, что прочность силикатного кирпича после остывания повышается. Именно поэтому по ранее действовавшему ОСТ 5419 предусматривалось определять его прочность не ранее чем через две недели после изготовления. Были проведены испытания кирпича на образцах, отобранных от большого, числа партий (в общей сложности 3 млн. шт.). По 10 кирпичей из каждой пробы раскалывали пополам, половинки разных кирпичей складывали попарно в определенной последовательности и испытывали сразу, а остальные укладывали на стеллажи и испытывали в той же последовательности через 15 сут. При этом было установлено, что прочность кирпича за это время возросла в среднем на 10,6%, влажность его уменьшилась с 9,6 до 3,5%, а содержание свободной окиси кальция снизилось на 25% первоначального. Таким образом, повышение прочности силикатного кирпича через 15 сут. после изготовления можно объяснить совместным влиянием его высыхания и частичной карбонизации свободной извести.

Термографическими и рентгеноскопическими исследованиями установлено, что после испытания образцов в климатической камере заметных изменений в цементирующей связке не отмечается, а после карбонизации гидросиликаты кальция превращаются в "карбонаты и гель кремнекислоты, являющиеся стойкими образованиями, цементирующими зерна песка.

3.6 Стойкость в воде и агрессивных средах

Стойкость силикатного кирпича определяется степенью взаимодействия цементирующего его вещества с агрессивными средами, так как кварцевый песок стоек к большинству сред. Различают газовые и жидкие среды, в которых стойкость силикатного кирпича зависит от их состава. Из этих данных следует, что силикатный кирпич нестоек против действия кислот, которые разлагают гидросиликаты и карбонаты кальция, цементирующие зерна песка, а также против содержащихся в воздухе агрессивных газов, паров и пыли при относительной влажности воздуха более 65%. Необходимо отметить, что приведенные ориентировочные данные относятся к силикатному кирпичу по ГОСТ 379 - 53, требования к качеству которого значительно ниже, чем по ГОСТ 379 - 79.

Образцы силикатного кирпича подвергали воздействию проточной и не- проточной дистиллированной и артезианской воды в течение более 2 лет. В основном коэффициент стойкости образцов падает в первые 6 мес., а затем остается без изменения. Более высокий коэффициент стойкости - у образцов, содержащих 5% молотого песка, а более низкий - у образцов, в состав которых введено 5% молотой глины. Образцы, содержащие 1,5% молотого песка, занимают промежуточное положение: их коэффициент стойкости составляет примерно 0,8, что следует признать достаточно высоким для рядового силикатного кирпича.

Аналогичные образцы подвергали воздействию сильно минерализованных грунтовых вод, содержащих комплекс солей, а также 5%-ного раствора Na 2 SO 4 и 2,5%-ного раствора MgSO 4 .

Каждые 3 мес. определяли прочность и коэффициент стойкости образцов, находившихся в различных растворах. В растворе Na 2 SO 4 прочность образцов снижается в основном в течение 9 мес., а к 12 мес. она стабилизируется и в дальнейшем не меняется. В отличие от этого прочность образцов, находившихся в растворе MgSO 4 , падает все время, и они начинают интенсивно разрушаться уже по истечении 15 мес.

Как правило, коэффициент стойкости образцов, содержащих 5% молотого песка, составляет в грунтовых водах и растворе Na 2 SO 4 примерно 0,9, содержащих 1,5% молотого песка - 0,8, тогда как у образцов, в состав которых введено 5% молотой глины, в грунтовой воде и 5%-ном растворе Na 2 SO 4 он достигает 0,7. Следовательно, образцы с молотой глиной нельзя признать достаточно стойкими к воздействию агрессивных растворов, а также мягкой и жесткой воды.

Таким образом, силикатный кирпич, в состав которого введено 5% молотого песка, обладает высокой стойкостью к минерализованным грунтовым водам, за исключением растворов MgSO 4 .

3.7 Жаростойкость

К.Г. Дементьев, нагревавший силикатный кирпич при различной температуре в течение 6ч, установил, что до 200"С его прочность увеличивается, затем начинает постепенно падать и при 600"С достигает первоначальной. При 800"С она резко снижается вследствие разложения цементирующих кирпич гидросиликатов кальция.

Повышение прочности кирпича при его прокаливании до 200"С сопровождается увеличением содержания растворимой SiO 2 , что свидетельствует о дальнейшем протекании реакции между известью и кремнеземом. Основываясь на данных исследований и опыте эксплуатации силикатного кирпича в дымоходах и дымовых трубах разрешается применять силикатный кирпич марки 150 для кладки дымовых каналов в стенах, в том числе от газовых приборов, для разделок, огнезащитной изоляции и облицовки; марки 150 с морозостойкостью Мрз35 - для кладки дымовых труб выше чердачного перекрытия.

