domvpavlino.ru

Почему скорость фотосинтеза зависит от температуры. Графики интенсивности фотосинтеза. От чего зависит интенсивность фотосинтеза? Что происходит в световую фазу фотосинтеза

Чтобы ответить на вопрос, как влияют внешние факторы на , необходимо знать, что к числу внешних факторов, относятся: свет, температура, концентрация углекислого газа в воздухе и водоснабжение растения . Влияние внешних факторов на процесс фотосинтеза в растениях.

Свет

Интенсивность света оказывает большое влияние на процесс фотосинтеза. С повышением интенсивности света ускоряется и фотосинтез, но прямой пропорциональной зависимости между интенсивностью света и фотосинтезом не наблюдается. Зависимость фотосинтеза от количества света будет у разных растений неодинакова.
Зависимость фотосинтеза от интенсивности света у светолюбивых и теневыносливых растений. По отношению к интенсивности света растения разделяют на 2 группы: . Первые хорошо растут на открытых местах, при ярком свете, вторые - в тени. Эти растения отличаются и по интенсивности фотосинтеза: у светолюбивых растений фотосинтез возрастает при увеличении освещения, у теневыносливых остается на одном уровне. У теневыносливых растений максимальный фотосинтез протекает при меньшей освещенности по сравнению со светолюбивыми. Светолюбивые и теневыносливые растения различаются как по анатомическому строению, так и по физиологическим признакам. Листья светолюбивых растений имеют более толстую листовую пластинку, хорошо развитый мезофилл, несколько слоев столбчатой паренхимы, более толстый слой кутикулы, больше устьиц и большее количество проводящих пучков, подробнее: (). Клетки у них мелкие, хлоропласты тоже. Кроме того, они содержат меньше хлорофилла, чем теневыносливые растения.

У теневыносливых растений листовая пластинка тонкая, один слой столбчатой паренхимы, сеть жилок слабо развита, устьиц немного. Клетки этих растений крупные, хлоропласты тоже. Данные по количеству хлорофилла у светолюбивых и теневыносливых растений приведены в таблице.

Из данных таблицы видно, что у ели - теневыносливого растения- на свету содержание хлорофилла в 2 раза выше, чем у светолюбивой лиственницы. При недостатке света разница в содержании хлорофилла у ели и лиственницы возрастает в 21 раз. Все особенности в строении листьев у светолюбивых растении имеют приспособительный характер. Так, большое количество устьиц, хорошая проводящая система и повышенная транспирация не позволяют листьям перегреваться на ярком свету и способствуют быстрой подаче к ним воды. Особенности строения листьев у теневыносливых растений вполне обеспечивают их нормальный рост при относительно слабом освещении. Большое количество хлорофилла дает возможность теневыносливым растениям осуществлять процесс фотосинтеза при малой интенсивности света. Если же теневыносливые растения перенести на яркий свет, то они быстро погибают, так как высокое содержание хлорофилла приводит к большому поглощению света, в результате чего резко возрастает транспирация, однако из-за слабо развитой проводящей системы вода в листья поступает медленно. Светолюбивые и теневыносливые растения отличаются и по положению компенсационной точки, т. е. той интенсивности света, при которой образование органического вещества при фотосинтезе равно его трате на дыхание. Теневыносливые растения характеризуются низкой интенсивностью дыхания и повышенной интенсивностью фотосинтеза при слабой освещенности, поэтому точка компенсации у них расположена ниже. Накопление органического вещества у этих растений идет при низкой интенсивности света, при которой у светолюбивых растений вследствие интенсивного дыхания еще не наступила точка компенсации. Светолюбие и тенелюбие растений изменяется в зависимости от места произрастания растений. Изменение светолюбия растений в связи с географической широтой зависит не только от света, но и от температуры и водоснабжения. Листья растения хорошо приспосабливаются к условиям освещения. Так, в кроне дерева всегда есть листья светового типа, расположенные на периферии, и листья теневого типа, находящиеся на ее затененной стороне. Растения можно выращивать при искусственном освещении, используя электрический свет. Однако в этом случае они приобретают признаки этиоляции: электрический свет имеет недостаточное количество сине-фиолетовых лучей, влияющих на формообразовательные процессы.
Искусственное освещение. В последнее время предложены различные лампы, которые дают свет, содержащий необходимое количество синих и фиолетовых лучей. Для нормального роста светолюбивых растений достаточно освещенности в 10- 15 тыс. люксов, которой можно достигнуть и при искусственном освещении.

