domvpavlino.ru

Современные конструкционные материалы. Технические характеристики конструкционных материалов. Серые литейные чугуны

Конструкционные материалы в химическом аппаратостроении

Специфические условия эксплуатации химического оборудования, характеризуемые широким диапазоном давлений и температур при агрессивном воздействии среды, определяют следующие основные требования к конструкционным материалам:

Высокая химическая и коррозионная стойкость материалов в агрессивных средах при рабочих параметрах;

Высокая механическая прочность при заданных рабочих давлениях, температуре и дополнительных нагрузках, возникающих при гидравлических испытаниях и в период эксплуатации аппаратов;

Хорошая свариваемость материалов с обеспечением высоких механических свойств сварных соединений;

Низкая стоимость и не дефицитность материалов.

Виды конструкционных материалов

Конструкционные материалы, используемые в химическом машиностроении, условно делятся на четыре класса:

Цветные металлы и сплавы;

Неметаллические материалы.

Стали. Сталь представляет собой сплав железа с углеродом, содержание которого не превышает 2,14%. Кроме того, в состав стали входят примеси кремния, марганца, а также серы и фосфора.

Стали по химическому составу делятся на несколько групп:

Углеродистые обыкновенного качества;

Углеродистые конструкционные;

Легированные конструкционные и др.

Сталь углеродистую обыкновенного качества изготавливают в зависимости от хи-мического состава по ГОСТ 380-88 и ГОСТ 16523-88. Сталь углеродистая обыкновенная делится на несколько категорий - 1, 2, 3, 4, 5, 6 - чем больше номер, тем выше механическая прочность стали и ниже ее пластичность. По степени раскисления стали всех категорий изготавливают кипящими (кп), полуспокойными (пс) и спокойными (сп).

В табл. .1 приведены примеры использования углеродистой стали

обыкновенного качества в химическом машиностроении.

Таблица 1. Углеродистая сталь обыкновенная

Свойства углеродистой стали обыкновенного качества значительно повышаются после термической обработки, которая для проката может выражаться в его закалке либо непосредственно после проката, либо после специального нагрева.

Термическая обработка низкоуглеродистых сталей не только улучшает механичес-

кие свойства сталей, но и приносит значительный экономический эффект.

Стали углеродистые конструкционные выпускаются по ГОСТ 1050-74 следующих марок: 08, 10, 15,20, 25, 30,40, 45, 55, 58 и 60. В зависимости от степени раскисления по ГОСТ 1050-88 выпускаются следующие марки стали: 05кп, 08кп, 08пс, 10кп, 10пс, 11кп, 15кп, 18кп, 20кп и 20пс.

В табл. 2 приведены примеры использования углеродистой конструкционной стали в химическом машиностроении.

Таблица 2. Углеродистая сталь конструкционная

Для улучшения физико-механических характеристик сталей и придания им особых свойств (жаропрочность, кислотостойкость, жаростойкость и др.) в их состав вво-

дят определенные легирующие добавки. Наиболее распространенные легируюшие добавки:

Хром (X) - повышает твердость, прочность, химическую и коррозионную стойкость, термостойкость;

Никель (Н) - повышает прочность, пластичность и вязкость;

Вольфрам (В) - повышает твердость стали, обеспечивает ее самозакаливание;

Молибден (М) - повышает твердость, предел текучести при растяжении, вязкость, улучшает свариваемость;

Марганец (Г) - повышает твердость, увеличивает коррозионную стойкость, понижает теплопроводность;

Кремний (С) - повышает твердость, прочность, пределы текучести и упругости, кислотостойкость;

Ванадий (Ф) - повышает твердость, предел текучести при растяжении, вязкость, улучшает свариваемость стали и увеличивает стойкость к водородной коррозии;

Титан (Т) - увеличивает прочность и повышает коррозионную стойкость стали при высоких (> 800 °С) температурах.

Обычно в состав легированных сталей входят несколько добавок. По общему содержанию легирующих добавок легированные стали делят на три группы:

Низколегированные - с содержанием добавок до 3%;

Среднелегированные - с содержанием добавок от 3 до 10%;

Высоколегированные - с содержанием добавок > 10%.

В табл. 3 приведены примеры использования легированных сталей в химическом машиностроении.

Существенное значение для улучшения качества стали имеет химико-термическая обработка, т.е. процесс насыщения поверхности стали различными элементами с целью упрочнения ее поверхностного слоя, увеличения поверхностной твердости, жаростойкости и химической стойкости.

Таблица 3. Легированные конструкционные стали

Сталь Назначение
Коррозионностойкие стали для применения в слабоагрессивных средах
08X13, 12X13 Азотная и хромовая кислоты различной концентрации при темпера- туре не более 25 °С. Уксусная кислота концентрации <5% при температуре до 25 0 С. Щелочи (аммиак, едкий натр, едкое кали). Соли органические и неорганические при температуре не более 50 °С и концентрации менее 50%
30X13,40X13 Обладают повышенной твердостью, хорошей коррозионной стой- костью во влажном воздухе, водопроводной воде, в некоторых ор- ганических кислотах, растворах солей и щелочей, азотной кислоте и хлористом натре при 20 0 С
12X17 Окалиностойкая до 850 °С
10Х14АГ15, 10Х14Г14Н4Т, 12Х17Г9АН4 Заменители сталей 12Х18Н9Т, 17Х18Н9, 12Х18Н10Т для оборудования, работающего в слабоагрессивных средах, а также изделий, ра ботающих при повышенных температурах до +400 0 С и пониженной температуре до - 196 °С
Коррозионностойкие стали для сред средней агрессивности
08X17Т, 08Х18Т1, 15Х25Т Заменители стали марки 12Х18Н10Т и 12Х18Н9Т для сварных кон- струкций, не подвергающихся воздействию ударных нагрузок при температуре эксплуатации не ниже - 20 °С. Для труб теплообменной аппаратуры. Эксплуатировать в интервале температур 400 - 700 °С не рекомендуется. Стойкие к действию азотной, фосфорной, лимон- ной, уксусной, щавелевой кислот разных концентраций при температурах не более 100 °С
08Х22Н6Т, 08Х18Г8Н2Т Заменитель сталей 12Х18Н10Т и 08Х18Н10Т. Обладает более высо- кой прочностью, чем эти стали, и используется для изготовления сварной аппаратуры, работающей при температуре не выше 300 °С.
12X21Н5Т Заменитель стали 12Х18Н9Т для сварных и паянных конструкций
12Х18Н9Т, 12Х18Н10Т, 12Х18Н12Т Высокая коррозионная стойкость по отношению к азотной, холодной фосфорной и органическим кислотам (за исключением уксусной, муравьиной, молочной и щавелевой), к растворам многих солей и щелочей, морской воде, влажному воздуху. Неустойчивы в соляной, серной, плавиковой, горячей фосфорной, кипящих органических кислотах. Обладают удовлетворительной сопротивляемостью к межкристаллитной коррозии
08Х18Н12Б Обладает более высокой стойкостью, чем сталь 12Х18Н10Т. Напри мер, сталь устойчива к действию 65% азотной кислоты при температуре не более 50 °С, к действию концентрированной азотной кис- лоты при температуре не более 20 °С, к большинству растворов солей органических и неорганических кислот при разных температурах и концентрациях
Х18Н14М2Б, 1Х18М9Т Используются в производстве формальдегидных смол
Х18Н9Т, Х20Н12МЗТ Используются в качестве конструкционного материала в производстве пластмасс
07X21Г7АН5, 12Х18Н9, 08Х18Н10 Для сварных изделий, работающих при криогенных температурах до - 253 °С
Коррозионностойкие стали для сред повышенной и высокой агрессивности
04X18Н10, 03Х18Н11 Для оборудования и трубопроводов в производстве азотной кислоты и аммиачной селитры
08Х18Н10Т, 08Х18Н12Т Для изготовления сварных изделий, работающих в средах высокой агрессивности. Применяется как жаростойкая сталь при температуре до 600 °С
10Х17Н13М2Т, 10Х17Н13МЗТ, 08Х17Н15МЗТ, 08Х17Н14МЗ, 03Х21Н21М4ГБ Для изготовления сварных конструкций, работающих в условиях действия кипящей фосфорной, серной, 10%-й уксусной кислоты и в сернокислых средах. Сварные корпуса, днища, фланцы и другие де- тали при температуре от - 196 до 600 °С под давлением
06ХН38МДТ. 03ХН28МДТ Для сварных конструкций, работающих при температурах до 80 °С в условиях производства серной кислоты различных концентраций
06ХН28МДТ, 10Х17Н13М2Т Молочная, муравьиная кислоты при температуре до 20 °С. Едкое кали концентрации до 68% при температуре 120 °С. Азотная кислота концентрации 100% при температуре 70 °С. Соляная кислота, сухой йод концентрации до 10% при температуре до 20 ° С

К основным видам химико-термической обработки, изделий из стали относятся:

Цементация - процесс насыщения поверхностного слоя углеродом, что улучшает его прочность и твердость;

Азотирование - процесс насыщения поверхностного слоя азотом, что повышает стойкость изделий к истиранию и атмосферной коррозии;

Алитирование - процесс диффузионного насыщения поверхностного слоя алюми-

нием, что повышает стойкость к окислению при температурах 800 -1000 °С;

Хромирование - поверхностное насыщение изделий хромом, что значительно повышает твердость, износостойкость и коррозионную стойкость в воде, азотной кислоте, атмосфере и газовых средах при высоких температурах.

Чугуны. Серые чугуньг представляют собой сплав железа, углерода и других металлургических добавок: кремния, марганца, фосфора и серы. Содержание углерода в чугунах колеблется от 2,8 до 3,7%, при этом большая его часть находится в свободном состоянии (графит) и только около 0,8÷0,9% находится в связанном состоянии в виде цементита (карбида железа – Fе 3 С). Свободный углерод выделяется в чугуне в виде пластинок, чешуек или зерен. По микроструктуре раз-

чугун серый - в структуре которого углерод выделяется в виде пластинчатого или шаровидного графита;

чугун белый - в структуре которого углерод выделяется в связанном состоянии;

чугун отбеленный - в отливках которого внешний слой имеет структуру белого чугуна, а сердцевина - структуру серого чугуна;

чугун половинчатый - в структуре которого углерод выделяется частично в связан

ном, а частично в свободном виде.

Детали из чугуна изготавливают методом литья в земляных и металлических формах. Из чугуна получают детали сложной конфигурации, которые невозможно получить другими методами, например, ковкой или резанием.

Серый чугун является ценным конструкционным материалом, так как, имея сравнительно низкую стоимость, он обладает неплохими механическими свойствами.

Существенным недостатком серых чугунов является их низкая пластичность. Поэтому ковка и штамповка серого чугуна даже в нагретом состоянии невозможна.