3.8 Теплопроводность

Теплопроводность сухих силикатных кирпичей и камней колеблется от 0,35 до 0,7 Вт/(м "С) и находится в линейной зависимости от их средней плотности, практически не завися от числа и расположения пустот.

Испытания в климатической камере фрагментов стен, выложенных из силикатных кирпичей и камней различной пустотности, показали, что теплопроводность стен зависит только от плотности последних. Теплоэффективные стены получаются лишь при использовании многопустотных силикатных кирпичей и камней плотностью не выше 1450 кг/м 3 и аккуратном ведении кладки (тонкий слой нежирного раствора плотностью не более 1800 кг/м 3 , не заполняющего пустоты в кирпиче).

4. Изготовление силикатного кирпича на основе зол и шлаков ТЭС

На долю силикатного кирпича приходится значительная часть всего объема стеновых материалов. Приведенные затраты на возведение стен из силикатного кирпича составляют примерно 84% по сравнению с необходимыми затратами при использовании керамического кирпича. Расход условного топлива и электроэнергии на производство силикатного кирпича в 2 раза ниже, чем керамического. На получение 1 тыс. шт. силикатного кирпича расходуется в среднем 4,9 ГДж тепла, половина которого составляет тепло на обжиг извести, а другая - на автоклавную обработку и другие технологические операции.

В производстве этого материала золы и шлаки ТЭС используются как компонент вяжущего или заполнителя (рис. 3.8). В первом случае расход золы достигает 500 кг на 1 тыс. шт. кирпича, во втором - 1,5-3,5 т. Оптимальное соотношение извести и золы в составе вяжущего зависит от активности золы, содержания в извести активного оксида кальция, крупности и гранулометрического состава песка и других технологических факторов и может колебаться в широком диапазоне. При введении угольной золы расход извести снижается на 10-50%, а сланцевые золы с содержанием (СаО + Мg0) до 40-50% могут полностью заменить известь в силикатной массе. Зола в известково-зольном вяжущем является не только активной кремнеземистой добавкой, но также способствует пластификации смеси и повышению в 1,3-1,5 раза прочности сырца, что особенно важно для обеспечения нормальной работы автоматов-укладчиков. Эффективность введения золы повышается с ростом удельной поверхности известково-зольного вяжущего. При этом в зольном компоненте силикатного кирпича должно содержаться не более 3-5% несгоревшего топлива и не менее 10% плавленых частиц.

Целесообразно использовать золы и шлаки антрацитовых углей, в которых содержание несгоревшего топлива составляет 15-20%. Основная масса несгоревшего топлива содержится внутри частичек аморфизованного глинистого вещества, оплавленного снаружи. Содержание остеклованных частиц в антрацитовых золах составляет 60- 80% по массе.

Известково-кремнеземистое вяжущее в производстве силикатного кирпича получают совместным помолом комовой негашеной извести с золой и кварцевым песком. Суммарное содержание активных СаО и Мg0 в вяжущем - 30-40%, удельная поверхность- 4000- 5000 см2/г, остаток на сите № 02 - не более 2%.

Схема производства силикатного кирпича из высококальциевых зол

1 - пневмоконвейер; 2 - силосный склад; 3 - шнек; 4 - пневмонасос; 5- циклон; 6 - рукавный фильтр; 7- расходный бункер; 8- винтовой питатель-9 - смеситель; 10- элеватор; 11- конвейер; 12 - бункер-мерник; 13 - реактор; 14- шнек; 15- бункер для золы и цемента; 16- дозатор; 17- бункер пресса; 18 - пресс; 19 - запарочная тележка; 20 - передаточная тележка; 21 - автоклав; 22 - склад готовой продукции.

Прочность сырца и готового кирпича можно повысить частичной заменой кварцевого песка золошлаковыми отходами, в результате чего улучшается гранулометрический состав смеси. При замене в силикатных смесях 20-30% кварцевого песка золой прочность сырца повышается на 30-40%, запаренных образцов - на 60-80%. Эффективна также частичная замена кварцевого песка дробленым до крупности не более 5 мм топливным шлаком.

При замене золой более 30% кварцевого песка возможно ухудшение формовочных свойств смеси в результате вовлечения воздуха в дисперсную известково-зольную массу при формовании и расслаивании сырца. Для формования известково-зольных смесей револьверные прессы, применяемые в производстве силикатного кирпича, заменяют колено - рычажными, используемыми для прессования керамического кирпича и огнеупоров из полусухой массы. Такие прессы создают двухстороннее приложение усилий, что обеспечивает удлиненное время прессования.