Температура

Температура оказывает большое влияние на процесс фотосинтеза. При повышении температуры на 10° интенсивность фотосинтеза примерно удваивается. Усиление фотосинтеза, однако, происходит только до температуры 30-35°, дальнейшее повышение ее приводит к уменьшению фотосинтеза, и при 40-45° он прекращается.
Зависимость фотосинтеза от температуры. У многих растений наиболее интенсивный фотосинтез наблюдается при 20-25° (рис. 31). По представлению Ф. Блэкмана, форма кривой изменения интенсивности фотосинтеза с повышением температуры обусловлена тем, что наряду с прогрессивным ускорением химических реакций при повышении температуры возникают процессы, угнетающие фотосинтез (инактивация хлоропластов). К числу внешних факторов, влияющих на интенсивность фотосинтеза, относится и содержание углекислого газа в атмосфере. В среднем в атмосфере содержится 0,03% углекислого газа по объему, и содержание его в атмосфере почти не изменяется: дефицит быстро выравнивается поступлением СО 2 из почвы в результате жизнедеятельности микроорганизмов. При увеличении количества углекислого газа в атмосфере фотосинтез возрастает, но прямой пропорциональности между содержанием углекислого газа и фотосинтезом не наблюдается. Фотосинтез устойчиво увеличивается при повышении содержания углекислого газа до 0,06%, а при значительной интенсивности света и при 1,5-2,0%. В производственных условиях в теплицах и оранжереях в утренние часы, когда фотосинтез идет интенсивно, содержание углекислого газа быстро падает ниже нормы (0,03%) и растения голодают. Поэтому в условиях закрытого грунта уже вошло в практику повышать содержание углекислоты до 1-2%. Однако повышение концентрации углекислого газа неэффективно при слабой интенсивности света, так как углекислый газ не успевает перерабатываться в листьях в органические соединения и действует токсически. При повышении интенсивности света с одновременным увеличением количества углекислого газа возрастает и интенсивность фотосинтеза. Громадное значение для протекания и интенсивности фотосинтеза имеет содержание воды в растении и условия его водоснабжения, поскольку из воды и углекислого газа синтезируются органические вещества и коллоиды цитоплазмы должны быть насыщены водой. При недостатке воды закрываются устьица, в результате замедляется процесс проникновения углекислого газа в лист, а это, в свою очередь, приводит к уменьшению фотосинтеза.
Значение воды для фотосинтеза. При недостаточном водоснабжении подсыхают оболочки клеток мезофилла, граничащие с межклеточниками, что задерживает передвижение углекислого газа к хлоропластам. Вода необходима также и для нормальной работы ферментов, участвующих в процессе фотосинтеза, а в дальнейшем для переработки его продуктов. Временное подвядание растений неблагоприятно влияет на интенсивность фотосинтеза; при этом оно сказывается тем дольше и сильнее, чем длительнее было обезвоживание. При недостатке воды задерживается отток образовавшихся продуктов из листа в стебель и корень растения, что тоже тормозит процесс фотосинтеза, от температуры. Избыточное увлажнение, в результате которого могут закрываться устьица, также отрицательно сказывается на интенсивности фотосинтеза: углекислый газ не может проникнуть внутрь листа.

Агротехнические приемы

Для усиления процесса фотосинтеза, а следовательно, получения высоких урожаев разработаны агротехнические приемы . Большое значение имеют густота стояния растений и направление рядков. При сильно загущенных посевах снижается освещенность отдельных растений, что может привести к уменьшению фотосинтеза. Для светолюбивых растений необходимо применять широкорядные посевы, обеспечивающие хорошую освещенность растений. В этом случае усиление процесса фотосинтеза связано не только с лучшей освещенностью растений, но и с большей площадью их питания.
Ряды посевов. В целях лучшего использования света растениями важное значение имеет и направление рядков. В условиях северо-западной зоны лучше располагать рядки с севера на юг, а на юге - с запада на восток. Для получения высоких урожаев растения нужно обеспечить и углекислым газом. Внесением в почву навоза, торфа и других органических веществ обогащают надземный слой воздуха углекислым газом, который выделяется из почвы при разложении микроорганизмами органических веществ. Почвы, богатые перегноем, ежедневно выделяют до 100-250 кг СО 2 на 1 га. Кроме того, внесение органических удобрений улучшает структуру почвы. В районах с развитой промышленностью углекислый газ, являющийся отходом производства, может быть также использован для обогащения воздуха над посевами. В этом случае его подают на близлежащие поля по трубам. Дополнительное питание растений углекислым газом особенно необходимо при выращивании растений в условиях закрытого грунта - в теплицах и оранжереях, где часто в полуденные часы СО 2 почти отсутствует.
При выращивание в теплицах и оранжереях необходимо дополнительное питание растений углекислым газом. В этом случае обогащение воздуха СО 2 увеличивает урожай в 2-2,5 раза. При выращивании растений в условиях закрытого грунта приходится прибегать к дополнительному освещению, особенно в пасмурные дни и в зимнее время. Свет мощных ламп накаливания может вызвать перегрев растений, поэтому между источником света и растениями ставят водные экраны для поглощения избытка тепловых - инфракрасных - лучей. Поэтому для выращивания растений стали применять люминесцентные лампы - лампы холодного света. При полном отсутствии солнечного света интенсивность освещения должна быть 50-100 тыс. эрг на 1 кв. см в 1 секунду. Для досвечивания достаточно 50 эрг на 1 кв. см в 1 секунду. Выращивание растений на искусственном освещении называется светокультурой. Для нормального роста растений в условиях светокультуры необходимо, кроме света, обеспечить их углекислым газом, минеральным питанием и правильно снабжать водой. Светокультуры имеют большое значение для ранней выгонки зеленных культур, выращивания рассады, томатов, огурцов, редиса, а также для быстрого получения сеянцев древесных пород декоративного садоводства. Используя светокультуры можно снабжать население свежими овощами в течение круглого года.

Скорость фотосинтеза зависит от факторов, среди которых выделяют свет,

концентрацию углекислого газа, воду, температуру. Почему эти факторы

являются лимитирующими для реакций фотосинтеза?