Марки серых чугунов (СЧ) обычно содержат два числа: первое характеризует пре

дел прочности на растяжение, второе - предел прочности на изгиб, например,

СЧ 12-28; СЧ 18-36 и др.

Серые чугуны обладают низкой химической стойкостью, и детали из них не могут работать в агрессивных средах.

Для повышения качества чугуна его модифицируют различными модификаторами, которые воздействуют на процесс кристаллизации жидкого чугуна, изменяя его механические свойства.

Различают ковкий чугун и высокопрочный чугун. Ковкий чугун (КЧ) отличается от серого чугуна пониженным содержанием углерода и кремния, что делает его более пластичным, способным выдерживать значительные деформации (относительное удлинение КЧ составляет 3 - 10%). Высокопрочный чугун (ВЧ) является разновидностью ковкого чугуна, высокие прочностные характеристики которого достигаются модифицированием присадками магния и его сплавов. Ковкий и высокопрочный чугуны идут на изготовление коленчатых валов, цилиндров малых компрессоров и других фасонных тонкостенных деталей.

Широкое применение в химическом машиностроении имеют легированные чугу-

ны, в состав которых входят легирующие элементы, никель, хром, молибден, ванадий, титан, бор и др.

По суммарному содержанию легирующих добавок чугуны делят на три группы:

Низколегированные - легирующих добавок до 3%;

Среднелегированные - легирующих добавок от 3 до 10%;

Высоколегированные - легирующих добавок более 10%.

Легирование позволяет существенно улучшить качество чугуна и придать ему осо-

бые свойства. Например:

Введение никеля, хрома, молибдена, кремния повышает химическую стойкость и жаропрочность чугуна;

Никелевые чугуны с добавкой меди (5 - 6%) надежно работают со шелочами;

Высокохромные (до 30% Сr) устойчивы к действию азотной, фосфорной и уксусной кислот, а также хлористых соединений;

Чугун с добавкой молибдена до 4% (антихлор) хорошо противостоит действию соляной кислоты.

Цветные металлы и их сплавы . Цветные металлы и их сплавы применяют для изготовления машин и аппаратов, работающих со средами средней и повышенной агрессивности и при низких температурах. В химической промышленности в качестве конструкционных материалов используются алюминий, медь, никель, свинец, титан, тантал и их сплавы.

Алюминий. Обладает высокой стойкостью к действию органических кислот, концентрированной азотной кислоты, разбавленной серной кислоты, сравнительно устойчив к действию сухого хлора и соляной кислоты. Высокая коррозионная стойкость металла обусловлена образованием на его поверхности защитной оксидной пленки, предохраняющей его от дальнейшего окисления. Механические свойства алюминия в значительной степени зависят от температуры. Например, при увеличении температуры от 30 °С до 200 °С значения допускаемого напряжения на растяжение снижаются в 3 - 3,5 раза, а на сжатие - в 5 раз. Верхняя предельная температура применения алюминия 200 °С. Алюминий не стоек к действию щелочей.

Медь. Взаимодействие меди с кислородом начинается при комнатной температуре и резко возрастает при нагревании с образованием пленки закиси меди (красного цвета). Медь сохраняет прочность и ударную вязкость при низких температурах и поэтому нашла широкое применение в технике глубокого холода. Медь не обладает стойкостью к действию азотной кислоты и горячей серной кислоты, относительно устойчива к действию органических кислот. Широкое распространение получили сплавы меди с другими компонентами: оловом, цинком, свинцом, никелем, алюминием, марганцем, золотом и др. Наиболее распространенными являются сплавы меди с цинком (латуни), с оловом (бронзы), с никелем (ЛАН), с железом и марганцем (ЛЖМ), цинком (до 10% цинка - томпак; до 20% - полутомпак; более 20% - константаны, манганины и др.).

Свинец - обладает сравнительно высокой кислотостойкостью, особенно, к серной кислоте, вследствие образования на его поверхности защитной пленки из сернокислого свинца. Исключительно высокая мягкость, легкоплавкость и большой удельный вес резко ограничивают применение свинца в качестве конструкцион-

ного материала. Однако широкое применение в машиностроении нашли сплавы с использованием свинца в качестве легирующего компонента: свинцовая бронза, свинцовая латунь, свинцовый баббит (свинец, олово, медь, сурьма).

Никель - обладает высокой коррозионной стойкостью в воде, в растворах солей и щелочей при разных концентрациях и температурах. Медленно растворяется в соляной и серной кислотах, не стоек к действию азотной кислоты. Широко приме-

няется в различных отраслях техники, главным образом для получения жаропроч-

ных сплавов и сплавов с особыми физико-химическими свойствами. Никель-медные сплавы обладают улучшенными механическими свойствами и повы-

шенной коррозионной стойкостью.

Никельхромсодержащие жаропрочные сплавы. Никелевые сплавы, легированные хромом и вольфрамом, являются стойкими в окислительных средах. Никелевые сплавы с добавкой меди, молибдена и железа стойкие в неокислительных средах. Никель-медные сплавы с добавлением кремния стойкие в горячих растворах серной кислоты, а сплавы никеля с молибденом обладают повышенной стойкостью к действию соляной кислоты.

Титан и тантал. Титан химически стоек к действию кипящей азотной кислоты и царской водки всех концентраций, нитритов, нитратов, сульфидов, органических кислот, фосфорной и хромовой кислот. Однако изделия из титана в 8 - 10 раз дороже изделий из хромоникелевых сталей, поэтому применение титана в качестве конструкционного материала ограничено. Тантал химически стоек к действию кипящей соляной кислоты, царской водки, азотной, серной, фосфорной кислот. Однако не обладает стойкостью к действию щелочей.

Титан и тантал по механическим свойствам не уступают высоколегированным сталям, а по химической стойкости намного превосходят их. Эти ценные металлы находят широкое применение в химическом машиностроении как в чистом виде, так и в виде сплавов.

Неметаллические конструкционные материалы. Применение в химическом машиностроении неметаллических конструкционных материалов позволяет экономить дорогостоящие и дефицитные металлы.

Фторопласт (тефлон) - элементы конструкций из фторсодержащих полимеров обладают высокой стойкостью практически во всех агрессивных средах в широком интервале температур.

Углеграфитовые материалы - графит, пропитанный фенолформальдегидной смолой, или графитопласт - прессованная пластмасса на основе фенолформальдегиднои смолы с графитовым наполнителем. Обладают высокой коррозионной стойкостью в кислых и щелочных средах.

Стекло и эмали. Стекло применяется в качестве конструкционного материала в производствах особо чистых веществ. Эмали - специальные силикатные стекла, обладающие хорошей адгезиеи с металлом. Промышленностью выпускаются чугунные и стальные эмалированные аппараты, работающие в широком интервале температур от -15 до +250 °С при давлениях до 0,6 МПа.

Керамика - выпускается кислотоупорный кирпич для футеровки химического оборудования, крупноблочная керамика для аппаратов башенного типа, например, в производстве серной кислоты. Керамические материалы обладают высокой устойчивостью ко многим агрессивным средам, исключение составляют шелочные среды. Трубопроводы из кислотостойкой керамики широко применяют для транспортировки серной и соляной кислот.

Фарфор - обладает высокой стойкостью ко всем кислотам, за исключением плавиковой. Недостаточно стоек к действию щелочей. Фарфор используется в качестве конструкционного материала в производствах, где к чистоте продуктов предъявляются повышенные требования.

Винипласт - термопластичная масса, обладающая высокой устойчивостью почти во всех кислотах, щелочах и растворах, за исключением азотной и олеума. Детали из винипласта надежно работают в интервале температур 0 - 40 °С и давлении до 0,6 МПа.

Асбовинил - композиция из кислотостойкого асбеста и лака, обладающая сравни-

тельно высокой стойкостью к действию большинства кислот и щелочей в интервале температур от - 50 до +110 °С.

Полиэтилен, полипропилен - термопластичные материалы, стойкие к действию минеральных кислот и щелочей при условиях:

Полиэтилен - температура от - 60 до +60 °С, давление до 1 МПа,

Полипропилен - температура от - 10 до +100 °С, давление до 0,07 МПа.

Фаолит - кислотостойкая пластмасса с наполнителями: асбест, графит, кварцевый песок. Используют при температуре до 140 °С и давлении до 0,06 МПа. Фаолит стоек к действию многих кислот, в том числе серной (концентрацией до 50%), соляной (всех концентраций), уксусной, муравьиной (до 50%), фосфорной, а также бензола, но не стоек в растворах щелочей и окислителей.

Текстолит - по механической прочности превосходит фаолит и отличается высокой стойкостью к агрессивным средам, в том числе к кислотам - серной (концент-

рацией до 30%), соляной (до 20%), фосфорной (до 25%), уксусной (всех концентраций). Верхний температурный предел применения текстолита 80 °С.

Пропитанный графит - графит, полученный после прокалки каменноугольной смолы и пропитанный связующими смолами - фенолформальдегидными, кремне-

органическими, эпоксидными и др.

Вследствие хорошей теплопроводности пропитанного графита его широко приме-

няют для изготовления теплообменников и трубопроводной арматуры. Пропитанный графит стоек во многих химически активных средах, в том числе в кислотах - азотной (низкой концентрации), плавиковой (концентрацией до 40%), серной (до 50%), соляной, уксусной, муравьиной, фосфорной. Некоторые сорта пропитанного графита стойки к действию щелочей.

Жаропрочный кислотостойкий бетон - применяется для бетонирования днищ башенного оборудования сернокислотного производства, для изготовления фундаментов под оборудование. Надежно работает в условиях 900 - 1200 °С. В последнее время находят применение полимербетоны на основе органических смол, которые обладают высокой стойкостью к действию концентрированных кислот, щелочей, бензола, толуола и фторсодержащих сред.

Природные силикатные материалы : диабаз, базальт, асбест, хризотил, андезит обладают высокой кислотостойкостью, исключение составляет хризотил, который не стоек в кислотах, но устойчив к действию щелочей. Все эти материалы обладают хорошими физико-механическими свойствами и широко используются в качестве конструкционных теплоизоляционных и футеровочных материалов.

Конструкционные материалы – это материалы, применяемые для изготовления деталей и сборочных единиц блоков и устройств РЭА и ЭВА. Они классифицируются по природе материала, технологическому использованию и условиям работы.

По природе материалы разделяют на металлические, неметаллические и композиционные. К металлическим материалам относятся чугун, сталь, цветные металлы, драгоценные и редкоземельные металлы, их сплавы и металлокерамика. Неметаллические материалы – это пластмассы, резина, древесина, стекло, диэлектрики.