Оптимальное содержание золы и шлака в силикатной смеси зависит от зернового состава и способа формования, возрастая с модулем крупности и циклом прессования.

На прессах двухстороннего действия с увеличенным циклом и повышенным давлением при прессовании можно формовать силикатные массы с содержанием золы до 50%, а шлака - до 35%. Суммарное содержание активных СаО и М 0 в силикатной массе должно составлять 6-8%, влажность - 6-10%. Высококальциевые и кислые золы, содержащие значительное количество свободного оксида кальция, должны предварительно гаситься паром под давлением. Золы, не содержащие свободный оксид кальция, в гашении не нуждаются, но при смешивании с известью должны подвергаться обычному силосованию.

Силикатный кирпич с добавками зол и топливных шлаков твердеет в автоклавах при давлении насыщенного пара 0,8-1,6 МПа. Рекомендуемая выдержка - 4-8 ч. Получаемый материал по водо- и морозостойкости превосходит обычный силикатный кирпич, имеет меньшие значения водопоглощения и водопроницаемости, лучший товарный вид.

Преимуществом кирпича из золосиликатной смеси оптимального состава является более низкая, чем у обычного, средняя плотность (1700-1800 кг/м3 против 1900-2000 кг/м3).

Используя золы ТЭС, получен пористый силикатный кирпич с такими свойствами: плотностью 1250-1400 кг/м3; прочностью 10- 17,5 МПа, пористостью 27-28%, морозостойкостью 15-35 циклов. Применение его позволяет уменьшить толщину наружных стен на 20, а массу - на 40% и существенно сократить расход тепла на отопление зданий.

5. Технология производства

5.1 Подготовка силикатной массы

5.1.1 Дозировка компонентов

Для получения сырьевой смеси (силикатной массы) требуемого качества необходимо правильно дозировать их.

Дозу извести в силикатной массе определяют не по количеству извести в ней, а по содержанию той ее активной части, которая будет участвовать в реакции твердения, т. е. окиси кальция. Поэтому норму извести устанавливают в первую очередь в зависимости от ее активности.

На каждом заводе обычно ее устанавливают опытным путем. Среднее содержание активной извести в силикатной массе равно 6 - 8%. При употреблении свежеобожженной извести без посторонних примесей и недожога количество ее может быть уменьшено; если же в извести содержится большое количество недожженного камня и посторонних примесей, а также если известь долго хранилась на воздухе, норма ее в смеси должна быть увеличена. Как недостаточное, так и излишнее количество извести в силикатной массе влечет за собой нежелательные последствия: недостаточное содержание извести снижает прочность кирпича, повышенное содержание удорожает себестоимость, но в то же время не оказывает положительного влияния на качество. Активность извести, поступающей в производство часто изменяется; поэтому для получения массы с заданной активностью требуется часто изменять в ней количество извести. На БКСМ используется известь активностью 70 - 85%.

Практически на производстве пользуются заранее составленными таблицами, позволяющими определять дозировку извести в кг на единицу продукции (1 м 3 силикатной массы или 1000 шт. кирпича) - таблица 2.

Таблица 2

Необходимое количество песка отмеривается по объему, а известь по весу при помощи бункерных весов.

Кроме извести и песка, составной частью силикатной массы является вода, необходимая для полного гашения извести. Вода также придает массе пластичность, необходимую для прессования кирпича-сырца, и создает благоприятную среду для протекания химической реакции твердения кирпича при его запаривании.

Количество воды должно точно соответствовать норме. Недостаток воды приводит к неполному гашению извести; избыток воды, хотя и обеспечивает полное гашение, но создает не всегда допустимую влажность силикатной массы. Влага частично поступает с песком, карьерная влажность которого колеблется в зависимости от климатических условий. Количество воды, необходимое для доведения влажности силикатной массы до нужной величины, практически также можно заранее рассчитать в зависимости от карьерной влажности поступающего в производство песка и составить таблицу для определения расхода воды на единицу продукции (1000 шт. кирпича или 1 м 3 силикатной массы). Количество воды (в л), потребное для доувлажнения силикатной массы (на 1000 шт. кирпича), в зависимости от влажности песка, приведено в табл. 3

Таблица 3

Общий расход воды для получения силикатной массы требуемого качества составляет около 13% (от веса массы) и распределяется следующим образом (в%):

на гашение извести……………………………………………..2,5

на испарение при гашении……………………………………..3,5

на увлажнение массы…………………………………………...7,0

Химическая реакция гашения извести протекает по формуле:

СаО+Н 2 О=Са(ОН) 2

Иногда для повышения прочности кирпича в силикатную массу вводят различные добавки в виде молотого песка, глины и др.