(допускаются иные формулировки ответа, не искажающие его смысла)

Элементы ответа:

свет – источник энергии для световых реакций фотосинтеза, при

его недостатке интенсивность фотосинтеза снижается;

углекислый газ и вода необходимы для синтеза глюкозы, при их

недостатке снижается интенсивность фотосинтеза;

3) все реакции фотосинтеза осуществляются при участии

ферментов, активность которых зависит от температуры

биологических ошибок

Ответ неправильный

Максимальный балл

C5 Для соматической клетки животного характерен диплоидный набор хромосом. Определите хромосомный набор (n) и число молекул ДНК (с) в клетке в конце телофазы мейоза I и анафазе мейоза II. Объясните результаты в каждом случае.

1) в конце телофазы мейоза I набор хромосом – n; число ДНК – 2с;

2) в анафазе мейоза II набор хромосом – 2n; число ДНК – 2с;

3) в конце телофазы I

произошло редукционное деление, число

хромосом и ДНК уменьшилось в 2 раза, хромосомы

двухроматидные;

4) в анафазе мейоза

II к полюсам расходятся сестринские

хроматиды (хромосомы), поэтому число хромосом равно числу

Ответ включает все названные выше элементы, не содержит

биологических ошибок

Ответ включает 2–3 из названных выше элементов и не содержит

биологических ошибок, ИЛИ ответ включает 4 названных выше

элемента, но содержит негрубые биологические ошибки

Ответ включает 1 из названных выше элементов и не содержит

биологических ошибок, ИЛИ ответ включает 2–3 из названных

выше элементов, но содержит негрубые биологические ошибки

Ответ неправильный

Максимальный балл

© 2014 Федеральная служба по надзору в сфере образования и науки Российской Федерации

C6 У человека ген нормального слуха (В) доминирует над геном глухоты и находится в аутосоме; ген цветовой слепоты (дальтонизма – d) рецессивный и сцеплен с Х-хромосомой. В семье, где мать страдала глухотой, но имела нормальное цветовое зрение, а отец – с нормальным слухом (гомозиготен), дальтоник, родилась девочка с нормальным слухом, но дальтоник. Составьте схему решения задачи. Определите генотипы родителей, дочери, возможные генотипы детей и их соотношение. Какие закономерности наследственности проявляются в данном случае?

(правильный ответ должен содержать следующие позиции)

Схема решения задачи включает:

1) генотипы родителей:

♀ bbXD Xd

♂ ВВXd Y

bXD , bXd

ВXd , ВY

2) возможные генотипы детей:

ВbXD Xd – девочка с нормальным слухом и зрением 25%;

ВbXd Xd – девочка с нормальным слухом, дальтоник 25%;

ВbXD Y – мальчик с нормальным слухом и зрением 25%;

ВbXd Y – мальчик с нормальным слухом и зрением 25%.

3) проявляется закон независимого

наследования признаков и

сцепленного с полом наследования признака

Ответ включает все названные выше элементы, не содержит

биологических ошибок

Ответ включает 2 из названных выше элементов и не содержит

биологических ошибок, ИЛИ ответ включает 3 названных выше

элемента, но содержит негрубые биологические ошибки

Ответ включает 1 из названных выше элементов и не содержит

биологических ошибок, ИЛИ ответ включает 2 из названных выше

элементов, но содержит негрубые биологические ошибки

Ответ неправильный

Максимальный балл

© 2014 Федеральная служба по надзору в сфере образования и науки Российской Федерации

Основными внешними факторами , влияющими на интенсивность фотосинтеза, являются освещенность, концентрация диоксида углерода и температура. Если по горизонтальной оси отложить изменение любого из перечисленных факторов, то кривые зависимости интенсивности фотосинтеза от этих факторов будут иметь вид, представленный на рисунке. Сначала при увеличении значения какого-либо из лимитирующих факторов наблюдается линейное увеличение интенсивности фотосинтеза. Затем по мере того, как другой фактор или факторы становятся лимитирующими, происходит замедление интенсивности реакции и ее стабилизация.

В дальнейшем будем предполагать, что меняется лишь один, обсуждаемый, фактор , а остальные имеют оптимальные значения.

Освещенность и фотосинтез

При низкой освещенности интенсивность фотосинтеза возрастает пропорционально увеличению количества падающего света. Постепенно под воздействием других факторов интенсивность фотосинтеза снижается. Освещенность в ясный летний день составляет примерно 100 000 люкс (10 000 фут-кандел), тогда как для нормального процесса фотосинтеза необходима освещенность, равная лишь 10 000 люкс. Поэтому для большинства растений (кроме растений, находящихся в тени) свет не является главным лимитирующим фактором фотосинтеза. Очень высокие значения интенсивности света могут приводить к обесцвечиванию хлорофилла и замедлению реакций фотосинтеза. Вместе с тем растения, постоянно находящиеся в подобных условиях, обычно хорошо к ним адаптированы; например, листья у них покрыты толстой кутикулой или густо опушены.