Композиционные материалы представляют собой объемное сочетание химически разнородных компонентов. Они имеют основу, в которой распределены упрочнители (волокна, проволоки). Монолитное объединение основы и упрочнителей производится связующим и позволяет эффективно использовать их индивидуальные свойства. Примеры – стеклопластики и карбоволокниты.

По технологическому использованию конструкционные материалы делят на литые, деформированные (прокат, поковки, прессованные профили и др.), спекаемые, свариваемые и т. п.

По условиям работы различают электротехнические, коррозионностойкие, износостойкие и другие материалы специального назначения.

Металлические конструкционные материалы поставляют в виде слитков, прутков (круглого, квадратного и шестигранного сечения), профилей (уголок, швеллер, фасонный и др.), листов, лент, полос, проволоки, труб различного сортамента. Сортамент – это данные о материале по маркам, состоянию, профилям и размерам. Каждый материал имеет определенное наименование и марку, например алюминиевый сплав марки Д16.

Материалы выбираются конструктором на основании назначения и условий эксплуатации конструкции с учетом требований технологии производства и ее массы. Выбор производят, исходя из выпускаемой номенклатуры их основных, марок, сортамента, технологических свойств и рекомендаций по применению тех или иных материалов для различного типа деталей несущих конструкций и мехатронных устройств ЭВА и РЭА.

При конструировании изделий ЭВА и РЭА используют черные металлы, сплавы титана, цветные металлы (медь, алюминий, магний) и их сплавы, неметаллические материалы, которые выбираются из справочников конструктора с ограничениями, действующими на данном предприятии.

Черные металлы . К черным металлам относят следующие виды стали: Углеродистую обыкновенного качества, качественную конструкционную углеродистую, конструкционную легированную, конструкционную легированную коррозионностойкую и др.

Углеродистую сталь обыкновенного качества широко используют при производстве сортового и листового проката. Марки этой стали: Ст 0, Ст1,…Ст7. В зависимости от назначения сталь подразделяют на три группы – А, Б, В и применяют для поделочных неответственных деталей. Обозначение марки стали на чертеже: ВСт4кп ГОСТ 380 – 71 * (кп обозначает “кипящая”). Из этой марки стали, изготавливают профили сортового проката и фасонные гнутые профили. Сортовой и листовой прокат используют в несущих конструкциях некоторых видов наземной РЭА типа каркасов, стоек, рам и оснований.

Качественная углеродистая конструкционная сталь (ГОСТ 1050 – 74) бывает низко- (С?0,25%), средне- (С= 0,3?0,45%) и высокоуглеродистая (С > 0,45%). При содержании углерода до 0,3% стали отличаются высокой пластичностью и вязкостью, хорошо свариваются, но не подвержены закалке. Увеличение содержания углерода сопровождается повышением прочностных характеристик, однако пластичность при этом снижается. Твердость и прочность средне- и высокоуглеродистых сталей можно повысить путем термической обработки.

Конструкционные легированные стали . Для улучшения прочностных, физических, химических и технологических свойств сталь легируют, вводя в ее состав различные элементы. Сталь может содержать один или несколько легирующих элементов, которые придают ей специальные свойства. Практически большинство деталей из легированных сталей подвергают термообработке.

Легирующие элементы (добавки) оказывают различное влияние на свойства легированных сталей. По ГОСТ 4543-71 легирующие элементы имеют следующие обозначения: хром (Х), никель (Н), марганец (Г), кремний (С), молибден (М), вольфрам (В), титан (Т), алюминий (Ю), ванадий (Ф), кобальт (К). Все легирующие элементы, за исключением кобальта, улучшают термическую обрабатываемость стали.

Повышение прочности стали достигается введением хрома, никеля, марганца, кремния. Никель и хром повышают ударную вязкость стали. Износостойкость и твердость стали увеличивают добавкой в нее вольфрама, хрома, молибдена, ванадия. Повышение теплостойкости стали достигают введением хрома, вольфрама, молибдена, кобальта. Хром, никель, титан, кремний придают стали коррозионную стойкость и жаропрочность.

Наилучший результат по улучшению свойств стали достигают при ее легировании несколькими (3-6) элементами (комплексно-легированные стали), т. к. каждый элемент придает стали свои полезные специфические свойства.

При выборе легированных сталей необходимо иметь в виду высокую стоимость и дефицитность сталей, содержащих никель, вольфрам, молибден, кобальт и некоторые другие элементы. Применять легированные стали с дефицитными элементами необходимо лишь при тщательно обоснованной конструкционной необходимости.

Маркировка легированных сталей. Марка легированной стали состоит из сочетания букв и цифр, обозначающих ее химический состав. Цифра, стоящая после буквы, указывает на содержание легирующего элемента в процентах. Если цифра не указана, то легирующего элемента не более 1,5%. В конструкционных сталях две цифры в начале марки показывают содержание углерода – в сотых долях процента. Высококачественные стали имеют в конце марки букву А. Например: сталь марки 30ХГСН2А обозначает высококачественную легированную сталь с содержанием углерода 0,30%, до 1% хрома, марганца, кремния и 2% никеля.

Для твердости поверхности стали цементируют или азотируют. Цементируемые стали – это низкоуглеродистые (0,1 - 0,30% С), низко- и среднелегированные (до 10% легирующего элемента) стали. Для ответственных деталей применяется азотируемая сталь –38ХМЮА.

Цветные металлы и сплавы . К ним относятся все металлы, кроме железа. Рассмотрим конструкционные металлы и сплавы, используемые в изделиях РЭА и ЭВА. Эта группа включает: алюминий, медь, титан, магний, бериллий и их сплавы.

Алюминий – металл серебристо-белого цвета, имеет малую плотность (2,7 г/см 3), хорошую тепло- и электропроводность, высокую коррозионную стойкость и пластичность, но малую прочность. Алюминий хорошо сваривается, обрабатывается давлением, но плохо поддается резанию. Его используют для изготовления проводов, фольги, для защиты других металлов от коррозии и для получения сплавов с более высокими механическими свойствами, чем алюминий. Алюминиевые сплавы с магнием, медью, кремнием и марганцем подразделяются на деформируемые и литейные.

Деформируемые алюминиевые сплавы . К этим сплавам повышенной пластичности относятся сплавы алюминия с марганцем (Амц) и магнием (Амг). Они применяются в основном в отожженом (мягком) состоянии. Для повышения прочностных свойств алюминиевые сплавы Амц и Амг нагартовывают, при этом резко снижается пластичность. Сплавы Амц и Амг применяют для изготовления кожухов, обечаек, крышек, заклепок и пр.

Большое распространение получили сплавы алюминия с медью, марганцем и магнием – дюралюмины. Прочность сплава увеличивают медь и магний, а марганец – его твердость и стойкость против коррозии. Дюралюмины маркируют буквой Д, после которой стоит цифра, обозначающая условный номер сплава. Термическая обработка дюралюминов состоит в закалке, естественном и искусственном старении. Для закалки сплавы нагревают до 500?С в соляной ванне и охлаждают в воде. Естественное старение производят при комнатной температуре в течение 5-7 суток. Искусственное старение проводят при 150 -180?С в течение 2-4 ч. Дюралюмины имеют низкую коррозионную стойкость, поэтому их подвергают плакированию, которое заключается в горячей прокатке заготовки дюралюмина, обернутой чистым алюминием. Алюминий приваривается и защищает поверхность дюралюмина от коррозии. Дюралюмины выпускают в виде листов, прессованых и катаных профилей, прутков, труб. Из них изготавливают детали с высокой прочностью и малой массой. Они широко применяются в авиастроении.

Литейные алюминиевые сплавы . Их получают добавлением в алюминий кремния до 23%. Эти сплавы получили название силумины. Они обозначаются буквами АЛ и цифрой, указывающей на условный номер сплава. В сплав добавляются и легирующие присадки (медь, магний, цинк, титан), улучшающие, после проведения термической обработки, показатели механической прочности.

Медь и медные сплавы. Медь – металл розовато-красного цвета, имеет высокую плотность (8,94 г/см 3), высокие тепло- и электропроводность, коррозионную стойкость и пластичность. Медь технологична, т. е. хорошо прокатывается, паяется и сваривается, но плохо поддается резанию. Благодаря высоким тепло- и электропроводным свойствам медь широко применяется для изготовления различных проводников тока, токопроводящих деталей, теплообменников и др.

Латунь – это сплав меди и цинка. Латунь прочнее, устойчивее против коррозии и дешевле, чем медь и хорошо обрабатываются давлением и резанием, обладают высокими литейными свойствами. Основные марки латуни: Л80, Л63, ЛС59 – 1 и др.

Бронза – это сплав меди с оловом и другими элементами: алюминием, бериллием, кремнием, марганцем, свинцом. Бронзы обладают высокой стойкостью против коррозии, хорошими литейными и высокими антифрикционными свойствами и обрабатываемостью резанием.

Бронзу маркируют по тому же принципу, что и латуни. После букв Бр (бронза) идут обозначения составных элементов сплава и их процентное содержание. Например, марка БрОЦС5-5-5 указывает на то, что бронза содержит олова, цинка, и свинца по 5%, остальное – 85% меди.

По химическому составу бронзы делят на оловянные и безоловянные, а по их технологическому назначению – на литейные и деформируемые. Оловянные бронзы обладают хорошими антифрикционными, антикоррозионными и литейными, а ряд марок (бериллиевые) и упругими свойствами. Ее применяют для изготовления опор с трением скольжения, венцов червячных колес, электрических контактов и пружин. Стоимость этих бронз высокая.

Безоловянные бронзы по литейным, антифрикционным и другим качествам хуже оловянных, однако ряд других показателей (механическая прочность, коррозионная стойкость) у них выше. Бериллиевая бронза БрБ2 обладает высокими механическими, антифрикционными и упругими свойствами и идет на изготовление таких деталей, как пружины, контакты, мембраны.

Магний, титан и сплавы на их основе. Магний – самый легкий из технических цветных металлов (плотность 1,74 г/см 3). Технически чистый магний непрочный, малопластичный металл с низкой тепло- и электропроводностью. Для улучшения прочностных свойств в магний добавляют алюминий, кремний, марганец, цинк, торий, цезий, цирконий и подвергают термообработке.

Магниевые сплавы делят на литейные и деформируемые. Первые применяют для изготовления деталей методом литья. Их маркируют буквами МЛ и цифрами, обозначающими порядковый номер сплава, например МЛ5. Сплавы МЛ применяют в авиастроении и в радиопромышленности для изготовления корпусов, шасси и т. п. Вторые – предназначенны для изготовления деталей из листов, прутков, профилей. Маркировка сплавов МА. Они применяются для изделий, где требуется малая масса. Ввиду низкой коррозионной стойкости магниевых сплавов детали из них подвергают оксидированию с последующим нанесением лакокрасочных покрытий.