Чтобы достигнуть правильного соотношения всех составляющих компонентов, применяют специальные дозировочные приспособления. Ввиду того что приготовление силикатной массы требуемого качества является одной из наиболее важных операций в технологическом процессе производства силикатного кирпича, обязательно регулярно проверять в лабораториями ее свойства.

Определение скорости гашения извести следует производить не менее двух раз в смену; в случае удлинения времени гашения извести необходимо немедленно изменить режим гашения путем удлинения цикла приготовления силикатной массы.

Определение активности извести (содержание СаО+МgО) необходимо проводить также два раза в смену и соответственно с активностью извести изменять дозировку ее для получения нормальной силикатной массы.

Активность и влажность силикатной массы следует проверять через каждые 1 - 1,5 часа и в случае отклонения получаемых показателей от заданных немедленно изменять дозировку извести и воды.

5.1.2 Приготовление силикатной массы

Известково-песчаную смесь готовят двумя способами: барабанным и силосным. На Белгородском комбинате применяется силосный способ, и это вполне обосновано.

Силосный способ приготовления массы имеет значительные экономические преимущества перед барабанным, так как при силосовании массы на гашение извести не расходуется пар. Кроме того, технология силосного способа производства значительно проще технологии барабанного способа. Подготовленные известь и песок непрерывно подаются питателями в заданном соотношении в одновальную мешалку непрерывного действия и увлажняются. Перемешанная и увлажненная масса поступает в силосы, где выдерживается от 4 до 10 час., в течение которых известь гасится.

Силос представляет собой цилиндрический сосуд из листовой стали или железобетона; высота силоса 8 - 10 м, диаметр 3,5 - 4 м. В нижней части силос имеет конусообразную форму. Силос разгружается при помощи тарельчатого питателя на ленточный транспортер, при этом происходит большоё выделение пыли. При вылеживании в силосах масса часто образует своды; причина этого - относительно высокая степень влажности массы, а также уплотнение и частичное твердение ее при вылеживании. Наиболее часто своды образуются в нижних слоях массы, у основания силоса. Для лучшей разгрузки силоса необходимо сохранять возможно меньшую влажность массы. Из опыта работы рассматриваемого завода установлено, что силосы разгружаются удовлетворительно лишь при влажности массы в 2 - 3%. Силосная масса при выгрузке более пылит, чем масса, полученная по барабанному способу; отсюда более тяжелые условия для работы обслуживающего персонала.

Перечисленные выше отрицательные моменты не полностью, но в какой-то мере устраняются механизацией разгрузки.

Работа силоса протекает следующим образом. Внутри силос разделен перегородками на три секции. Масса засыпается в одну из секций в течение 2,5 час., столько же требуется и для разгрузки секции. К моменту заполнения силоса нижний слой успевает вылежаться в течение того же времени, т.е. около 2,5 час. Затем секция выстаивается 2,5 часа, и после этого ее разгружают. Таким образом, нижний слой гасится около 5 час. Так как разгрузка силосов происходит только снизу, а промежуток между разгрузками составляет 2,5 часа, то и все последующие слои также выдерживаются в течение 5 час. в непрерывно действующих силосах. В случае образования свода при разгрузке силоса и прекращении поступления массы на ленточный транспортер категорически запрещается рабочим находиться в силосе Для облегчения разгрузки периодически включают вибратор, укрепленный на стенке силоса; и этим уменьшают прилипание массы к стенкам. При более серьезных зависаниях массы в силосах ее шуруют ломами через разгрузочные окна.

На БКСМ разгрузка массы из бункеров механизирована. Распределительные щетки на транспортерной ленте поднимают механическим пневмоподъемником. Над транспортерной лентой, подающей силикатную массу, установлены распределительные щетки, перемещающиеся вертикально по раме. Опускание и подъем щеток над лентой осуществляется с пульта управления, который оснащен световой сигнализацией и устройством, регулирующим подачу воздуха в пневмоцилиндры.

5.2 Прессование сырца

На качество кирпича и в основном на его прочность наиболее существенно влияет давление, которому подвергается силикатная масса во время прессования. В результате прессования происходит уплотнение силикатной массы. Тщательно уплотнить сырец - значит довести до минимума свободное пространство между частицами песка, сблизив их настолько, чтобы они разделялись друг от друга только тончайшим слоем вяжущего вещества. Такое сближение зерен песка при дальнейшей водо-тепловой обработке кирпича-сырца в автоклаве обеспечивает получение плотного и прочного конгломерата.