Концентрация диоксида углерода и фотосинтез

Диоксид углерода используется в темновых реакциях для получения сахара. В нормальных условиях диоксид углерода является основным лимитирующим фактором фотосинтеза. В атмосфере содержится от 0,03 до 0,04% диоксида углерода. Если повысить его содержание в воздухе, то можно добиться увеличения интенсивности фотосинтеза. В течение короткого периода можно поддерживать оптимальную концентрацию, составляющую 0,5%, однако при длительном воздействии такая концентрация становится опасной для растения. Поэтому наиболее благоприятной считается концентрация диоксида углерода, равная примерно 0,1%. Некоторые тепличные культуры, например томаты, выращивают именно в атмосфере, обогащенной диоксидом углерода. В настоящее время большой интерес вызывают растения, способные эффективно удалять диоксид углерода из атмосферы и дающие при этом повышенные урожаи. Такие растения, называемые С4-растения, обсуждаются в соответствующем разделе.

Температура и фотосинтез

Темновые, а в некоторой степени и световые реакции контролируются ферментами , поэтому температура воздуха имеет большое значение. Для растений умеренного климата наиболее благоприятной температурой является температура примерно 25 °С. При повышении температуры на каждые 10 °С скорость реакции удваивается, (вплоть до 35 °С), однако другие данные свидетельствуют о том, что при 25 "С растение развивается лучше.

Концентрация хлорофилла и фотосинтез

Сама по себе концентрация хлорофилла не является фактором, лимитирующим фотосинтез. Важными могут оказаться причины понижения уровня хлорофилла: болезни (мучнистая роса, ржа, вирусные болезни), недостаток микроэлементов, нормальные процессы старения. Когда лист желтеет, говорят, что он стал хлоротичным, а процесс образования желтоватой окраски листьев называется хлорозом. Хлоро-тичные пятна часто являются симптомом болезни или минеральной недостаточности. Некоторые элементы, например железо, магний и азот (последние два непосредственно входят в молекулу хлорофилла), необходимы для образования хлорофилла, поэтому эти элементы особенно важны. Кроме того, растению требуется калий. Еше одной причиной возникновения хлороза является недостаток света, поскольку свет необходим на конечной стадии синтеза хлорофилла.


Специфические ингибиторы и фотосинтез

Если подавить фотосинтез , то растение неминуемо погибнет. На этом была основана разработка различных гербицидов, например ДХММ (дихлорфенилдиметилмочевина). Данный препарат запускает обходной путь нециклического потока электронов в хлоропластах, ингибируя таким образом световые реакции. ДХММ сыграла важную роль в изучении световых реакций фотосинтеза.

Еше два фактора оказывают большое влияние на рост сельскохозяйственных культур и имеют более общее значение для роста растения и процесса фотосинтеза - это наличие воды и загрязнение окружающей среды.

Вода и фотосинтез

Вода представляет собой исходное вещество для фотосинтеза. Однако поскольку вода влияет на огромное число клеточных процессов, оценить ее непосредственное влияние на фотосинтез невозможно. Тем не менее, изучая количество синтезируемого органического вещества у растений, страдающих от недостатка воды, можно видеть, что временное увядание приводит к резкому снижению урожая. Даже если у растений не наблюдается видимых изменений, незначительный дефицит воды приводит к значительному падению урожая. Причины этого сложны и не до конца изучены. Одной из явных причин можно считать закрывание устьиц при увядании, что препятствует поступлению углекислого газа для фотосинтеза. Кроме того, было показано, что при недостатке воды в листьях некоторых растений накапливается абсцизовая кислота, являющаяся ингибитором роста.

Загрязнение окружающей среды и фотосинтез

Некоторые газы промышленного происхождения, например озон и диоксид серы , даже в небольших количествах очень опасны для листьев растений, хотя точные причины этого до сих пор не установлены. Так, зерновые культуры в загрязненных районах теряют до 15% своей массы, особенно во время засушливого лета. Оказалось, что лишайники очень чувствительны к диоксиду серы. Сажа забивает устьица и уменьшает прозрачность эпидермиса листа.

Интенсивность процесса фотосинтеза может быть выражена в сле­дующих единицах: в миллиграммах СО 2 , ассимилированной 1 дм 2 листа за 1 ч; в миллилитрах О 2 , выделенного 1 дм 2 листа за 1 ч; в миллиграммах сухого вещества, накопленного 1 дм 2 листа за 1 ч.

При интерпретации данных, полученных любым методом, следует иметь в виду, что на свету растения не только фотосинтезируют, но и дышат. В связи с этим все измеренные тем или иным методом по­казатели представляют собой результат двух прямо противоположных процессов, или разность между показателями процессов фотосинтеза и дыхания. Это видимый фотосинтез. Так, например, наблюдаемое изменение содержания СО 2 - это разность между тем его количест­вом, которое поглощено в процессе фотосинтеза, и тем, которое вы­делилось в процессе дыхания. Для того чтобы перейти к истинной величине фотосинтеза, во всех случаях необходимо вносить поправ­ку, учитывающую интенсивность процесса дыхания.