Титан – серебристо- серый металл с малой плотностью – 4,5 г/см 3 , высокой механической прочностью и хорошей коррозионной и химической стойкостью. Титан имеет низкие антифрикционные свойства и плохо обрабатывается резанием. Обозначение ВТ и порядковый номер сплава. Выпускают литейные и деформируемые сплавы. Их применяют в авиа-, ракетостроении и авиационном приборостроении. Для литья, например, применяют сплавы ВТ5Л, из которого получают отливки высокого качества в среде инертных газов или вакууме. Еще одно ценное свойство – титановые сплавы имеют близкий к стали температурный коэффициент линейного расширения.

Неметаллические материалы . К ним относятся пластмассы и резина. Пластмассы обладают хорошими диэлектрическими свойствами; их механические характеристики зависят от марки пластмассы. Пластмассы подразделяются на термореактивные и термопластичные.

Термореактивные пластмассы при повторном нагревании не переходят в пластичное состояние, так как в процессе изготовления входящие в ее состав смолы полимеризуются и превращаются в вещество с новыми свойствами. Термореактивные пластмассы, в свою очередь, можно разделить на монолитные (фторопласт-4), слоистые (текстолит, гетинакс, листовой стеклотекстолит) и композициннные, в состав которых кроме смолы, входит наполнитель в виде стекловолокна, хлопчатобумажных волокон и других материалов.

Термопластичные пластмассы (полиэтилен, винипласт, фторопласт-3, полиметилакрилат и др.) при нагревании размягчаются и сплавляются. Получаемый в результате этого материал можно использовать для вторичной переработки.

Основные слоистые пластмассы:

  • 1. Текстолит получают методом горячего прессования хлопчатобумажной ткани, пропитанной фенолформальдегидной смолой; текстолит производят марок ПТ и ПТК (конструкционный) и А, Б, В, ВЧ, Г (электротехнический). Он обладает хорошими диэлектрическими и антифрикционными свойствами. Текстолит используется для крепежных планок, панелей, щитков, стоек и шестерен.
  • 2. Стеклотекстолит имеет основу – стекловолокно и выпускается двух видов – электротехнический марок СТ, СТУ, СТК, СТЭФ СФ –1, СФ-2, широко используемый при изготовлении печатных плат, панелей, шасси, и конструкционный марки КАСТ.
  • 3. Гетинакс отличается от текстолита только основой, в качестве которой используется бумага; его применяют для изготовления неответственных плат.

Фторопласт – 4 (тефлон) является хорошим диэлектриком, обладает малым коэффициентом трения, легко обрабатывается резанием; идет на изготовление изоляционных и установочных деталей (втулок, прокладок, стоек) а так же для деталей антенно-фидерных устройств СВЧ. Композиционные термореактивные пластмассы используют для электротехнических и конструкционных деталей там, где требуется повышенная прочность и термостойкость, особенно свойственные композиционному стеклотекстолиту.

Полиамиды относятся к термопластичным пластмассам и используются как материал для каркасов, рамок, поддонов и электроизоляционных деталей, изготавливаемых литьем. Материал хорошо работает на трение и износ, но плохо теплопроводен.

Полиэтилен, как высокочастотный диэлектрик, используют в качестве каркасов, защитных экранов, стоек. Полиметилакрилат (плексиглас) служит для изготовления защитных стекол, шкал.

Резину используют для электроизоляционных, герметизирующих и уплотнительных деталей (прокладок, колец, втулок, амортизаторов). Резины бывают общего и специального назначения. К последним относятся кремнийорганические резины.

Фольгированные пластмассы имеют специальное назначение: их применяют при изготовлении плат с печатным монтажом, печатных якорей электродвигателей и др. печатных электрических конструкций. Они представляют собой слоистый пластик, облицованный с одной или двух сторон медной фольгой толщиной 35 или 50 мкм. Фольгированные пластики должны удовлетворять требованиям, связанным с технологией производства печатных плат и условиям их эксплуатации: выдерживать воздействие повышенных температур в процессе производства (взаимодействие припоя при пайке схем) и обеспечивать достаточную прочность сцепления фольги при длительной эксплуатации изделий.

Выбор материала печатной платы. Материал платы выбирают по ГОСТ 10316 – 78, ГОСТ 23751 – 79 или техническим условиям (табл.5.1).

Фольгированные материалы представляют собой слоистые прессованные пластики, пропитанные искусственной смолой и нанесенной с одной или двух сторон медной электролитической фольгой толщиной 18, 35 или 50 мкм.

Основные понятия о технологических процессах в машиностроительных производствах

Целью современного машиностроительного производства является реализация про­цесса превращения сырья, материалов, полуфабрикатов и других предметов труда в готовую машину, удовлетворяющую потреб­ностям общества (рис.1.1).

Рис.1.1. Схема процесса производства

Машина является технической системой, которая создается для выполнения определенных функций, т.е. имеет определенное служебное назначение.

Служебное назначение машины – это совокупность ее потребительских свойств и технических требований.

Технические требования – это система качественных показателей машины с установленными на них количественными значениями.

По назначению и характеру рабочего процесса машины делятся на энергетические, технологические, транспортные.

Энергетические машины предназначены для преобразования того или иного вида энергии в механическую работу.

Технологические машины - это машины, использующие механическую работу, получаемую от энергетических машин для изменения свойств, формы и состояния обрабатываемых объектов.

Транспортные машины, предназначенные для изменения положения и направления перемещения предметов и материалов в пространстве.

Каждая машина обладает определенной структурой и состоит из ряда функциональных компонентов. Функциональными компонентами машины называют сборочные единицы (узлы) различных уровней сложности, детали и части деталей (рис. 1.2).

· Деталью машины называется изделие, изготовленное из однородного по наименованию и марке материала без применения сборочных операций. Деталь, как правило, имеет определенную геометрическую форму и выполняет хотя бы одну функцию по обеспечению работы машины. Деталь это простейший элемент машины (например: вал, втулка, зубчатое колесо и т.п.).

Детали машин классифицируют по четырем основным признакам:

По виду поверхности (геометрической форме);

По размеру;

По точности;

По материалу, из которого они изготовлены.

Геометрическая форма детали предопределяется ее функцией и вместе с габаритными размерами, показателями точности, материалом и его свойствами предопределяет процесс ее изготовления для конкретного производства.

· Сборочной единицей называется изделие, составные части которого подлежат соединению на предприятии-изготовителе посредством сборочных операций (свинчиванием, сочленением, клепкой, сваркой, пайкой, склеиванием и т.д.). В зависимости от степени сложности и других технологических параметров, в машиностроении принято делить сборочные единицы на порядки (самые сложные - это сборочные единицы первого порядка).

Рис.1.2. Структура машины

Производство машин осуществляется в результате выполнения производственного процесса, под которым понимают совокупность всех этапов, которые проходят исходные продукты на пути их превращения в готовую машину.

По отношению к изделию различные этапы производственного процесса проявляют себя по-разному (рис. 1.3).

Одни из них изменяют качественное состояние изделия:

Размеры;

Структуру и химический состав материала;

Такие процессы называются основными производственными процессами. Совокупность основных производственных процессов образует основное производство предприятий.

Производственные процессы, обеспечивающие бесперебойное протекание основных процессов называются вспомогательными. Их результатом явля­ется продукция, используемая на самом предприятии.

Другие процессы, как, например, транспортирование, контроль, хранение на складах, не оказывают никаких воздействий, хотя без них производственный процесс не смог бы быть осуществлен. Такие процессы называются обслуживающими.

Рис. 1.3. Виды производственных процессов по отношению к изделию

В каждый производственный процесс входят основные и вспомогательные технологические процессы.

· В машиностроении под технологическим процессом обычно понимают часть производственного процесса, содержащую целенаправленные действия по изменению качественного состояния объекта с целью получения деталей или изделий заданной формы, размеров и физико-химических свойств.

Технологические процессы, обеспечивающие превращение сырья и материалов в готовую продукцию, называются основными.

Вспомогательные технологические процессы обеспечивают изготовление продукции, используемой для обслуживания основного производства.

По применяемым методам и способам производства, организационному построению и другим признакам технологические процессы делятся на три фазы (рис. 1.4).

Рис. 1.4. Фазная структура технологических процессов

Фаза - это комплекс работ, выполнение которых характеризует завершение определенной части технологического процесса и связано с переходом предмета труда из одного качественного состояния в другое.

На рисунке 1.5 в качестве примера показаны некоторые технологические процессы заготовительной фазы.

Рис. 1.5. Технологические процессы заготовительной фазы

На рисунке 1.6 показаны некоторые технологические процессы обрабатывающей фазы.

Рис. 1.6. Технологические процессы обрабатывающей фазы.

С целью организации и нормирования труда технологические процессы расчленяют на операции, которые выполняются в определенной последовательности.

Степень пооперационной расчлененности технологического процесса зависит от:

Объема работы по изготовлению данного изделия;

Количества рабочих, занятых изготовлением изделия;

Размеров производственного помещения (рабочей площади);

Характера оборудования рабочих мест и других условий производства.

· Под операцией следует понимать часть технологического процесса, выполняемую над определенным предметом труда на одном рабочем месте одним или группой рабочих.

Одна и та же работа может быть представлена различным числом операций. Если, например, необходимо обточить пруток, просверлить продольное отверстие (рис. 1.7), и все это выполняется одним рабочим на одном станке, то это будет одна операция. Если обточка, сверление и нарезка резьбы производятся на разных станках, то это будут три операции. По технологическим признакам операции расчленяются на переходы, установки, и проходы.

· Установка – это часть технологической операции, выполняемая при неизменном закреплении обрабатываемых заготовок или сборочной единицы. Одна установка может содержать в себе один или несколько переходов.

· Технологический переход - это законченная технологически однородная часть операции, выполняемая при одном режиме работы оборудования и неизменном инструменте (рис.1.7. позиции 2 и 3).

Рис. 1.7. Операция изготовления втулки на одном станке, одним рабочим за одну установку

· Вспомогательный переход – это законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением предмета труда, но необходимы для выполнения технологического перехода (например, установка заготовки, смена инструмента и т.д.).

Каждый технологический процесс разрабатывают применительно к определенному типу производства. Тип производства - это классификационная категория, определяемая следующими принципами:

· объемом годового выпуска продукции (числом изделий, подлежащих изготовлению в установленную календарную единицу времени);

· широтой номенклатуры производства изделий;

· производственной мощностью (максимально возможному выпуску продукции установленной номенклатуры и количества при полном использовании возможностей предприятия).

Технологический процесс, прогрессивный для одного типа производства, может быть совершенно неприемлемым для другого типа производства. Различают три основных типа производства (рис. 1.8):

Рис. 1.8. Типы производства

· Единичное производство характеризуется малым объемом выпуска одинаковых деталей, повторное изготовление которых не предусматривается. К основным особенностям единичного производства относятся:

Широкая и разнообразная номенклатура изделий;

Отсутствие повторяемости операций на рабочих местах;

Универсальность оборудования, приспособлений и инструмента;

Высокая квалификация рабочих.