На Белгородском комбинате строительных материалов 9 прессов СМ - 816 и два пресса СМС - 152, которые работают под давлением 20 Мпа. Производительность пресса - 2680 штук условного кирпича за 1 час.

В момент прессования силикатной массы возникают силы сопротивления сжатию со стороны зерен песка, препятствующие максимальному сближению зерен. Сила трения массы о стенки формы и зерен друг о друга преодолевается путем применения давления. Поэтому давление должно распределяться равномерно по всей площади прессуемого изделия. Прессование необходимо вести только до известного предела, так как при увеличении давления выше предельного в массе появляются упругие деформации, которые исчезают после снятия давления и ведут к разрушению сырца. Поэтому нельзя повышать давление до появления деформаций.

Существенное значение имеет скорость, с которой производится давление. Так, например, ударное быстрое приложение усилия вызывает не уплотнение, а разрушение структуры изделия. Поэтому для преодоления внутренних сил трения давление должно прикладываться плавно с постепенным увеличением. Рабочее давление в прессах применяется равным 150 - 200 кг/см 2 .

На нормальную работу пресса, а следовательно, на получение кирпича хорошего качества большое влияние оказывает содержание влаги в силикатной массе. В оптимальных условиях прессования кирпича влажность массы должна составлять б - 7% от веса сухого вещества и постоянно контролироваться. Увеличение влажности выше оптимальной не дает возможности спрессовать сырец, снять его со стола пресса и уложить на вагонетку; уменьшение влажности приводит к тому, что спрессованный сырец трудно снять со стола пресса: он разламывается под действием собственного веса. Кроме того, недостаточное содержание влаги в сырце лишает известь необходимой пластичности, обеспечивающей связь между отдельными зернами песка.

Процесс прессования кирпича складывается из следующих основных операций: наполнения прессовых коробок массой, прессования сырца, выталкивания сырца на поверхность стола, снятия сырца со стола, укладки сырца на запарочные вагонетки.

Силикатная масса, приготовленная в силосах, передается при помощи транспортерной ленты в бункер над пресс-мешалкой пресса. Подача массы в пресс-мешалку должна так регулироваться, чтобы она занимала примерно 3 / 4 объема пресс-мешалки. Если поступающая масса имеет более низкую влажность, чем требуется, доувлажнение ее производится в пресс-мешалке, вокруг стенок которой укладывается водопроводная труба с мелкими отверстиями по ее длине, направленными вниз.

Сила струи поступающей по трубке воды регулируется прессовщиком при помощи вентиля. Увлажненная масса ножами пресс-мешалки при вращении их подается в прессовые коробки через отверстия в дне пресс-мешалки. При повороте стола пресса коробки, наполненные массой, перемещаются на определенный угол и занимают положение между прессующим поршнем и верхней стороной плитки контрштампа. Под давлением поршень постепенно поднимается и производится прессование сырца.

В момент прессования стол пресса останавливается, а ножи пресс-мешалки вращаются и заполняют массой следующую пару прессовых коробок. После прессования стол пресса поворачивается так, чтобы штампы пресса вместе с сырцом подошли к выталкивающему поршню. Сырец выталкивается поршнем в вертикальном направлении; верхняя пластина штампа при выталкивании выходит из прессовых коробок на 3 - 5 мм выше уровня стола. Затем выталкивающий поршень опускается вниз в первоначальное положение. После снятия пары кирпичей двумя съемщиками-прессовщиками стол поворачивается и штампы подводятся под механическую щетку для очистки.

Верхние пластины очищаются от налипшей массы, штампы опускаются на величину наполнения прессовых коробок и цикл начинается снова.

Силикатный кирпич по размерам должен отвечать требованиям ГОСТ 379 - 53; в случае отклонения от установленных размеров сырец считается браком.

Плотность прессования сырца достигается исключительно изменением величины наполнения прессовых коробок: чем больше высота наполнения, тем выше плотность сырца и, наоборот, чем меньше высота наполнения коробок, тем ниже плотность сырца. Во время прессования необходимо следить за тем, чтобы сырец получался одинаковой плотности; для этого нужно поддерживать высоту наполнения прессовых коробок одинаковой. Ножи пресс-мешалки должны быть закреплены от дна и стенок на одинаковом расстоянии.

После прессования полученные кирпичи автоматом-укладчиком укладываются на вагонетки, которые транспортируются в автоклавы, где производится тепло-влажная обработка кирпича.