Влияние внешних условий на интенсивность процесса фотосинтеза

В естественной обстановке все факторы взаимодействуют друг с другом, т. е. действие одного фактора зависит от напряженности всех остальных. В общем виде это можно сформулировать так: изменение напряженности одного фактора при неизменности прочих влияет на фотосинтез, начиная от минимального уровня, при котором процесс начинается, и, кончая оптимумом, при достижении которого процесс перестает изменяться (кривая выходит на плато). Во многих случаях увеличение напряженности фактора после определенного уровня при­водит даже к торможению процесса. Однако если начать изменять какой-либо другой фактор, то оптимальное значение напряженности первого фактора меняется в сторону увеличения. Иначе говоря, пла­то достигается при более высоком значении напряженности. Скорость процесса, в частности скорость фотосинтеза, зависит в первую оче­редь от напряженности того фактора, который находится в минимуме (ограничивающий фактор). В качестве примера можно привести взаимодействие таких факторов, как интенсивность света и содер­жание СО 2 . Чем выше содержание углекислоты (в определенных пределах), тем при более высокой освещенности показатели фото­синтеза выходят па плато.

Влияние света

Увеличение интенсивности освещения сказывается на процессе фотосинтеза различие в зависимости от типа растения и напряжен­ности других факторов. Растения в процессе исторического развития приспособились к произрастанию в различных условиях освещен­ности. По этому признаку растения разделяют на группы: светолюбивые, теневыносливые и тенелюбивые. Эти эко­логические группы характеризуются рядом анатомо-физиологических особенностей. Они различаются по содержанию и составу пиг­ментов.

Светолюбивые растения характеризуются более светлой окраской листьев, меньшим общим содержанием хлорофилла по сравнению с теневыносливыми. В листьях теневыносливых растений по сравне­нию со светолюбивыми относительно высокое содержание ксантофилла и хлорофилла b. Эта особенность в составе пигментов позволяет листьям теневыносливых растений использовать «отработанный свет», уже прошедший через листья светолюбивых растений. Свето­любивые растения - это растения открытых местообитаний, которые чаще испытывают недостаток водоснабжения. В связи с этим их ли­стья по сравнению с теневыносливыми обладают более ксероморфиой анатомической структурой, отличаются большей толщиной, более сильно развитой палисадной паренхимой. У некоторых светолюбивых растений палисадная паренхима располагается не только с верхней, но и с нижней стороны листа. Листья светолюбивых растений по сравнению с теневыносливыми характеризуются также более мелки­ми клетками, более мелкими хлоропластами, меньшей величиной устьиц при большем их количестве на единицу поверхности листа, более густой сетью жилок.

Светолюбивые и теневыносливые растения отличаются и по фи­зиологическим признакам. Большое содержание пигментов позволя­ет теневыносливым растениям лучше использовать малые количества света. У светолюбивых растений интенсивность фотосинтеза увеличи­вается при возрастании интенсивности освещения в более широких пределах. Важной особенностью, определяющей возможность расте­ний произрастать при большей или меньшей освещенности, является положение компенсационной точки. Под компенсационной точкой по­нимается та освещенность, при которой процессы фотосинтеза и ды­хания уравновешивают друг друга. Иначе говоря, это та освещен­ность, при которой растение за единицу времени образует в процес­се фотосинтеза столько органического вещества, сколько оно тратит в процессе дыхания. Естественно, что рост зеленого растения может идти только при освещенности выше компенсационной точки. Чем ниже интенсивность дыхания, тем ниже компенсационная точка и тем при меньшей освещенности растения растут. Теневыносливые растения характеризуются более низкой интенсивностью дыхания, что и позволяет им расти при меньшей освещенности. Компенсаци­онная точка заметно растет с повышением температуры, так как по­вышение температуры сильнее увеличивает дыхание по сравнению с фотосинтезом. Именно поэтому при низкой освещенности повыше­ние температуры может снизить темпы роста растений.

Для фотосинтеза, как и для всякого процесса, включающего фо­тохимические реакции, характерно наличие нижнего порога осве­щенности, при котором он только начинается (около одной свечи на расстоянии 1 м). В целом зависимость фотосинтеза от интенсивности освещения может быть выражена логарифмической кривой. Первона­чально увеличение интенсивности освещения приводит к пропорцио­нальному усилению фотосинтеза (зона максимального эффекта). При дальнейшем увеличении интенсивности света фотосинтез про­должает возрастать, но медленнее (зона ослабленного эффекта) и, наконец, интенсивность света растет, а фотосинтез не изменяется (зона отсутствия эффекта - плато). Наклон кривых, выражающих зависимость интенсивности фотосинтеза от освещенности, различен для разных растений. Есть растения, у которых фотосинтез возрас­тает вплоть до освещения их прямыми солнечными лучами. Вместе с тем для многих растений увеличение интенсивности освещения свыше 50% от прямого солнечного света оказывается уже излиш­ним. Это обстоятельство связано с тем, что конечный выход продук­тов фотосинтеза зависит от скорости не столько световых, сколько темповых реакций. Между тем интенсивность освещения влияет на скорость лишь световых реакций. Следовательно, для того чтобы интенсивность света оказывала влияние после достижения определен­ного уровня, необходимо увеличить скорость темновых реакций. В свою очередь, скорость темновых реакций фотосинтеза в большой степени зависит от температуры и содержания углекислоты. С повы­шением температуры или с увеличением содержания углекислоты оп­тимальная освещенность меняется в сторону увеличения.

В естественных условиях из-за взаимного затенения па нижние листья падает лишь небольшая доля солнечной энергии. Так, в густом посеве растений вики в стадии цветения интенсивность света в при­земном слое составляет всего 3% от полного дневного освещения. Часто нижние листья освещаются светом, близким к"компенсацион­ной точке. Таким образом, в посевах общая интенсивность фотосин­теза всех листьев растений может возрастать вплоть до уровня, со­ответствующего полной интенсивности солнечного света.