Перечисленные особенности единичного производства определяют более высокую себестоимость выпускаемых изделий.

Единичное производство существует в тяжелом машиностроении, судостроении, опытном производстве любых машин и т. п. (Например: на станкостроительном заводе изготавливается сложный специальный станок для обработки длинномерных валов по специальному заказу судостроительного предприятия).

· Серийное производство характеризуется тем, что изделия изготавливают сериями или партиями. В серийном производстве станки периодически переналаживают с одной операции на другую.

К особенностям серийного производства относятся следующие признаки:

Периодическая смена операций на рабочих местах,

Высокая специализация оборудования, приспособлений, инструментов.

С экономической точки зрения серийное производство более выгодно, чем единичное. Серийное производство - наиболее характерный вид производства для среднего машиностроения. К этому виду производства относят многие разновидности сельскохозяйственного машиностроения, станкостроение, производство насосов, компрессоров, текстильных машин и т.п.

· Массовым производством называется такое производство, при котором изделия изготовляют путем выполнения на рабочих местах одних и тех же постоянно повторяющихся операций. Массовому производству свойственны следующие признаки:

Установившийся объем и характер работы на рабочих местах;

Расположение рабочих мест в порядке выполнения операций.

Применение специальных высокопроизводительных станков, приспособлений и инструментов;

К продукции массового производства относятся автомобили, сельскохозяйственные машины, велосипеды, бытовая техника машины и др.

Современное машиностроительное предприятие является сложной системой, состоящей из организационных и производственных единиц - управленческих, маркетинговых, технологических, производственных, обслуживающих. Различают следующие производственные единицы предприятия.

· Цех – это основное производственное подразделение
предприятия, выполняющее возложенную на него определенную
часть производственного процесса.

· Участок - это самостоятельное структурное подразделение цеха, где выполняются конкретные работы из тех, что закреплены за цехом. Участок является первичным производственным подразделением предприятия. Первичным звеном каждого производственного участка является рабочее место.

· Рабочее место – это часть производственной площади участка (цеха), закрепленная за одним или бригадой рабочих и оснащенная оборудованием, инструментом и вспомогательными устройствами, соответствующими характеру выполняемых работ.

В основу организации цехов и участков положены принципы концентрации и специализации. Специализация цехов и производ­ственных участков может быть осуществлена по видам работ (технологическая специализация) или по видам изготовленной продукции (предметная специализация).

Пример технологической специализации: литейный, термический или гальванический цехи, токарный и шлифовальный участок в механическом цехе.

Пример предметной специализации: цех корпус­ных деталей, участок валов, цех по изготовлению редукторов и др.

Контрольные вопросы к лекции 1:

1. Дайте определение понятию «деталь». Самостоятельно определите детали в конкретной модели машины.

2. Дайте определение понятию «сборочная единица». Самостоятельно определите сборочные единицы в конкретной модели машины.

3. Определите цели и задачи основных производственных процессов. Что включают в себя основные производственные процессы.

4. Дайте определение понятию «технологический процесс».

5. Дайте определение понятию «операция технологического процесса».

6. Опишите структуру машиностроительного предприятия.

7. Дайте характеристику основных цехов предприятия.

8. Охарактеризуйте особенности серийного производства. Приведите самостоятельные примеры.

9. Охарактеризуйте особенности массового производства. Приведите самостоятельные примеры.

Лекция 2. Основные понятия о проектировании технологических процессов

Процесс создания любой новой машины включает в себя ряд последовательных этапов (рис. 2.1).

Рис. 2.1. Этапы создания машины

Этап 1 . Поисковое проектирование.

На этом этапе производится анализ потребности рынка в данном изделии, исследуются конкурирующие аналоги, оцениваются временные и финансовые затраты для начала производства изделия, планируется серийность (годовой объем выпуска) изделия и устанавливаются его основные технические характеристики, оценивается возможная прибыль предприятия.

Этап 2 . Конструирование.

На данном этапе осуществляется детальная разработка конструкции изделия. Структура, состав и геометрические параметры изделия должны соответствовать техническому заданию и обеспечивать требуемые эксплуатационные характеристики изделия.

Важно спроектировать изделие так, чтобы его можно было изготовить наиболее простым образом и с минимальными затратами. Если это требование выполнено, то говорят о технологичности изготовления изделия.

Результаты конструирования оформляются в виде комплекта конструкторской документации. Он включает в себя деталировочные и сборочные чертежи, спецификации и другие документы. В настоящее время в конструкторскую документацию могут включаться компьютерные модели деталей и сборочных единиц изделия.

Этап 3. Проектирование технологических процессов.

Данный этап состоит в обеспечении технологической готовности предприятия к выпуску данного изделия, при соблюдении требований к качеству, срокам и объемам выпуска, а также с учетом запланированных затрат.

Рис. 2.2. Элементы содержания работ по проектированию технологических процессов

· Выбора вида заготовок (процессов их получения). Например, для детали «втулка» в качестве заготовки выбираем пруток из стали определенной марки диаметром 20 мм. Такой пруток является стандартной продукцией металлургического производства и широко представлен на рынке черных металлов (рис. 2.3).

Рис 2.3. Выбор заготовки

· Разработки межцеховых маршрутов (определение пути, который пройдет заготовка, прежде чем превратится в деталь и станет частью сборочной единицы или изделия). Например: склад материалов → заготовительный участок механического цеха → токарный участок механического цеха → сборочный цех → склад готовой продукции.

· Опреде­ления последовательности и содержания технологических операций. Например:

Операция 1 слесарная: разрезка прутка на мерные заготовки;

Операция 2 транспортировка на токарный участок;

Операция 3 токарная, состоящая из нескольких установок и переходов;

Операция 4 транспортировка на сборочный участок;

· Определения, выбора и заказа средств технологи­ческого оснащения. Например, для токарной операции потребуется: станок токарно-винторезный 16К20 → патрон трехкулачковый → задний центр → резцы проходной, подрезной, отрезной и.т.д. → сверло Ø 6,9 мм → метчик М 8 и т.п.

· Установления порядка, методов и средств технического контроля качества. Например: ручной контроль с использованием штангенциркуля

· Назначения и расчета режимов резания. Например: с учетом обрабатываемого и инструментального материалов и припусков на обработку устанавливают скорость резания (частоту вращения шпинделя станка), величины подач инструмента, глубину резания и т.п. Например, V = 150 м/мин, S = 0,07 мм/об, t = 0, 2 мм.

· Технического нормирования операций производственного процесса. Производят расчет времени, затраченного на данную операцию.

· Определения профессий и квалификации исполнителей. Например: токарь 1 разряда.

· Организации производственных участков (поточных линий). Предлагается рациональная расстановка оборудования в помещении цеха, с целью сокращения времени на транспортировку.

· Формирования рабочей документации на технологические процессы в соответствии с ЕСТД (Единая система технологической документации).

Технологическая документация - основной источник информации для организации, управления и регулирования производственного процесса на каждом предприятии. Она сопровождает изделие в течение всего жизненного цикла и заканчивает свое существование при списании изделия.

В машиностроении технологическая документация решает две основные задачи (рис. 2.4).

Рис. 2.4. Задачи технологической документации

Решая информационную задачу, технологическая документация:

· обеспечивает изготовление деталей и сборочных единиц;

· служит средством организации труда рабочих;

· несет информацию для служб управления производством для определения себестоимости изделия и его сборочных единиц, производительности труда, производственной мощности и загрузки оборудования участков, цехов и предприятий в целом;

· является носителем информации о нормах расхода материалов;

· обеспечивает планирование и подготовку производства и т.д.

При решении организационной задачи технологическая документация:

· связывает определенным образом участников производства;

· устанавливает определенные отношения между различными участками производства;

· выполняет функцию организационной документации.

Рис. 2.5. Фрагменты технологической документации: маршрутной карты (а ), операционной карты (б )

Стадии разработки и виды документов, применяемых для технологических процессов изготовления (сборки) изделий машиностроения устанавливаются ГОСТом. Состав применяемых видов документов определяется разработчиком документов в зависимости от стадий разработки, типа и характера производства. Из всего перечня документов, регламентируемого стандартом, применяют:

- маршрутные карты (МК),

- операционные карты (ОК),

- карты технологического процесса (КТП),

· Маршрутная карта (рис. 2.5, а ) – это документ, указывающий последовательность прохождения заготовок, деталей или сбо­рочных единиц по цехам и производственным участкам пред­приятия.

· Операционная карта (рис. 2.5, б ) – это документ, указывающий последовательность прохождения заготовки, детали или сбо­рочной единицы по переходам в рамках одной операции на рабочем месте в цехе участкам пред­приятия.

Этап 4. Создание опытного образца. Этот этап имеет своей целью проверку качества принятых конструкторских и технологических решений путем испытаний опытного образца изделия.

По результатам испытаний могут быть внесены изменения как в конструкторскую документацию (то есть в конструкцию изделия), так и в разработанные технологические процессы.

Этап 5 . Освоение производства. На данном этапе предприятие должно выйти на намеченные объемы выпуска изделия, стабилизировать качество продукции и добиться заданной трудоемкости на всех стадиях производства. Здесь может понадобиться освоение дополнительных производственных мощностей, совершенствование технологических процессов, повышение численности и квалификации персонала.

Этапы создания нового изделия являются элементами Жизненного Цикла Изделия (ЖЦИ), который охватывает все стадии жизни изделия - от изучения рынка перед проектированием до утилизации изделия после использования.

Контрольные вопросы к лекции 2:

1. Перечислите этапы создания машины.

2. Что представляет собой этап поискового проектирования. Цель этапа.

3. Что представляет собой этап конструирования. Цель этапа.

4. Перечислите содержание основных работ по проектированию технологических процессов.

5. Роль и задачи технологической документации в процессе технологической подготовки производства.

6. Что отражают в маршрутной карте.

7. Что отражают в операционной карте.

8. Что представляет собой этап создания опытного образца. Цель этапа.

9. Что представляет собой этап освоения производства. Цель этапа.

10. Как вы понимаете термин «жизненный цикл изделия»

Лекция 3. Современные конструкционные материалы в машиностроительном производстве

Любая машина и составляющие ее детали изготавливаются из конструкционных материалов, которые обеспечивают выполнение ею служебного назначения. В современном машиностроении к конструкционным материалам предъявляют следующие основные требования:

Эксплуатационные,

Технологические,

Экономические,

Экологические и др.