5.3 Процесс автоклавной обработки

Для придания необходимой прочности силикатному кирпичу его обрабатывают насыщенным паром; при этом температурное воздействие сочетается с обязательным наличием в кирпиче-сырце водной среды, которая благоприятствует протеканию реакции образования цементирующих веществ с максимальной интенсивностью. Насыщенный пар используется с температурой 175 0 при соответствующем такой температуре давлении в 8 атм.

Автоклав представляет собой трубу длиной 19м и диаметром 2м, вместимостью 12 вагонеток (V=5965 м 3). Режим работы автоклава:

1,5 час. - подъём пара,

5-6 час. - выдержка,

1-1,5 час. - спуск пара.

В процессе автоклавной обработки, т. е. запаривания кирпича-сырца, различают три стадии.

Первая стадия начинается с момента впуска пара в автоклав и заканчивается при наступлении равенства температур теплоносителя (пара) и обрабатываемых изделий.

Вторая стадия характеризуется постоянством температуры и давления в автоклаве. В это время получают максимальное развитие все те физико-химические процессы, которые способствуют образованию гидросиликата кальция, а следовательно, и твердению обрабатываемых изделий.

Третья стадия начинается с момента прекращения доступа пара в автоклав и включает время остывания изделий в автоклаве до момента выгрузки из него готового кирпича.

В первой стадии запаривания насыщенный пар с температурой 175 0 под давлением 8 атм. впускают в автоклав с сырцом. При этом пар начинает охлаждаться и конденсироваться на кирпиче-сырце и стенках автоклава. После подъема давления пар начинает проникать в мельчайшие поры кирпича и превращается в воду. Следовательно, к воде, введенной при изготовлении силикатной массы, присоединяется вода от конденсации пара. Образовавшийся в порах конденсат растворяет присутствующий в сырце гидрат окиси кальция и другие растворимые вещества, входящие в сырец. Известно, что упругость пара растворов ниже упругости пара чистых растворителей. Поэтому притекающий в автоклав водяной пар будет конденсироваться над растворами извести, стремясь понизить их концентрацию; это дополнительно увлажняет сырец в процессе запаривания. И третьей причиной конденсации пара в порах сырца являются капиллярные свойства материала.

Роль пара при запаривании сводится только к сохранению воды в сырце в условиях высоких температур. При отсутствии пара происходило бы немедленное испарение воды, а следовательно, высыхание материала и полное прекращение реакции образования цементирующего вещества - гидросиликата.

С того момента, как в автоклаве будет достигнута наивысшая температура, т. е. 170 - 200 0 , наступает вторая стадия запаривания. В это время максимальное развитие получают химические и физические реакции, которые ведут к образованию монолита. К этому моменту поры сырца заполнены водным раствором гидрата окиси кальция Са(ОН) 2 , непосредственно сопри- касающимся с кремнеземом SiO 2 песка.

Наличие водной среды и высокой температуры вызывает на поверхности песчинок некоторое растворение кремнезема, образовавшийся раствор вступает в химическую реакцию с образовавшимся в течение первой стадии запаривания водным раствором гидрата окиси кальция и в результате получаются новые вещества - гидросиликаты кальция:

Сначала гидросиликаты находятся в коллоидальном (желеобразном) состоянии, но постепенно выкристаллизовываются и, превращаясь в твердые кристаллы, сращивают песчинки между собой. Кроме того, из насыщенного водного раствора гидрат окиси кальция также выпадает в виде кристаллов и своим процессом кристаллизации участвует в сращивании песчинок.

Таким образом, во второй стадии запаривания образование гидросиликатов кальция и перекристаллизация их и гидрата окиси кальция вызывают постепенное твердение кирпича-сырца.

Третья стадия запаривания протекает с момента прекращения доступа пара в автоклав, т. е. начинается падение температуры в автоклаве, быстрое или медленное в зависимости от изоляции стенок автоклава и наличия перепуска пара. Происходит снижение температуры изделия и обеднение его водой, т. е. вода испаряется и повышается концентрация раствора, находящегося в порах. С повышением концентрации гидрата окиси кальция и снижением температуры цементирующего вещества силикаты кальция становятся более основными, и это продолжается до тех пор, пока кирпич не будет выгружен из автоклава. В результате усиливается твердение гидросиликатов кальция и, следовательно, повышается прочность силикатного кирпича. Одновременно пленки цементирующего вещества сильней обогащаются выпадающим из раствора гидратом окиси кальция.