При очень высокой интенсивности света, прямо попадающего на лист, может наблюдаться депрессия фотосинтеза. На начальных эта­пах депрессии, вызванной высокой интенсивностью света, хлоро-пласты передвигаются к боковым стенкам клетки (фототаксис). При дальнейшем возрастании освещенности интенсивность фотосинтеза может резко сокращаться. Причиной депрессии фотосинтеза ярким светом могут служить перегрев и нарушение водного баланса. Воз­можно, на ярком свету возникает избыток возбужденных молекул хлорофилла, энергия которых тратится на окисление каких-то фер­ментов, необходимых для нормального протекания процесса фото­синтеза.

Коэффициент использования солнечной энергии

В ясный солнечный день на 1 дм 2 листовой поверхности за 1 ч падает около 30 168 кДж. Из этого количества поглощается пример­но 75 %, или 22 626 кДж, 25 % падающей энергии проходят через лист и отражаются от него. Исходя из количества сухого вещества, накапливаемого листом за определенный промежуток времени рассчитали количество запасаемой энергии и сопоставили его с тем количеством, которое лист получает. Согласно полученным данным, КПД фотосинтеза оказался равным 2,6%. Можно еще более просто подойти к расчету интересующей нас величины. Так, одно растение кукуру­зы накапливает за сутки в среднем 18,3 г сухого вещества. Можно принять, что все это вещество - крахмал. Теплота сгорания 1 г крахмала будет 17,6 кДж. Следовательно, суточная прибыль энергии составит (18,3X17,6) 322 кДж. При густоте на 1 га 15 тыс. расте­ний поле в 1 га за сутки накапливает 4830651 кДж, а получает за день 209 500 000 кДж. Таким образом, использование энергии состав­ляет 2,3%.

Следовательно, расчеты показывают, что КПД процесса фотосин­теза в естественных условиях ничтожно мал. Задача повышения КПД использования солнечной энергии является одной из важней­ших в физиологии растений. Эта задача вполне реальна, так как тео­ретически КПД процесса фотосинтеза может достигать значительно большей величины.

Влияние температуры

Влияние температуры па фотосинтез находится в зависимости от интенсивности освещения. При низкой освещенности фотосинтез от температуры не зависит (Q 10 = 1). Это связано с тем, что при низкой освещенности интенсивность фотосинтеза лимитируется скоростью световых фотохимических реакций. Напротив, при высокой осве­щенности скорость фотосинтеза определяется протеканием темновых реакций, и в этом случае влияние температуры проявляется очень отчетливо. Температурный коэффициент Q 10 может быть около двух. Так, для подсолнечника повышение температуры в интервале от 9 до 19°С увеличивает интенсивность фотосинтеза в 2,5 раза. Темпера­турные пределы, в которых возможно осуществление процессов фо­тосинтеза, различны для разных растений. Минимальная температу­ра для фотосинтеза растений средней полосы около 0°С, для тропи­ческих растений 5-10°С. Имеются данные, что полярные растения могут осуществлять фотосинтез и при температуре ниже 0°С. Опти­мальная температура фотосинтеза для большинства растений со­ставляет примерно 30-33°С. При температуре выше 30-33°С ин­тенсивность фотосинтеза резко падает. Это связано с тем, что зави­симость процесса фотосинтеза от температуры представляет собой равнодействующую противоположных процессов. Так, повышение температуры увеличивает скорость темновых реакций фотосинтеза. Одновременно при температуре 25-30°С происходит процесс инак­тивации хлоропластов. Повышение температуры может вызвать так­же закрытие устьичных щелей.

Влияние содержания СО 2 в воздухе

Источником углерода для процесса фотосинтеза является угле­кислый газ. Попытки заменить углекислый газ угарным (СО) не увенчались успехом. В основном в процессе фотосинтеза использует­ся СО 2 атмосферы. Содержание СО 2 в воздухе составляет всего 0,03%. Процесс фото­синтеза осуществляется при содержании СО 2 не менее 0,008%. Повышение содержания СО 2 до 1,5% вызывает прямо пропорциональное возрастание интенсивности фотосинтеза. При повышении содер­жания СО 2 свыше 1,5% фотосинтез продолжает возрастать, но уже значительно медленнее. При увеличении содержания СО 2 до 15-20% процесс фотосинтеза выходит па плато. При содержании СО 2 выше 70% наступает депрессия фотосинтеза. Есть растения, более чувст­вительные к повышению концентрации СО 2 , у которых торможение фотосинтеза начинает проявляться уже при содержании СО 2 , рав­ном 5%. Повышение концентрации СО 2 оказывает ингибирующее влияние в силу разных причин. Прежде всего, увеличение содержа­ния СО 2 вызывает закрытие устьиц. Вместе с тем высокие концентра­ции СО 2 сказываются особенно неблагоприятно при высокой осве­щенности. Последнее заставляет полагать, что СО 2 в определенных концентрациях ингибирует темновые ферментативные реакции.

В естественных условиях содержание СО 2 настолько мало, что может ограничивать возрастание процесса фотосинтеза. Надо еще учесть, что в дневные часы содержание СО 2 в воздухе вокруг расте­ний понижается.