На примере редуктора машины показано многообразие материалов, из которых выполнены его детали (рис. 3.1). Корпус редуктора (1 ) изготовлен из серого чугуна; зубчатое колесо (2 ) из ковкого чугуна; вал (3 ) из легированной стали; подшипник (4 ) из подшипниковой стали (композита, сплава цветного металла); крышка подшипника (5 ) из полимерного материала; уплотнительные кольца (6 ) из материала на основе резины.

Рис. 3.1. Редуктор машины и его детали, выполненные из различных конструкционных материалов: 1 - корпус редуктора, 2 - зубчатое колесо, 3 - вал, 4 - подшипник, 5 - крышка подшипника, 6 - уплотнительные кольца

По принципиальной классификации все конструкционные материалы принято делить на следующие виды (рис. 3.2).

Рис. 3.2. Принципиальная классификация конструкционных материалов

· Металлические материалы наиболее распространены в машиностроении, к этой группе материалов относятся все металлы и их сплавы.

Среди них можно выделить несколько групп, отличающихся друг от друга по свойствам:

1. Черные металлы. Это железо и сплавы на его основе – стали и чугуны.

2. Цветные металлы. В эту группу входят металлы и их сплавы, такие как медь, алюминий, титан, никель и др.

3. Благородные металлы. К ним относятся золото, серебро, платина

4. Редкоземельные металлы. Это лантан, неодим, празеодим.

Под чистыми металлами понимают твёрдые вещества, состоящие только из одного компонента. Чистые металлы редко используют в машиностроении. Наиболее распространено использование металлических конструкционных материалов в виде сплавов.

Под сплавами понимают твёрдые вещества, образованные сплавлением двух или более металлических компонентов. Сплавы на основе железа называются черными, а на основе других металлов – цветными.

Легкими цветными сплавами называют сплавы на основе алюминия, магния, титана и бериллия, имеющие малую плотность. Тяжелыми цветными сплавами называют сплавы на основе меди, олова.

Легкоплавкими цветными сплавами называют сплавы на основе цинка, кадмия, олова, свинца, висмута. Тугоплавкими цветными сплавами называют сплавы на основе молибдена, ниобия, циркония, вольфрама, ванадия и др.

· Неметаллические материалы являются не только заменителями металлов, но и применяются как самостоятельные материалы. Среди них также можно выделить несколько групп (рис. 3.3):

Рис. 3.3. Группы неметаллических материалов

1. Пластмассы – это материалы на основе высокомолекулярных соединений (полимеров), как правило, с наполнителями. Наполнителями пластмасс называют порошкообразные, кристаллические, волокнистые листовые, газообразные материалы, которые определяют свойства пластмасс. Различают пластмассы с твердым наполнителем (полиэтилены, полистиролы, поликарбонаты и т.п.), а также с газофазовым наполнителем (пенопласты, поропласты и т.п.)

2. Керамика – это материал на основе порошков тугоплавких соединений типа карбидов, боридов, нитридов и оксидов. Например: TiC, SiC, Si 3 N 4 , Al 2 O 3 , SiO 2 , ZrO 2 и др.

3. Стекло – это материал на основе оксидов различных элементов, в первую очередь оксида кремния SiO 2 .

4. Резина – это материалы на основе каучука - углеродноводородного полимера с добавлением серы и других элементов.

5. Дерево – это сложная органическая ткань древесных растений.

· Композиционные материалы получают путем введения в основной материал определенного количества другого материала в целях получения специальных свойств. Композиционный материал может состоять из двух, трех и более компонентов. Различают элементы композиционного материала:

Основной конструкционный компонент, который называется матрицей.

Усиливающие элементы в виде нитей, волокон или хлопьев более прочного материала, который называется армирующий элементом.

На рисунке 3.4. показаны виды и структуры армирующего элемента в матрице композиционного материала.

Рис. 3.4. Виды и структуры армирующего элемента в матрице: непрерывные волокна (а ), дисперсные частицы (б ), прерывистые волокна (в ); тканевая структура (г ), пространственная структура (д, е )

Конструктор подбирает конструкционный материал с учетом его механических, физических, химических и тех­нологических и эксплуатационных свойств.

К основным механическим свойствам конструкционных материалов относятся следующие свойства:

· Прочность - способность материала сопротивляться пластической де­формации и разрушению под действием внешних нагрузок.

· Пластичность - способность материала необратимо изме­нять форму и размеры без разрушения под действием нагрузки.

· Вязкость - способность материала, пластически деформиру­ясь, необратимо поглощать энергию внешних сил.

· Упругость - способность материала восстанавливать фор­му и размеры после снятия нагрузки, вызвавшей деформацию.

· Твердость - способность материала сопротивляться внедрению в него другого более твердого тела.

· Хрупкость - способность материала разрушаться под воз­действием внешних сил без видимой пластической деформации.

Физические свойства - это свойства материала, зависящие от внутреннего строения вещества, его атомно-электронной структуры. К физическим свойствам относятся следующие свойства (рис.3.5).

Химические свойства зависят от химического состава вещества и его атомно-электронного строения. Химические свойства материала про­являются в его способности к химическому взаимодействию с окружаю­щей средой, в возможности образования химических соединений и хими­ческих превращений.

Рис. 3.5. Основные физические свойства конструкционных материалов

Технологические свойства - это свойства материала поддаваться различным способам горячей и холодной обработки и дающие возможность получать заготовки, а из заготовок - детали машин. К технологическим свойствам относят следующие свойства:

· Ковкость – это способность металла подвергаться деформированию в горячем или холодном состоянии и принимать требуемую форму, под внешним воздействием не разрушаясь.

· Свариваемость – это способность металлов и сплавов образовывать неразъемное соединение (сварочный шов) с другими сплавами и материалами, обладающее требуемым уровнем прочностных и эксплуатационных свойств.

· Обрабатываемость резанием – это способность металлов и сплавов в отделении поверхностных слоев материала в виде стружки под воздействием режущего инструмента.

· Склонность к термической обработке – способность металлов изменять свою структуру под влиянием различных воздействий (тепло, давление, излучения и поля различной природы) с приобретением требуемого комплекса свойств.

· Литейные свойства – определяются способностью материала обладать в расплавленном состоянии технологической жидкотекучестью, обладать минимальной объемной и линейной усадкой при затвердевании.

Эксплуатационные свойства . К эксплуатационным (служебным) свойствам относятся:

· Жаростойкость и жаропрочность - эти свойства характеризует способность материала сохранять механические свойства при высокой температуре,

· Износостойкость – это способность материала сопротивляться разрушению его поверхностных слоев при трении.

· Коррозионная стойкость – это свойство характеризует способность металлов сопротивляться коррозии в различных средах.

Контрольные вопросы к лекции 3:

1. Классифицируйте металлические конструкционные материалы.

2. Классифицируйте неметаллические конструкционные материалы.

3. Классифицируйте композиционные конструкционные материалы.

4. Перечислите механические свойства материалов.

5. Перечислите технологические свойства материалов.

6. В чем заключается способность материалов к обработке резанием.

7. В чем заключаются литейные свойства материалов.

8. Охарактеризуйте эксплуатационные свойства материалов

Лекция 4. Основные понятия о металлургических процессах. Производства чугуна.

По масштабам металлургического производства России занимает одно из ведущих мест в мире. Отечественный металлургический комплекс объединяет все стадии технологических процессов: от добычи и обогащения сырья до получения готовой продукции в виде черных и цветных металлов и их сплавов (рис.4.1).

Рис. 4.1. Структура металлургической отрасли

Для производства металлургической продукции используют следующие исходные материалы (рис.4.2).

Рис.4.2. Исходные материалы металлургического производства

· Руда – это горная порода, из которой целесообразно извлекать металлы и их соединения. Руду называют по одному или нескольким металлам, входящим в ее состав, например: железная руда, медно-никелевая руда и т.п. В зависимости от содержания добываемого элемента различают руды богатые и бедные.

Важнейшим этапом в технологической цепи металлургического производства является процесс подготовки руд к плавке.

Подготовка руд к доменной плавке осуществляется для повышения производительности оборудования, снижения расхода топлива и улучшения качества продукции. Различают следующие процессы подготовки руды:

1. Дробление и сортировка руд по крупности служат для получения кусков оптимальной величины, осуществляются с помощью дробилок и классификаторов.

2. Обогащение руды основано на различии физических свойств минералов, входящих в ее состав. Обогащение включает следующие процессы:

Промывка – это процесс отделение плотных составляющих от пустой рыхлой породы.

Гравитация – это процесс отделение руды от пустой породы при пропускании струи воды через дно вибрирующего сита: пустая порода вытесняется в верхний слой и уносится водой, а рудные минералы остаются.

Магнитная сепарация – это процесс, когда измельчённую руду подвергают действию магнита, притягивающего железосодержащие минералы и отделяющего их от пустой породы.

3. Окусковывание производят для переработки руды в кусковые материалы необходимых размеров. Применяют два способа окусковывания: - агломерация,

Окатывание.

· Флюсы – это материалы, загружаемые в плавильную печь для образования легкоплавкого соединения с пустой породой руды и золой топлива. Такое соединение называется шлаком. Обычно шлак имеет меньшую плотность, чем металл, поэтому он располагается над металлом и может быть удален в процессе плавки. Шлак защищает металл от печных газов и воздуха. Для флюсов в металлургии используют следующие материалы, которые подвергают окускованию и вводят в виде агломерата и окатышей (рис. 4.3).

Рис. 4.3. Материалы для флюсов

· Топливо – это природные или неприродные горючие вещества, выделяющие при сгорании высокую температуру. В металлургии используются следующие виды топлива:

Природный газ,

Доменный газ.

Кокс получают из каменного угля коксующихся сортов. Он служит не только горючим для нагрева, но и химическим реагентом для восстановления железа из руды.

· Огнеупоры – это материалы для изготовления внутреннего облицовочного слоя металлургических печей и другого оборудования. Они способны выдержать тепловые нагрузки, противостоять химическому воздействию шлака и печных газов.

Всю продукцию металлургического производства по принципиальной квалификации принято делить на продукцию черной и цветной металлургии.

Черная металлургия представляет собой комплекс предприятий для производства чугуна, стали и проката. Основная продукция чёрной металлургии показана на рисунке 4.4.

Рис. 4.4. Основная продукция чёрной металлургии

· Чугун передельный используется для передела на сталь.

· Чугун литейный используется для производства фасонных чугунных отливок на машиностроительных заводах.

· Ферросплавы – это сплавы железа с повышенным содержанием марганца, кремния, ванадия, титана используются для производства легированных сталей.

· Стальные слитки используются для производства сортового проката (рельсов, балок, прутков, полос, проволоки, листа, труб и т, д) на прокатных производствах

Цветная металлургия представляет собой комплекс предприятий для добычи, обогащения, производства цветных металлов и сплавов.