Механическая прочность силикатного кирпича, выгруженного из автоклава, ниже той, которую он приобретает при последующем выдерживании его на воздухе. Это объясняется происходящей карбонизацией гидрата окиси кальция за счет углекислоты воздуха по формуле

Са(ОН) 2 +СаСО 2 =СаСО 3 +Н 2 О

Таким образом, полный технологический цикл запаривания кирпича в автоклаве состоит из операций очистки и загрузки автоклава, закрывания и закрепления крышек, перепуска пара; впуска острого пара, выдержки под давлением, второго перепуска, выпуска пара в атмосферу, открывания крышек и выгрузки автоклава. Совокупность всех перечисленных операций составляет цикл работы автоклава, который равен 10 - 13 час.

Запаривание кирпича в автоклавах требует строгого соблюдения температурного режима: равномерного нагревания, выдержки под давлением и такого же равномерного охлаждения. Нарушение температурного режима приводит к браку.

Для контроля за режимом запаривания на автоклавах установлены манометры и самопишущие дифманометры, снабженные часовым механизмом, записывающим на барограмме полный цикл запаривания кирпича.

Из автоклава силикатный кирпич поступает на склад.

Список литературы

ГОСТ 379 - 95 «Кирпич и камни силикатные. ТУ»

Строева Е. Эволюция силикатного кирпича/журнал «Ардис» №2(34) Санкт - Петербург 2007

Павленко В.И., Тушева И.С. Радиационный мониторинг производства извести и силикатного кирпича/ Строительные материалы, №4 - М., 2001.

Воронин В.П., Заровнятных В.А. Эффективный силикатный кирпич на основе золы ТЭС и порошкообразной извести/ Строительные материалы, №8 - М., 2000.

Вахнин М.П., А.А. Анищенко Производство силикатного кирпича. - М.,1989

http://www.vserinki.ru

http://www.silikat.nnov.ru

http://www.veskirpich.ru

Размещено на Allbest.ru

Подобные документы

    Технологическая схема производства силикатного кирпича. Расчет удельного расхода сырьевых материалов. Процентное содержание пустот в кирпиче. Расчет потребности воды на изготовление силикатной смеси. Формование и автоклавирование силикатного камня.

    курсовая работа , добавлен 09.01.2013

    Состав силикатного кирпича, способы его производства. Классификация силикатного кирпича, его основные технические характеристики, особенности применения, транспортировка и хранение. Гипсовые и гипсобетонные изделия. Древесно-цементные материалы.

    презентация , добавлен 23.01.2017

    Технологическая линия производства силикатного кирпича методом полусухого прессования. Назначение и сущность процесса сортировки материалов. Принцип работы грохота. Расчет параметров колебаний короба грохота. Эксплуатация и ремонт оборудования.

    курсовая работа , добавлен 08.06.2015

    Номенклатура и технологическая схема изготовления силикатного кирпича. Требования к оборудованию. Характеристика сырья, полуфабрикатов, вспомогательных материалов. Типовая карта контроля техпроцесса. Влияние отходов производства на окружающую среду.

    курсовая работа , добавлен 22.02.2015

    Подготовка к строительству завода силикатного кирпича в Иваново-Вознесенске. Определение стоимости строительства завода. Исследование качественных характеристик песка. Преимущество силикатного кирпича перед красным. Техническое оснащение предприятия.

    реферат , добавлен 02.11.2010

    Характеристика района строительства. Объемно-планировочное и конструктивное решение проекта двухэтажного жилого дома. Применение силикатного кирпича при возведении наружных стен и перегородок. Наружная и внутренняя отделка, инженерное оборудование дома.

    курсовая работа , добавлен 24.11.2014

    Технологический процесс производства керамического кирпича. Механизация процессов вскрыши карьера и добычи глины. Формовка сырца, процесс сушки, обжиг кирпича. Применение туннельной печи для обжига кирпича. Внедрение автоматизированной системы управления.

    презентация , добавлен 29.03.2016

    Вяжущие на основе высококальциевой золы для силикатного кирпича. Химический, гранулометрический состав шлаков от сжигания каменных углей и антрацитов. Классификация зол как сырья для изготовления строительных материалов. Гашение пережога и карбонизация.

    реферат , добавлен 28.08.2013

    Классификация и основные свойства керамических материалов. Требования к керамическим стеновым матералам и их характеристика. Технические требования к глиняному обыкновенному и пустотелому кирпичу. Кладка наружных и внутренних стен, водопоглощение кирпича.

    реферат , добавлен 26.07.2010

    Описание свойств керамического кирпича. Характеристика сырья для производства керамического кирпича на базе месторождений пластичной глины с нанесением ангоба. Материальный баланс технологического комплекса по производству керамического кирпича.