В связи со сказанным увеличение содержания СО 2 в воздухе яв­ляется одним из важных способов повышения интенсивности фото­синтеза и, как следствие, накопления сухого вещества растением. Однако в полевых условиях регулирование содержания СО 2 затруд­нено. Частично это может быть достигнуто с помощью поверхност­ного внесения навоза или других органических удобрений (мульчи­рование). Легче достигается повышение содержания СО 2 в закры­том грунте. В этом случае подкормки СО 2 дают хорошие резуль­таты и должны быть широко используемы. Разные растения неодинаково используют одни и те же концентрации СО 2 . Растения, у которых фотосинтез идет по «С-4» пути (кукуруза), обладают более высокой способностью к связыванию СО 2 благодаря высокой актив­ности фермента фосфоенолпируваткарбоксилазы.

Влияние снабжения водой

Небольшой водный дефицит (5-15%) в клетках листьев оказы­вает благоприятное влияние на интенсивность фотосинтеза. При полной насыщенности водой клеток листа фотосинтез снижается. Частично это может быть связано с тем, что при полном насыщении клеток мезофилла замыкающие устьичные клетки оказываются несколько сдавленными, устьичные щели не могут открыться (гидропассивные движения). Однако дело не толь­ко в этом. Небольшое обезвоживание_листьев сказывается благопри­ятно на процессе фотосинтеза и вне зависимости от степени откры­тия устьиц. Увеличение вод­ного дефицита свыше 15-20% приводит к заметному снижению интенсивности фотосинтеза. Это связано в первую очередь с закры­тием устьиц (гидроактивные движения), что резко уменьшает диф­фузию СО 2 в лист. Кроме того, это вызывает сокращение транспирации, как следствие, температура листьев возрастает. Между тем по­вышение температуры выше 30°С вызывает снижение фотосинтеза. Наконец обезвоживание оказывает влияние на конформацию, а сле­довательно, и активность ферментов, принимающих участие в тем­повой фазе фотосинтеза.

Снабжение кислородом и интенсивность фотосинтеза

Несмотря на то, что кислород является одним из продуктов про­цесса фотосинтеза, в условиях полного анаэробиоза процесс фотосин­теза останавливается. Можно полагать, что влияние анаэробиоза косвенное, связано с торможением процесса дыхания и накоплением продуктов неполного окисления, в частности органических кислот. Это предположение подтверждается тем, что вредное влияние ана­эробиоза сказывается более резко в кислой среде. Повышение кон­центрации кислорода (до 25%) также тормозит фотосинтез (эффект Варбурга).

Тормозящее влияние высоких концентраций кислорода на фото­синтез проявляется особенно резко при повышенной интенсивности света. Эти наблюдения заставили обратить внимание на особенности процесса дыхания в присутствии света (фотодыхание). Химизм это­го процесса отличен от обычного темнового дыхания. Фотодыхание - это поглощение кислорода и выделение СО 2 па свету в использовани­ем в качестве субстрата промежуточных продуктов цикла Кальвина. По-видимому, образующаяся в цикле Кальвина фосфоглицериновая кислота в процессе фотодыхания окисляется и декарбоксилируется до гликолевой кислоты, а гликолевая кислота окисляется до глиоксилевой кислоты. Образование гликолевой кислоты происходит в хлоропластах, однако там не накапливается, а транспортируется в осо­бые органеллы пероксисомы. В пероксисомах происходит превращение гликолевой кислоты в глиоксилевую кислоту. Глиоксилевая кис­лота, в свою очередь, подвергается аминированию, а затем декарбоксилированию, при этом выделяется углекислый газ.

Выделение СО 2 при фотодыхании может достигать 50% от всего СО 2 , усвоенного в процессе фотосинтеза. В связи с этим можно пола­гать, что уменьшение интенсивности фотодыхания должно привести к повышению продуктивности растений. Так, мутантные формы та­бака, не обладающие способностью к образованию гликолевой кис­лоты, отличаются повышенным накоплением сухой массы. Имеются данные, что некоторое уменьшение содержания кислорода в атмос­фере сказывается благоприятно на темпах накопления сухого веще­ства проростками. У кукурузы и других растений, осуществляющих фотосинтез по «С-4» пути фотодыхание не идет. Не исключено, что такой тип обмена способствует большей продуктивности этих рас­тений.

Влияние минерального питания

Влияние калия на фотосинтез многосторонне. При недостатке ка­лия интенсивность фотосинтеза снижается уже через короткие про­межутки времени. Калий может влиять на фотосинтез косвенно, че­рез повышение оводненности цитоплазмы, ускорение оттока ассимилятов из листьев, увеличение степени открытия устьиц. Вместе с тем имеет место и прямое влияние калия, поскольку он активирует про­цессы фосфорилирования.

Очень велико значение фосфора для фотосинтеза. На всех этапах фотосинтеза принимают участие фосфорилированные соединения. Энергия света аккумулируется в фосфорных связях.

В последнее время много внимания уделяется выяснению роли марганца. При изучении фотосинтеза штамма хлореллы, который может расти как в темноте за счет готового органического вещества, так и на свету, было показано, что марганец необходим только в последнем случае. Для тех микроорганизмов, которые осуществляют процесс фоторедукции, марганец не нужен. Вместе с тем отсутствие марганца резко угнетает реакцию Хилла и процесс нециклического фотофосфорилирования. Все это доказывает, что роль марганца оп­ределяется его участием в реакциях фотоокисления воды.