Рис. 4.5. Основная продукция цветной металлургии

Цветная металлургия акцентирует свое внимание на следующих видах промышленности: медной, никелевой и алюминиевой. Основная продукция цветной металлургии показана на рисунке 4.5.

· Лигатурами называются сплавы цветных металлов с легирующими элементами для производства сложных легированных сплавов.

Рассмотрим более подробно технологические процессы производства основного продукта черной металлургии – чугуна.

Чугуном называют сплав железа с углеродом, где углерод содержится в количестве от 2 до 6,7%. Кроме железа и углерода, в чугуне имеются примеси кремния, марганца, фосфора, серы и других элементов. Эти примеси переходят в чугун из исходных материалов.

Основным производством для получения чугунов является доменное производство. Оборудованием для выплавки чугуна служат доменные печи (рис. 4.6). Доменная печь представляет собой высокую шахту круглого сечения, опирающуюся на железобетонный фундамент обычно многогранной формы. Нижняя часть фундамента находится на глубине 6 – 7 м. Надземная часть фундамента выложена из огнеупорного бетона.

Рис. 4.6. Доменное производство для выплавки чугуна: вид снаружи (а ), вид внутри (б ).

Сущность процесса получения чугуна в доменных печах заключается в восстановлении оксидов железа, входящих в состав руды различными восстановителями.

Восстановление твердым углеродом С называется прямым восстановлением и происходит в нижней части печи при высоких температурах по реакции:

Восстановление газами СО и Н 2 называется косвенным восстановлением, протекает в верхней части печи при сравнительно низких температурах, по реакциям:

Процесс доменной плавки является непрерывным. Сверху в печь при помощи загрузочных устройств загружают исходные материалы (руда, флюсы, кокс), а в нижнюю часть подают нагретый воздух и газообразное, жидкое или пылевидное топливо (рис. 4.7).

Внутри печи образуется шихта - смесь исходных материалов и топлива. Газы, полученные от сжигания топлива, проходят через столб шихты и отдают ей свою тепловую энергию. Для отвода газа в куполе печи предусмотрены четыре боковых восходящих газоотвода.

Доменный газ после очистки используется как топливо для нагрева воздуха, вдуваемого в печь.

Шихта нагревается, восстанавливается, а затем плавится. При работе печи шихтовые материалы, проплавляясь, опускаются вниз печи, а через загрузочное устройство подают новые порции шихты, чтобы весь полезный объем был заполнен.В нижней части доменной печи образуется шлак в результате сплавления окислов пустой породы руды, флюсов и золы топлива.

Рис. 4.7. Доменная печь и ее процессы

Шлак скапливается на поверхности жидкого чугуна, благодаря меньшей плотности. Это дает возможность разделить чугун от шлака. Сливают чугун и шлак в чугуновозные ковши, и шлаковозные чаши.

Доменная печь является мощным и высокопроизводительным агрегатом, в котором расходуется огромное количество материалов. Современная доменная печь расходует около 20000 тонн шихты в сутки и выдает ежесуточно около 12000 тонн чугуна.

Доменная печь снаружи заключена в металлический кожух, сваренный из стальных листов толщиной 25 – 40 мм. С внутренней стороны кожуха находится огнеупорная охлаждаемая футеровка.

Внутреннее очертание вертикального разреза доменной печи называют профилем печи. Полезная высота доменной печи (Н ) достигает 35 м, а полезный объем – 2000-5000 м 3 .

Эффективность работы печи оценивается следующими показателями:

· Коэффициент использования полезного объёма доменной печи (КИПО):

КИПО = V / P

где V - полезный объем печи (м 3), а Р - количество чугуна, выплавляемого в сутки (тонны). Чем ниже КИПО, тем выше производительность печи. Для большинства современных доменных печей КИПО = 0,45.

· Удельный расход кокса:

К = А / Р

где А - расход кокса за сутки (тонны), а Р - количество чугуна, выплавляемого в сутки (тонны). Удельный расход кокса в современных доменных печах составляет 0,35-0,4. Это важный показатель, так как стоимость кокса составляет более 50% стоимости чугуна. Улучшение технико-экономических показателей работы доменных печей является важнейшей задачей доменного производства.

Контрольные вопросы к лекции 4:

1. Перечислите предприятия металлургического комплекса. Как эти предприятия взаимосвязаны между собой

2. Перечислите основную продукцию выпускаемую предприятиями черной металлургии

3. Перечислите основную продукцию выпускаемую предприятиями цветной металлургии

4. Перечислите исходные материалы для металлургического производства

5. Что такое флюсы. Классификация и назначение флюсов.

6. Перечислите основные способы подготовки руды перед плавкой

7. Что является основной и побочной продукцией доменного производства.

8. Что является сырьем для доменного производства.

9. Какие химические реакции происходят при доменной плавке чугуна. В какой последовательности.

10. Какими показателями оценивается эффективность работы доменной печи.

БЕЛОРУССКИЙ ГОСУДРАСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра инженерной графики

РЕФЕРАТ

На тему:

«Конструкционные материалы»

МИНСК, 2008

Требования к конструкционным материалам

Качество детали и механизма зависит в значительной мере от правильного выбора материала. При выборе материала прежде всего учитывают эксплуатационные, технологические и экономические требования, предъявляемые к детали. Эксплуатационные требования к материалу определяются условиями работы детали в механизме. Для выполнения этих требований учитываются следующие свойства материала: прочность – способность материала сопротивляться разрушению или появлению остаточных деформаций, характеризуется пределом прочности σ u , пределом текучести σ y , условным пределом текучести σ 0,2 , пределом выносливости σ R , твердостью по Бринеллю НВ или Роквеллу HRC э; износостойкость – способность материала сопротивляться износу, характеризуется твердостью НВ, HRC э или допустимым удельным давлением q adm ; жесткость – способность материала сопротивляться упругим деформациям, характеризуется при растяжении (сжатии) и изгибе модулем упругости Е , при кручении – модулем упругости G ; упругость характеризуется пределом упругости σ e и модулем упругости Е ; антифрикционность характеризуется коэффициентом трения скольжения f; плотность ; удельные характеристики – характеристики, приходящиеся на единицу массы; электропроводность , теплопроводность , коррозионная стойкость , жаропрочность и др.

Технологические требования к материалу определяют возможность изготовления деталей с минимальными трудозатратами. При изготовлении деталей методами обработки давлением (штамповка, прессование и т.д.) учитывают пластичность – свойство материала получать без разрушения значительные остаточные деформации; при изготовлении литьем учитывают легкоплавкость и жидкотекучесть – заполняемость без пустот узких полостей различных форм; при изготовлении методами механической обработки учитывают обрабатываемость резанием . К технологическим требованиям относят также термообрабатываемость – способность материала изменять механические свойства при термической (закалка, отпуск, отжиг) и термохимической (цементация, азотирование и т.д.) обработках и свариваемость – способность материала образовывать прочные соединения при сварке.

Экономические требования к материалу определяются его стоимостью и дефицитностью. Более веским экономическим требованием является себестоимость детали, которая включает как стоимость материала, так и производственные затраты на ее изготовление. Производственные затраты в значительной мере зависят от технологического процесса изготовления детали. Например, при массовом и крупносерийном производствах дешевле изготавливать детали штамповкой, прессованием, с помощью литья, а при единичном или мелкосерийном производстве эти технологии из-за большой стоимости оснастки (штампы, пресс-формы, литейные формы) очень дороги, здесь выгоднее применять детали, полученные с помощью механической обработки. Выбор технологии изготовления детали влияет и на выбор материала.

При изготовлении конструктивных элементов механизмов используют черные металлы (стали и чугуны), цветные металлы и сплавы и неметаллические материалы.

Черные металлы

К черным металлам относят железоуглеродистые сплавы на основе железа, которые в зависимости от содержания углерода делят на стали – до 2,14% углерода и чугуны – свыше 2,14% углерода.

Чугуны

Это сплавы железа с углеродом, содержащие постоянные примеси марганца, кремния, фосфора и серы, а также при необходимости легирующие элементы.

В зависимости от структуры и состояния, в котором находится углерод (свободный или химически связанный), различают серые, белые и ковкие чугуны. Чугуны также классифицируют в зависимости от назначения – на конструкционные и со специальными свойствами; и от химсостава – на легированные и нелегированные.

Как конструкционный материал наиболее широко применяются серые чугуны, в которых весь углерод находится в свободном состоянии в виде включений графита пластинчатой формы. Они обладают средней прочностью, хорошими литейными и другими технологическими свойствами (жидкотекучестью, малой линейной усадкой, обрабатываемостью резанием), мало чувствительны к концентрации переменных напряжений, антифрикционны.

В белых чугунах избыточный углерод, не растворившийся в твердом растворе железа, присутствует в виде карбидов железа. Вследствие низких механических свойств – высокой хрупкости и твердости, плохой обрабатываемости резанием – белые чугуны не применяются в качестве конструкционных материалов.

Ковкий чугун получают из белого путем последующего отжига до распада графита в виде хлопьев. Детали из него могут подвергаться незначительным деформациям. Они обладают меньшей по сравнению с деталями из серого чугуна хрупкостью, но стоят на 30 … 100% дороже.

Высокопрочный чугун характеризуется шаровидной или близкой к ней формой включений графита, которую получают модифицированием жидкого чугуна присадками магния. Шаровидный графит в наименьшей мере ослабляет металлическую основу, что приводит к высоким механическим свойствам. Высокопрочный чугун обладает хорошими литейными и эксплуатационными свойствами.

Для улучшения прочностных характеристик и получения особых эксплуатационных свойств: износостойкости, немагнитности, коррозионной стойкости и т.д., в состав чугунов вводят легирующие элементы (никель, хром, медь, алюминий, титан и др.). Легирующими элементами могут служить также марганец (при содержании более 2%) и кремний (более 4%).

Марки чугуна обозначаются буквами, показывающими назначение чугуна: СЧ – серый чугун, ВЧ – высокопрочный, КЧ – ковкий чугун; для антифрикционных чугунов в начале марки указывается буква А (АСЧ, АВЧ, АКЧ). Цифры в обозначении марки нелегированного чугуна указывают на его механические свойства. Для серых чугунов цифры указывают величину предела прочности (кгс/мм 2) при растяжении. Например, марка СЧ18 показывает, что чугун имеет σ ut = 18 кгс/мм 2 = 180 МПа. Для высокопрочного и ковкого чугуна цифры определяют предел прочности (кгс/мм 2) и относительное удлинение при растяжении в процентах, например ВЧ60-2 – высокопрочный чугун с σ ut = = 600МПа и δ = 2%.

Стали

Стали – это деформируемые сплавы железа с углеродом и другими элементами.