АВТОКЛАВНОГО ТВЕРДЕНИЯ

7.1 Общие сведения и классификация

Силикатными называются искусственные каменные материалы и изделия, получаемые из извести, кремнеземистых составляющих и воды, затвердевших в результате автоклавной тепловлажностной обработки. Сущность автоклавного твердения состоит в следующем. Изделия на основе извести в нормальных условиях имеют небольшую прочность. Набор ее происходит исключительно за счет твердения извести. В среде насыщенного пара при температуре 174,5–200 °С и давлении 0,8–1,5 МПа кремнезем приобретает активность и взаимодействует с известью по схеме

Ca (OH) 2 SiO 2 + (n – 1) H 2 O → CaO SiO 2 n H 2 O.

Образуется гидросиликат кальция – вещество высокой прочности и водостойкости. Запаривание изделий выполняется в автоклавах.

Способ изготовления мелких камней из известково-песчаной смеси с последующей автоклавной обработкой был предложен немецким ученым В. Михаэлисом в 1880 г. Большой вклад в разработку технологии изготовления и применения силикатных материалов внесли П. И. Боженов, А. В. Волженский и другие ученые.

К группе силикатных материалов и изделий относят бетоны и изделия из них, кирпич и камни силикатные.

7.2 Силикатные бетоны и изделия из них

Силикатные бетоны подразделяются на плотные и легкие ячеистые. Основным сырьем для плотных бетонов служат известь и кварцевый песок. Рекомендуется применять быстрогасящуюся кальциевую известь с активностью более 70 %. Лучшим является песок с шероховатой поверхностью.

Для повышения прочности бетона применяют известково-кре-мнеземистое вяжущее, получаемое совместным помолом негашеной извести и кварцевого песка до удельной поверхности 3000–5000 см²/г, взятых в соотношении от 30: 70 до 50: 50 %.

Тонкомолотый песок оказывает большое влияние на свойства бетонов. С возрастанием его дисперсности повышаются прочность, морозостойкость изделий.

В качестве кремнеземистого компонента вместо кварцевого песка могут применяться кварцево-полевошпатовые пески, металлургические шлаки, золы ТЭС, нефелиновый шлам, отходы производства аглопорита, керамзита.

Вода не должна содержать вредных примесей.

Силикатные бетоны могут изготавливаться мелкозернистыми только на природных и дробленых песках и с применением крупных плотных или пористых заполнителей с размером зерен не более 20 мм.

В качестве заполнителей рекомендуется применять щебень из доменного шлака, щебень и песок аглопоритовые, гравий и песок керамзитовые, щебень и песок пористый из металлургического шлака. К заполнителям предъявляются те же требования, что и для цементного бетона.

Изделия из силикатного бетона изготавливаются чаще всего на оборудовании для изготовления изделий на цементах.

Производство изделий включает следующие технологические операции: приготовление известково-кремнеземистого вяжущего, силикатобетонной смеси, формование изделий и тепловлажностную их обработку в автоклавах.

Измельчение извести с песком до необходимой дисперсности, т.е. получение известково-кремнеземистого вяжущего, производится в шаровых мельницах. Приготавливают смесь в бетоносмесителях принудительного смешивания. Основной способ формования изделий – вибрирование. Тепловлажностную обработку силикатных изделий выполняют в автоклавах, которые представляют собой цилиндрические горизонтальные сосуды диаметром 2,0–3,6 и длиной 19–40 метров, закрываемые герметически крышками. По длине автоклава проложены рельсы, по которым загружаются вагонетки с изделиями. Автоклав оборудован магистралями для впуска и выпуска насыщенного пара. После загрузки автоклава крышки закрывают и впускают пар по определенному режиму. Температура пропаривания составляет 174,5–200 °С, давление, как правило, – 0,8–1,3 МПа. Общее время тепловлажностной обработки – 8–17 часов.

Плотные силикатные бетоны по прочности на сжатие подразделяются на классы от В5 до В60; на марки: по морозостойкости от F35 до F600, по водонепроницаемости от W2 до W10, по средней плотности от Пл 1000 до Пл 2400.

Из плотного силикатного бетона изготавливают железобетонные плиты для покрытия городских дорог, трамвайных путей, тротуарные плитки, бортовые камни, несущие армированные конструкции для промышленного и гражданского строительства, которые успешно заменяют конструкции из цементного железобетона. Имеется опыт применения тяжелых силикатных бетонов для изготовления шпал с предварительно напряженной арматурой, тюбингов для тоннелей.

Арматурная сталь в конструкциях, эксплуатируемых при относительной влажности воздуха до 60 % , не корродирует. При повышенной влажности среды арматуру необходимо защищать от коррозии.

Силикатные бетоны на пористых заполнителях – керамзите, аглопорите, шлаковой пемзе и других применяются для изготовления ограждающих конструкций зданий.

Загрузка...