Многие соединения, функционирующие как переносчики, содер­жат железо (цитохромы, ферредоксин) или медь (пластоцианин). Естественно, что при недостатке этих элементов интенсивность фо­тосинтеза понижается.

Факторы, влияющие на эффективность фотосинтеза

Интенсивность, или скорость процесса фотосинтеза в растении, зависит от ряда внутренних и внешних факторов. Из внутренних факторов наибольшее значение имеют структура листа и содержание в нем хлорофилла, накопление продуктов фотосинтеза в хлоропластах, влияние ферментов, а также наличие малых количеств необходимых неорганических веществ. Внешние факторы - это параметры излучения, попадающего на листья, температура окружающей среды, концентрация углекислоты и кислорода в атмосфере вблизи растения. Рассмотрим подробнее некоторые из этих факторов.

Влияние физических и химических факторов на процесс фотосинтеза

При исследовании воздействия СВЧ излучения на пшеницу такими «косвенными» признаками являлись скорость прорастания, всхожесть, интенсивность (скорость) развития ростков , которые являются следствием неизученных в полной мере процессов, протекающих в биосистеме при СВЧ воздействии. Даже в тех случаях, когда удается моделировать изменения на клеточном уровне, корреляционные исследования проводятся после облучения и выращивания растений. Таким образом, в большинстве случаев, ответная реакция биообъекта на воздействие оценивается по «отдаленным» эффектам. Одним из таких «отдаленных» эффектов для зеленых растений может являться и интенсивность фотосинтетических реакций.

Влияние интенсивности света на фотосинтетическую активность показано на рис. 2. При низких интенсивностях света скорость фотосинтеза, измеренная по выделению кислорода, возрастает прямо пропорционально увеличению интенсивности света. Соответствующий участок на графике, обозначенный буквой X, называют начальным участком, или областью, в которой скорость фотосинтеза лимитируется светом. По мере дальнейшего увеличения интенсивности света нарастание фотосинтеза становится все менее и менее выраженным, и, наконец, когда освещенность достигает определенного уровня (около 10 000 лк), дальнейшее увеличение интенсивности света уже не влияет на скорость фотосинтеза. На рисунке это соответствует горизонтальным участкам кривых, или плато. Область плато, обозначенная буквой Y, называется областью светового насыщения. Если нужно увеличить скорость фотосинтеза в этой области, следует изменять не интенсивность света, а какие-либо другие факторы. Интенсивность солнечного света, попадающего в ясный летний день на поверхность земли, во многих местах нашей планеты составляет примерно 105 лк, или около 1000 Вт/м2.

Кроме того важную роль для фотосинтеза играет и температура (второй фактор). В случае низких интенсивностей света скорость фотосинтеза при 15°С и 25°С одинакова. Реакции, протекающие при таких интенсивностях света, которые соответствуют области лимитирования светом, подобно истинным фотохимическим реакциям, не чувствительны к температуре. Однако при более высоких интенсивностях скорость фотосинтеза при 25°С гораздо выше, чем при 15°С. Большинство растений в умеренном климате хорошо функционируют в интервале температур от 10°С до 35°С, наиболее благоприятные условия-- это температура около 25°С.

Третьим фактором, влияющим на скорость фотосинтеза, является изменение частоты светового кванта (цвета волны). Лучистая энергия излучается и распространяется в виде дискретных единиц - квантов, или фотонов. Квант света обладает энергией E = h·н= h·c /л где h - постоянная Планка. Из этой формулы ясно, что значение энергии квантов для разных участков спектра различна: чем короче длина волны, тем она больше.

Энергия квантов, соответствующих крайним участкам видимого диапазона -- фиолетовому (около 400 нм) и дальнему красному различается всего лишь в два раза, и все фотоны в этом диапазоне в принципе способны осуществить запуск фотосинтеза, хотя, как мы увидим далее, пигменты листа избирательно поглощают свет определенных длин волн.

Сравнительная характеристика разных участков спектра приведена в таблице 1.

Таблица 1.

В области лимитирования светом скорость фотосинтеза не изменяется при уменьшении концентрации СО2 в окружающей среде (четвертый фактор). Но при более высоких интенсивностях освещения, лежащих за пределами области лимитирования светом, фотосинтез существенно возрастает при увеличении концентрации СО2. У некоторых зерновых культур фотосинтез линейно возрастал при увеличении концентрации СО2 до 0,5% (эти измерения проводили в кратковременных опытах, поскольку длительное воздействие столь высоких концентраций СО2 повреждает листья). Очень высоких значений скорость фотосинтеза достигает при содержании СО2 около 0,1%. Средняя концентрация углекислоты в атмосфере составляет от 0,03 до 0,04%. Поэтому в обычных условиях растениям не хватает СО2 для того, чтобы с максимальной эффективностью использовать попадающий на них солнечный свет.

Влияние внутренних факторов

Так же на скорость фотосинтеза влияют внутренние факторы, такие как количество хлорофилла в растении, площадь зеленной поверхности растения и пр. В нашей работе мы изучаем влияние внешних факторов.

Загрузка...