По химсоставу стали делят на углеродистые и легированные. Углеродистые стали содержат кроме железа и углерода также марганец (до 1%) и кремний до (0,8%), а также примеси, от которых трудно избавиться в процессе выплавки – серу и фосфор. Сера и фосфор снижают механические свойства сталей: сера увеличивает хрупкость в горячем состоянии (красноломкость), а фосфор – при пониженных температурах (хладноломкость). В зависимости от содержания углерода различают низко- (С ≤ 0,25%), средне- (0,25 < С ≤ 0,6%) и высокоуглеродистые (C > 0,6%) стали.

В состав легированных сталей помимо указанных компонентов для улучшения технологических и эксплуатационных характеристик и придания особых свойств вводят легирующие элементы (хром, никель, молибден, вольфрам, ванадий, титан, ниобий и др.). Легирующими элементами могут быть также марганец при содержании более 1% и кремний – более 0,8%.

По назначению стали делят на конструкционные, инструментальные и с особыми свойствами. Наиболее широко применяют конструкционные стали. Они бывают как углеродистыми (С ≤ 0,7%), так и легированными. Инструментальные стали служат для изготовления режущего, ударно-штампового и мерительного инструментов. Они бывают углеродистыми (С ≥ 0,8 … 1,3%) и легированные хромом, марганцем, кремнием и другими элементами. К сталям с особыми свойствами относят нержавеющие, немагнитные, электротехнические стали, стали постоянных магнитов и др.

По качеству стали делят на обыкновенные, качественные, высоко и особо высококачественные. Различие между ними заключается в количестве вредных (сера и фосфор) примесей. Так, в сталях обыкновенного качества допускается содержание серы до 0,06% и фосфора до 0,07%; в качественных – каждого элемента не более 0,035%; а в высококачественных – не более 0,025%.

По характеру застывания из жидкого состояния, степени раскисления различают спокойную, полуспокойную и кипящую стали. Чем полнее удален из расплава кислород, тем спокойнее протекает процесс затвердевания и меньше выделение пузырьков окиси углерода («кипение»). Выбор технологии раскисления определяется назначением и возможностями производства, но каждый способ имеет свои достоинства и недостатки.

Марки углеродистой стали обыкновенного качества обозначаются буквами Ст (сталь) и цифрами от 0 до 6, например Ст0 – Ст6. Цифры соответствуют условному номеру марки в зависимости от химического состава и механических свойств. Чем больше число, тем больше содержание углерода в стали, выше прочность и ниже пластичность. Эти стали делят на три группы – А, Б и В. Сталь группы А имеет гарантированные механические свойства и не подвергается термообработке, в марке стали группа А не указывается. Для стали группы Б гарантируется химический состав, для стали группы В – химический состав и механические свойства.

Степень раскисления обозначается индексами, стоящим справа от номера марки: кп – кипящая, пс – полуспокойная, сп – спокойная. Например, сталь Ст2кп – сталь группы А, кипящая; БСт3пс – сталь группы Б, полуспокойная; ВСт5сп – сталь группы В, спокойная.

Углеродистые качественные стали маркируются двузначными цифрами (08, 10, 15, …, 70), показывающими среднее содержание углерода в стали в сотых долях процента. Эти стали можно условно разделить на несколько групп. Стали 08, 10 обладают высокой пластичностью, хорошо штампуются и свариваются. Низкоуглеродистые стали 15, 20, 25 хорошо свариваются и обрабатываются резанием, после цементации и термообработки обладают повышенной износостойкостью. Наибольшее распространение получили среднеуглеродистые стали 30, 35, 40, 45 и 50 благодаря хорошему сочетанию прочностных и пластических свойств, хорошей обрабатываемости резанием. Высокоуглеродистые стали 60, 65, 70 обладают высокой прочностью, износостойкостью и упругостью, используются для изготовления деталей типа пружин. Прочность и твердость средне- и высокоуглеродистых сталей можно повысить с помощью термической обработки.

Федеральное агентство по образованию

ГОУ ВПО Уральский государственный экономический университет

Кафедра инженерных дисциплин

Контрольная работа

«Свойства конструкционных материалов»

Исполнитель:

студентка I курса заочного факультета

специальности «ЭПП»

Добрынкина Л. В.

Екатеринбург 2009


Понятие конструкционных материалов

Классификация свойств конструкционных материалов

Процессы производства стали

Стеклокристаллические материалы (ситаллы)

Чугун. Классификация чугунов

Графитизация чугунов

Классификация серого чугуна

Маркировка чугуна

Библиографический список


КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ

Конструкционными материалами называют материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами Конструкционные материалы являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества Конструкционные материалы относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др.

Конструкционные материалы подразделяются: по природе материалов - на металлические, неметаллические и композиционные материалы, сочетающие положительные свойства тех и других материалов; по технологическому исполнению - на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т.п.); по условиям работы - на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т.д.; по критериям прочности - на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности.

Развитие техники предъявляет новые, более высокие требования к существующим Конструкционным материалам, стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе лёгкость, жёсткость и прочность. Внешнее армирование металлических замкнутых объёмов (шары, баллоны, цилиндры) стеклопластиком позволяет значительно снизить их массу в сравнении с металлическими конструкциями. Для многих областей техники необходимы Конструкционные материалы, сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами.

В составе конструкционных материалов нашли своё применение почти все элементы таблицы Менделеева, а эффективность ставших уже классическими для металлических сплавов методов упрочнения путём сочетания специально подобранного легирования, высококачественной плавки и надлежащей термической обработки снижается, перспективы повышения свойств конструкционных материалов связаны с синтезированием материалов из элементов, имеющих предельные значения свойств.

Классификация свойств конструкционных материалов

1. Механические свойства характеризуются способностью материала сопротивляться деформированию и разрушаться под действием внешних воздействующих факторов.

· Прочность (способность материала сопротивляться разрушению и пластично деформироваться под воздействием внешних сил);

· Твердость (способность материалов сопротивляться деформированию в поверхностном слое при местном, контактном и силовом воздействии);

· Упругость (способность материала восстанавливать свою форму и размеры, под действием внешних сил без разрушения);

· Вязкость (способность материала поглощать механическую энергию и при этом испытывать значительную пластическую деформацию до разрушения);

· Хрупкость (способность материала разрушаться под действием внешних сил, сразу после упругой деформации).

2. Физические свойства характеризуют поверхность материала в тепловых, гравитационных, электромагнитных и радиоактивных полях.

· Свет (способность материала отражать световые лучи с определенной длиной световой волны);

· Плотность (масса единицы объема вещества);

· Температура плавления;

· Электропроводность (способность материала хорошо и без потерь проводить электрический ток);

· Теплопроводность (способность материала переносить Тепловую энергию от более нагретого участка к менее нагретому);

· Теплоёмктсть (способность материала поглощать определенное количество теплоты);

· Магнитные (способность материалахорошо намагничиваться);

· Коэффициент объемного и линейного расширения.

3. Технологические свойства характеризуются способностью материала подвергаться различным видам горячей и холодной обработки.

· Литейные свойства;

· Ковкость (важно при обработке давлением);

· Свариваемость (это показатель того, на сколько материал может показать свариваемые соединения);

· Обработка резанием;

· Прокаливаемость;

· Закаливаемость.

4. Эксплуатационные свойства, характеризуют способность материалов обеспечивает надежную и долговечную работу изделий в конкретных условиях и эксплуатации, базируются на механических, физических и химических свойствах.

5. Химические свойства характеризуют способность материала вступать в химическое взаимодействие с другими веществами.

· Растворимость (способность материала образовывать с одним или несколькими веществами однородные системы, называющихся растворами);

· Жаростойкость (способность материала противостоять химическому разрушению поверхности под действием воздуха или другой окислительной атмосферой при высоких температурах);

· Коррозионостойкость (способность металлических материалов противостоять разрушению в результате химического или электрохимического воздействия на их поверхности внешней агрессивной среды (аналогичное свойство для неметаллических материалов- химикостойкость ));

· Окисление (способность материалов отдавать электроны, то есть окисляться при химическом взаимодействии с окружающей средой или другой материей).

СТАЛЬ

Сталь (польск.stal , от нем. Stahl ) - деформируемый (ковкий) сплав железа с углеродом (и другими элементами), содержание углерода в котором не превышает 2,14 %, но не меньше 0,02 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.

В древнерусских письменных источниках сталь именовалась специальными терминами: «Оцел», «Харолуг» и «Уклад».

Сталь - важнейший конструкционный материал для машиностроения, транспорта, строительства и прочих отраслей народного хозяйства.

Стали делятся на конструкционные и инструментальные.

По химическому составу стали делятся на углеродистые и легированные; в том числе по содержанию углерода - на малоуглеродистые, среднеуглеродистые и высокоуглеродистые; легированные стали по содержанию легирующих элементов делятся на низколегированные, среднелегированные и высоколегированные.

Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.

По структуре сталь различается на аустенитную, ферритную, мартенситную, бейнитную или перлитную. Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.

Производство стали в кислородных конвертерах

Кислородно-конвертерный процесс представляет собой один из видов передела жидкого чугуна в сталь без затраты топлива путем продувки чугуна в конвертере технически чистым кислородом, подаваемым через фурму, которая вводится в металл сверху. Количество воздуха необходимого для переработки 1 т чугуна, составляет 350 кубометров.

Впервые кислородно-конвертерный процесс в промышленном масштабе был осуществлен в Австрии в 1952 - 1953 гг. на заводах в городах Линце и Донавице (за рубежом этот процесс получил название ЛД по первым буквам городов, в нашей стране - кислородно-конвертерного).

В настоящее время работают конвертеры емкостью от 20 до 450 т, продолжительность плавки в которых составляет 30 - 50 мин.

Кислородный конвертер (рис. 1) представляет собой сосуд 1 грушевидной формы из стального листа, футерованный внутри основным кирпичом 2. Рабочее положение конвертера вертикальное. Кислород подается в него под давлением 0,8...1 МПа с помощью водоохлаждаемой фурмы 3, вводимой в конвертер через горловину 4 и располагаемой над уровнем жидкого металла на расстоянии 0,3...0,8 м.

Конвертеры изготовляют емкостью 100...350 т жидкого чугуна. Общий расход технического кислорода на получение 1 т стали, составляет 50...60 м 3 .

Материалами для получения стали в кислородном конвертере служат жидкий передельный чугун и стальной лом. Для наводки шлака в конвертер добавляют железную руду и известь, а для его разжижения - боксит и плавиковый шпат.

Перед началом работы конвертер поворачивают на цапфах 5 вокруг горизонтальной оси и с помощью завалочной машины загружают до 30 % металлолома, затем заливают жидкий чугун при температуре 1250...1400 °С, возвращают конвертер в исходное вертикальное положение, вводят кислородную фурму, подают кислород и добавляют шлакообразующие материалы.

Загрузка...